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1    
Abstract 

 LS-DYNA is a general purpose finite element code for analyzing the large 
deformation static and dynamic response of structures including structures coupled to 
fluids.  The main solution methodology is based on explicit time integration.  An 
implicit solver is currently available with somewhat limited capabilities including 
structural analysis and heat transfer.  A contact-impact algorithm allows difficult 
contact problems to be easily treated with heat transfer included across the contact 
interfaces.   By a specialization of this algorithm, such interfaces can be rigidly tied to 
admit variable zoning without the need of mesh transition regions.  Other specializa-
tions, allow draw beads in metal stamping applications to be easily modeled simply by 
defining a line of nodes along the draw bead.  Spatial discretization is achieved by the 
use of four node tetrahedron and eight node solid elements, two node beam elements, 
three and four node shell elements, eight node solid shell elements, truss elements, 
membrane elements, discrete elements, and rigid bodies.  A variety of element 
formulations are available for each element type.  Specialized capabilities for airbags, 
sensors, and seatbelts have tailored LS-DYNA for applications in the automotive 
industry.  Adaptive remeshing is available for shell elements and is widely used in 
sheet metal stamping applications.  LS-DYNA currently contains approximately one-
hundred constitutive models and ten equations-of-state to cover a wide range of 
material behavior.  This theoretical manual has been written to provide users and 
potential users with insight into the mathematical and physical basis of the code.
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2    
History of LS-DYNA 

 The origin of LS-DYNA dates back to the public domain software, DYNA3D, 
which was developed in the mid-seventies at the Lawrence Livermore National 
Laboratory.  The first version of DYNA3D [Hallquist 1976a] was released in 1976 with 
constant stress 4- or 8-node solid elements, 16- and 20-node solid elements with 2 × 2 × 
2 Gaussian quadrature, 3, 4, and 8-node membrane elements, and a 2-node cable 
element.  A nodal constraint contact-impact interface algorithm [Hallquist 1977] was 
available.  On the Control Data CDC-7600, a supercomputer in 1976, the speed of the 
code varied from 36 minutes per 106 mesh cycles with 4-8 node solids to 180 minutes 
per 106 mesh cycles with 16 and 20 node solids.  Without hourglass control to prevent 
formation of non-physical zero energy deformation modes, constant stress solids were 
processed at 12 minutes per 106 mesh cycles.  A moderate number of very costly 
solutions were obtained with this version of DYNA3D using 16- and 20-node solids.  
Hourglass modes combined with the procedure for computing the time step size 
prevented us from obtaining solutions with constant stress elements. 
 
 In this early development, several things became apparent.  Hourglass 
deformation modes of the constant stress elements were invariably excited by the 
contact-impact algorithm, showing that a new sliding interface algorithm was needed.  
Higher order elements seemed to be impractical for shock wave propagation because of 
numerical noise resulting from the ad hoc mass lumping necessary to generate a 
diagonal mass matrix.  Although the lower frequency structural response was 
accurately computed with these elements, their high computer cost made analysis so 
expensive as to be impractical.  It was obvious that realistic three-dimensional structural 
calculations were possible, if and only if the under-integrated eight node constant stress 
solid element could be made to function.  This implied a need for a much better sliding 
interface algorithm, a more cost-effective hourglass control, more optimal program-
ming, and a machine much faster than the CDC-7600.  This latter need was fulfilled 
several years later when LLNL took deliver of its first CRAY-1.  At this time, DYNA3D 
was completely rewritten. 
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 The next version, released in 1979, achieved the aforementioned goals.  On the 
CRAY the vectorized speed was 50 times faster, 0.67 minutes per million mesh cycles.  
A symmetric, penalty-based, contact-impact algorithm was considerably faster in 
execution speed and exceedingly reliable.  Due to lack of use, the membrane and cable 
elements were stripped and all higher order elements were eliminated as well.  Wilkins’ 
finite difference equations [Wilkins et al.  1974] were implemented in unvectorized form 
in an overlay to compare their performance with the finite element method.  The finite 
difference algorithm proved to be nearly two times more expensive than the finite 
element approach (apart from vectorization) with no compensating increase in 
accuracy, and was removed in the next code update. 
 
 The 1981 version [Hallquist 1981a] evolved from the 1979 version.  Nine 
additional material models were added to allow a much broader range of problems to 
be modeled including explosive-structure and soil-structure interactions.  Body force 
loads were implemented for angular velocities and base accelerations.  A link was also 
established from the 3D Eulerian code JOY [Couch, et.  al., 1983] for studying the 
structural response to impacts by penetrating projectiles.  An option was provided for 
storing element data on disk thereby doubling the capacity of DYNA3D. 
 
 The 1982 version of DYNA3D [Hallquist 1982] accepted DYNA2D [Hallquist 
1980] material input directly.  The new organization was such that equations of state 
and constitutive models of any complexity could be easily added.  Complete 
vectorization of the material models had been nearly achieved with about a 10 percent 
increase in execution speed over the 1981 version. 
 
 In the 1986 version of DYNA3D [Hallquist and Benson 1986], many new features 
were added, including beams, shells, rigid bodies, single surface contact, interface 
friction, discrete springs and dampers, optional hourglass treatments, optional exact 
volume integration, and VAX/VMS, IBM, UNIX, COS operating systems compatibility, 
that greatly expanded its range of applications.  DYNA3D thus became the first code to 
have a general single surface contact algorithm. 
 
 In the 1987 version of DYNA3D [Hallquist and Benson 1987] metal forming 
simulations and composite analysis became a reality.  This version included shell 
thickness changes, the Belytschko-Tsay shell element [Belytschko and Tsay, 1981], and 
dynamic relaxation.  Also included were non-reflecting boundaries, user specified 
integration rules for shell and beam elements, a layered composite damage model, and 
single point constraints. 
 
 New capabilities added in the 1988 DYNA3D [Hallquist 1988] version included a 
cost effective resultant beam element, a truss element, a C0 triangular shell, the BCIZ 
triangular shell [Bazeley et al., 1965], mixing of element formulations in calculations, 
composite failure modeling for solids, noniterative plane stress plasticity, contact 
surfaces with spot welds, tiebreak sliding surfaces, beam surface contact, finite 
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stonewalls, stonewall reaction forces, energy calculations for all elements, a crushable 
foam constitutive model, comment cards in the input, and one-dimensional slidelines. 
 
 In 1988 the Hallquist began working half-time at LLNL to devote more time to 
the development and support of LS-DYNA for automotive applications.  By the end of 
1988 it was obvious that a much more concentrated effort would be required in the 
development of LS-DYNA if problems in crashworthiness were to be properly solved; 
therefore, at the start of 1989 the Hallquist resigned from LLNL to continue code 
development full time at Livermore Software Technology Corporation.  The 1989 
version introduced many enhanced capabilities including a one-way treatment of slide 
surfaces with voids and friction; cross-sectional forces for structural elements; an 
optional user specified minimum time step size for shell elements using elastic and 
elastoplastic material models; nodal accelerations in the time history database; a 
compressible Mooney-Rivlin material model; a closed-form update shell plasticity 
model; a general rubber material model; unique penalty specifications for each slide 
surface; external work tracking; optional time step criterion for 4-node shell elements; 
and internal element sorting to allow full vectorization of right-hand-side force 
assembly. 

2.1  Features add in 1989-1990 

 Throughout the past decade, considerable progress has been made as may be 
seen in the chronology of the developments which follows.  During 1989 many 
extensions and developments were completed, and in 1990 the following capabilities 
were delivered to users: 

• arbitrary node and element numbers, 

• fabric model for seat belts and airbags, 

• composite glass model, 

• vectorized type 3 contact and single surface contact, 

• many more I/O options, 

• all shell materials available for 8 node brick shell, 

• strain rate dependent plasticity for beams, 

• fully vectorized iterative plasticity, 

• interactive graphics on some computers, 

• nodal damping, 

• shell thickness taken into account in shell type 3 contact, 

• shell thinning accounted for in type 3 and type 4 contact, 

• soft stonewalls, 
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• print suppression option for node and element data, 

• massless truss elements, rivets – based on equations of rigid body dynamics, 

• massless beam elements, spot welds – based on equations of rigid body 
dynamics, 

• expanded databases with more history variables and integration points, 

• force limited resultant beam, 

• rotational spring and dampers, local coordinate systems for discrete elements, 

• resultant plasticity for C0 triangular element, 

• energy dissipation calculations for stonewalls, 

• hourglass energy calculations for solid and shell elements, 

• viscous and Coulomb friction with arbitrary variation over surface, 

• distributed loads on beam elements, 

• Cowper and Symonds strain rate model, 

• segmented stonewalls, 

• stonewall Coulomb friction, 

• stonewall energy dissipation, 

• airbags (1990), 

• nodal rigid bodies, 

• automatic sorting of triangular shells into C0 groups, 

• mass scaling for quasi static analyses, 

• user defined subroutines, 

• warpage checks on shell elements, 

• thickness consideration in all contact types, 

• automatic orientation of contact segments, 

• sliding interface energy dissipation calculations, 

• nodal force and energy database for applied boundary conditions, 

• defined stonewall velocity with input energy calculations, 

2.2  Options added in 1991-1992 

• rigid/deformable material switching, 

• rigid bodies impacting rigid walls, 
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• strain-rate effects in metallic honeycomb model 26, 

• shells and beams interfaces included for subsequent component analyses, 

• external work computed for prescribed displacement/velocity/accelerations, 

• linear constraint equations, 

• MPGS database, 

• MOVIE database, 

• Slideline interface file, 

• automated contact input for all input types, 

• automatic single surface contact without element orientation, 

• constraint technique for contact, 

• cut planes for resultant forces, 

• crushable cellular foams, 

• urethane foam model with hysteresis, 

• subcycling, 

• friction in the contact entities, 

• strains computed and written for the 8 node thick shells, 

• “good” 4 node tetrahedron solid element with nodal rotations, 

• 8 node solid element with nodal rotations, 

• 2  2 integration for the membrane element, 

• Belytschko-Schwer integrated beam, 

• thin-walled Belytschko-Schwer integrated beam, 

• improved LS-DYNA database control, 

• null material for beams to display springs and seatbelts in TAURUS, 

• parallel implementation on Cray and SGI computers, 

• coupling to rigid body codes, 

• seat belt capability. 

2.3  Options added in 1993-1994 

• Arbitrary Lagrangian Eulerian brick elements, 

• Belytschko-Wong-Chiang quadrilateral shell element, 

• Warping stiffness in the Belytschko-Tsay shell element, 
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• Fast Hughes-Liu shell element, 

• Fully integrated brick shell element, 

• Discrete 3D beam element, 

• Generalized dampers, 

• Cable modeling, 

• Airbag reference geometry, 

• Multiple jet model, 

• Generalized joint stiffnesses, 

• Enhanced rigid body to rigid body contact, 

• Orthotropic rigid walls, 

• Time zero mass scaling, 

• Coupling with USA (Underwater Shock Analysis), 

• Layered spot welds with failure based on resultants or plastic strain, 

• Fillet welds with failure, 

• Butt welds with failure, 

• Automatic eroding contact, 

• Edge-to-edge contact, 

• Automatic mesh generation with contact entities, 

• Drawbead modeling, 

• Shells constrained inside brick elements, 

• NIKE3D coupling for springback, 

• Barlat’s anisotropic plasticity, 

• Superplastic forming option, 

• Rigid body stoppers, 

• Keyword input, 

• Adaptivity, 

• First MPP (Massively Parallel) version with limited capabilities. 

• Built in least squares fit for rubber model constitutive constants, 

• Large hystersis in hyperelastic foam, 

• Bilhku/Dubois foam model, 

• Generalized rubber model, 
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2.4  Version 936 

New options added to version 936 in 1995 include: 

• Belytschko - Leviathan Shell 

• Automatic switching between rigid and deformable bodies. 

• Accuracy on SMP machines to give identical answers on one, two or more 
processors.  

• Local coordinate systems for cross-section output can now be specified. 

• Null material for shell elements. 

• Global body force loads now may be applied to a subset of materials. 

• User defined loading subroutine. 

• Improved interactive graphics. 

• New initial velocity options for specifying rotational velocities.  

• Geometry changes after dynamic relaxation can be considered for initial 
velocities.   

• Velocities may also be specified by using material or part ID’s. 

• Improved speed of brick element hourglass force and energy calculations. 

• Pressure outflow boundary conditions have been added for the ALE options. 

• More user control for hourglass control constants for shell elements. 

• Full vectorization in constitutive models for foam, models 57 and 63. 

• Damage mechanics plasticity model, material 81, 

• General linear viscoelasticity with 6 term prony series. 

• Least squares fit for viscoelastic material constants. 

• Table definitions for strain rate effects in material type 24. 

• Improved treatment of free flying nodes after element failure. 

• Automatic projection of nodes in CONTACT_TIED to eliminate gaps in the 
surface.   

• More user control over contact defaults. 

• Improved interpenetration warnings printed in automatic contact. 

• Flag for using actual shell thickness in single surface contact logic rather than the 
default.  

• Definition by exempted part ID’s. 

• Airbag to Airbag venting/segmented airbags are now supported. 
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• Airbag reference geometry speed improvements by using the reference geometry 
for the time step size calculation.  

• Isotropic airbag material may now be directly for cost efficiency. 

• Airbag fabric material damping is now specified as the ratio of critical damping.   

• Ability to attach jets to the structure so the airbag, jets, and structure to move 
together. 

• PVM 5.1 Madymo coupling is available. 

• Meshes are generated within LS-DYNA3D for all standard contact entities. 

• Joint damping for translational motion.     

• Angular displacements, rates of displacements, damping forces, etc.  in 
JNTFORC file. 

• Link between LS-NIKE3D to LS-DYNA3D via *INITIAL_STRESS keywords.  

• Trim curves for metal forming springback. 

• Sparse equation solver for springback. 

• Improved mesh generation for IGES and VDA provides a mesh that can directly 
be used to model tooling in metal stamping analyses. 

2.5  Version 940 

New options added to Version 940 in 1996 and 1997: 

• Part/Material ID’s may be specified with 8 digits. 

• Rigid body motion can be prescribed in a local system fixed to the rigid body. 

• Nonlinear least squares fit available for the Ogden rubber model. 

• Lease squares fit to the relaxation curves for the viscoelasticity in rubber. 

• Fu-Chang rate sensitive foam. 

• 6 term Prony series expansion for rate effects in model 57-now 73 

• Viscoelastic material model 76 implemented for shell elements. 

• Mechanical threshold stress (MTS) plasticity model for rate effects. 

• Thermoelastic-plastic material model for Hughes-Liu beam element. 

• Ramberg-Osgood soil model 

• Invariant local coordinate systems for shell elements are optional. 

• Second order accurate stress updates. 

• Four-noded, linear, tetrahedron element. 
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• Co-rotational solid element for foam that can invert without stability problems. 

• Improved speed in rigid body to rigid body contacts.   

• Improved searching for the a_3, a_5 and a10 contact types.   

• Invariant results on shared memory parallel machines with the a_n contact types. 

• Thickness offsets in type 8 and 9 tie break contact algorithms.  

• Bucket sort frequency can be controlled by a load curve for airbag applications. 

• In automatic contact each part ID in the definition may have unique:  

◦ Static coefficient of friction 

◦ Dynamic coefficient of friction 

◦ Exponential decay coefficient  

◦ Viscous friction coefficient 

◦ Optional contact thickness 

◦ Optional thickness scale factor 

◦ Local penalty scale factor 

• Automatic beam-to-beam, shell edge-to-beam, shell edge-to-shell edge and single 
surface contact algorithm. 

• Release criteria may be a multiple of the shell thickness in types a_3, a_5, a10, 13, 
and 26 contact. 

• Force transducers to obtain reaction forces in automatic contact definitions.  
Defined manually via segments, or automatically via part ID’s. 

• Searching depth can be defined as a function of time. 

• Bucket sort frequency can be defined as a function of time. 

• Interior contact for solid (foam) elements to prevent "negative volumes." 

• Locking joint 

• Temperature dependent heat capacity added to Wang-Nefske inflator models. 

• Wang Hybrid inflator model [Wang, 1996] with jetting options and bag-to-bag 
venting. 

• Aspiration included in Wang’s hybrid model [Nucholtz, Wang, Wylie, 1996]. 

• Extended Wang’s hybrid inflator with a quadratic temperature variation for heat 
capacities [Nusholtz, 1996].  

• Fabric porosity added as part of the airbag constitutive model. 

• Blockage of vent holes and fabric in contact with structure or itself considered in 
venting with leakage of gas. 
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• Option to delay airbag liner with using the reference geometry until the reference 
area is reached. 

• Birth time for the reference geometry. 

• Multi-material Euler/ALE fluids,  

◦ 2nd order accurate formulations.  

◦ Automatic coupling to shell, brick, or beam elements 

◦ Coupling using LS-DYNA contact options. 

◦ Element with fluid + void and void material 

◦ Element with multi-materials and pressure equilibrium 

• Nodal inertia tensors. 

• 2D plane stress, plane strain, rigid, and axisymmetric elements 

• 2D plane strain shell element 

• 2D axisymmetric shell element. 

• Full contact support in 2D, tied, sliding only, penalty and constraint techniques. 

• Most material types supported for 2D elements. 

• Interactive remeshing and graphics options available for 2D. 

• Subsystem definitions for energy and momentum output.  and many more 
enhancements not mentioned above. 

2.6  Version 950 

Capabilities added during 1997-1998 in Version 950 include: 

• Adaptive refinement can be based on tooling curvature with FORMING contact. 

• The display of draw beads is now possible since the draw bead data is output 
into the d3plot database. 

• An adaptive box option, *DEFINE_BOX_ADAPTIVE, allows control over the 
refinement level and location of elements to be adapted. 

• A root identification file, adapt.rid, gives the parent element ID for adapted 
elements. 

• Draw bead box option, *DEFINE_BOX_DRAWBEAD, simplifies draw bead 
input. 

• The new control option, CONTROL_IMPLICIT, activates an implicit solution 
scheme. 

• 2D Arbitrary-Lagrangian-Eulerian elements. 
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• 2D automatic contact is defined by listing part ID's. 

• 2D r-adaptivity for plane strain and axisymmetric forging simulations is 
available. 

• 2D automatic non-interactive rezoning as in LS-DYNA2D. 

• 2D plane strain and axisymmetric element with 2 × 2 selective-reduced 
integration are implemented. 

• Implicit 2D solid and plane strain elements are available. 

• Implicit 2D contact is available. 

• The new keyword, *DELETE_CONTACT_2DAUTO, allows the deletion of 2D 
automatic contact definitions. 

• The keyword, *LOAD_BEAM is added for pressure boundary conditions on 2D 
elements. 

• A viscoplastic strain rate option is available for materials: 

◦ *MAT_PLASTIC_KINEMATIC 

◦ *MAT_JOHNSON_COOK 

◦ *MAT_POWER_LAW_PLASTICITY 

◦ *MAT_STRAIN_RATE_DEPENDENT_PLASTICITY 

◦ *MAT_PIECEWISE_LINEAR_PLASTICITY  

◦ *MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY 

◦ *MAT_ZERILLI-ARMSTRONG 

◦ *MAT_PLASTICITY_WITH_DAMAGE 

◦ *MAT_PLASTICITY_COMPRESSION_TENSION  

• Material model, *MAT_PLASTICITY_WITH_DAMAGE, has a piecewise linear 
damage curve given by a load curve ID. 

• The Arruda-Boyce hyper-viscoelastic rubber model is available, see *MAT_AR-
RUDA_BOYCE. 

• Transverse-anisotropic-viscoelastic material for heart tissue, see *MAT_HEART_-
TISSUE. 

• Lung hyper-viscoelastic material, see *MAT_LUNG_TISSUE. 

• Compression/tension plasticity model, see *MAT_PLASTICITY_COMPRES-
SION_TENSION.  

• The Lund strain rate model, *MAT_STEINBERG_LUND, is added to Steinberg-
Guinan plasticity model. 

• Rate sensitive foam model, *MAT_FU_CHANG_FOAM, has been extended to 
include engineering strain rates, etc. 
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• Model, *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY, is added for 
modeling the failure of aluminum. 

• Material model, *MAT_SPECIAL_ORTHOTROPIC, added for television shadow 
mask problems. 

• Erosion strain is implemented for material type, *MAT_BAMMAN_DAMAGE. 

• The equation of state, *EOS_JWLB, is available for modeling the expansion of 
explosive gases. 

• The reference geometry option is extended for foam and rubber materials and 
can be used for stress initialization, see *INITIAL_FOAM_REFERENCE_GEOM-
ETRY. 

• A vehicle positioning option is available for setting the initial orientation and 
velocities, see *INITIAL_VEHICLE_KINEMATICS. 

• A boundary element method is available for incompressible fluid dynamics 
problems. 

• The thermal materials work with instantaneous coefficients of thermal expan-
sion: 

◦ *MAT_ELASTIC_PLASTIC_THERMAL 

◦ *MAT_ORTHOTROPIC_THERMAL 

◦ *MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC  

◦ *MAT_ELASTIC_WITH_VISCOSITY. 

• Airbag interaction flow rate versus pressure differences. 

• Contact segment search option, [bricks first optional] 

• A through thickness Gauss integration rule with 1-10 points is available for shell 
elements.  Previously, 5 were available. 

• Shell element formulations can be changed in a full deck restart. 

• The tied interface which is based on constraint equations, TIED_SURFACE_TO_-
SURFACE, can now fail with FAILURE option. 

• A general failure criteria for solid elements is independent of the material type, 
see *MAT_ADD_EROSION 

• Load curve control can be based on thinning and a flow limit diagram, see *DE-
FINE_CURVE_FEEDBACK. 

• An option to filter the spotweld resultant forces prior to checking for failure has 
been added the option, *CONSTRAINED_SPOTWELD, by appending,_FIL-
TERED_FORCE, to the keyword. 

• Bulk viscosity is available for shell types 1, 2, 10, and 16. 
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• When defining the local coordinate system for the rigid body inertia tensor a 
local coordinate system ID can be used.  This simplifies dummy positioning. 

• Prescribing displacements, velocities, and accelerations is now possible for rigid 
body nodes. 

• One-way flow is optional for segmented airbag interactions. 

• Pressure time history input for airbag type, LINEAR_FLUID, can be used. 

• An option is available to independently scale system damping by part ID in each 
of the global directions. 

• An option is available to independently scale global system damping in each of 
the global directions. 

• Added option to constrain global DOF along lines parallel with the global axes.  
The keyword is *CONSTRAINED_GLOBAL. This option is useful for adaptive 
remeshing. 

• Beam end code releases are available, see *ELEMENT_BEAM. 

• An initial force can be directly defined for the cable material, *MAT_CABLE_-
DISCRETE_BEAM.  The specification of slack is not required if this option is 
used. 

• Airbag pop pressure can be activated by accelerometers. 

• Termination may now be controlled by contact, via *TERMINATION_CON-
TACT. 

• Modified shell elements types 8, 10 and the warping stiffness option in the 
Belytschko-Tsay shell to ensure orthogonality with rigid body motions in the 
event that the shell is badly warped.  This is optional in the Belytschko-Tsay shell 
and the type 10 shell. 

• A one point quadrature brick element with an exact hourglass stiffness matrix 
has been implemented for implicit and explicit calculations. 

• Automatic file length determination for d3plot binary database is now imple-
mented.  This insures that at least a single state is contained in each d3plot file 
and eliminates the problem with the states being split between files. 

• The dump files, which can be very large, can be placed in another directory by 
specifying d=/home/user /test/d3dump on the execution line. 

• A print flag controls the output of data into the MATSUM and RBDOUT files by 
part ID's.  The option, PRINT, has been added as an option to the *PART key-
word. 

• Flag has been added to delete material data from the d3thdt file.  See *DATA-
BASE_EXTENT_BINARY and column 25 of the 19th control card in the struc-
tured input. 
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• After dynamic relaxation completes, a file is written giving the displaced state 
which can be used for stress initialization in later runs. 

2.7  Version 960 

Capabilities added during 1998-2000 in Version 960.  Most new capabilities work on 
both the MPP and SMP versions; however, the capabilities that are implemented for the 
SMP version only, which were not considered critical for this release, are flagged below.  
These SMP unique capabilities are being extended for MPP calculations and will be 
available in the near future.  The implicit capabilities for MPP require the development 
of a scalable eigenvalue solver, which is under development for a later release of LS-
DYNA.   

• Incompressible flow solver is available.  Structural coupling is not yet imple-
mented. 

• Adaptive mesh coarsening can be done before the implicit spring back calcula-
tion in metal forming applications. 

• Two-dimensional adaptivity can be activated in both implicit and explicit 
calculations.  (SMP version only) 

• An internally generated smooth load curve for metal forming tool motion can be 
activated with the keyword: *DEFINE_CURVE_SMOOTH. 

• Torsional forces can be carried through the deformable spot welds by using the 
contact type: *CONTACT_SPOTWELD_WITH_TORSION (SMP version only 
with a high priority for the MPP version if this option proves to be stable.) 

• Tie break automatic contact is now available via the *CONTACT_AUTOMAT-
IC_..._TIEBREAK options.  This option can be used for glued panels.  (SMP only) 

• *CONTACT_RIGID_SURFACE option is now available for modeling road 
surfaces (SMP version only). 

• Fixed rigid walls PLANAR and PLANAR_FINITE are represented in the binary 
output file by a single shell element. 

• Interference fits can be modeled with the INTERFERENCE option in contact. 

• A layered shell theory is implemented for several constitutive models including 
the composite models to more accurately represent the shear stiffness of laminat-
ed shells. 

• Damage mechanics is available to smooth the post-failure reduction of the 
resultant forces in the constitutive model *MAT_SPOTWELD_DAMAGE. 

• Finite elastic strain isotropic plasticity model is available for solid elements.  
*MAT_FINITE_ELASTIC_STRAIN_PLASTICITY. 

• A shape memory alloy material is available: *MAT_SHAPE_MEMORY. 
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• Reference geometry for material, *MAT_MODIFIED_HONEYCOMB, can be set 
at arbitrary relative volumes or when the time step size reaches a limiting value.  
This option is now available for all element types including the fully integrated 
solid element. 

• Non orthogonal material axes are available in the airbag fabric model.  See 
*MAT_FABRIC. 

• Other new constitutive models include for the beam elements: 

◦ *MAT_MODIFIED_FORCE_LIMITED 

◦ *MAT_SEISMIC_BEAM 

◦ *MAT_CONCRETE_BEAM 

• for shell and solid elements: 

◦ *MAT_ELASTIC_VISCOPLASTIC_THERMAL 

• for the shell elements: 

◦ *MAT_GURSON 

◦ *MAT_GEPLASTIC_SRATE2000 

◦ *MAT_ELASTIC_VISCOPLASTIC_THERMAL 

◦ *MAT_COMPOSITE_LAYUP 

◦ *MAT_COMPOSITE_LAYUP 

◦ *MAT_COMPOSITE_direct  

• for the solid elements: 

◦ *MAT_JOHNSON_HOLMQUIST_CERAMICS 

◦ *MAT_JOHNSON_HOLMQUIST_CONCRETE 

◦ *MAT_INV_HYPERBOLIC_SIN 

◦ *MAT_UNIFIED_CREEP 

◦ *MAT_SOIL_BRICK 

◦ *MAT_DRUCKER_PRAGER 

◦ *MAT_RC_SHEAR_WALL 

• and for all element options a very fast and efficient version of the Johnson-Cook 
plasticity model is available: 

◦ *MAT_SIMPLIFIED_JOHNSON_COOK 

• A fully integrated version of the type 16 shell element is available for the 
resultant constitutive models. 
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• A nonlocal failure theory is implemented for predicting failure in metallic 
materials.  The keyword *MAT_NONLOCAL activates this option for a subset of 
elastoplastic constitutive models. 

• A discrete Kirchhoff triangular shell element (DKT) for explicit analysis with 
three in plane integration points is flagged as a type 17 shell element.  This 
element has much better bending behavior than the C0 triangular element. 

• A discrete Kirchhoff linear triangular and quadrilaterial shell element is available 
as a type 18 shell.  This shell is for extracting normal modes and static analysis. 

• A C0 linear 4-node quadrilaterial shell element is implemented as element type 
20 with drilling stiffness for normal modes and static analysis. 

• An assumed strain linear brick element is available for normal modes and statics. 

• The fully integrated thick shell element has been extended for use in implicit 
calculations. 

• A fully integrated thick shell element based on an assumed strain formulation is 
now available.  This element uses a full 3D constitutive model which includes the 
normal stress component and, therefore, does not use the plane stress assump-
tion. 

• The 4-node constant strain tetrahedron element has been extended for use in 
implicit calculations. 

• Relative damping between parts is available, see *DAMPING_RELATIVE (SMP 
only).   

• Preload forces are can be input for the discrete beam elements. 

• Objective stress updates are implemented for the fully integrated brick shell 
element. 

• Acceleration time histories can be prescribed for rigid bodies. 

• Prescribed motion for nodal rigid bodies is now possible. 

• Generalized set definitions, i.e., SET_SHELL_GENERAL etc.  provide much 
flexibility in the set definitions. 

• The command "sw4." will write a state into the dynamic relaxation file, D3DRLF, 
during the dynamic relaxation phase if the d3drlf file is requested in the input. 

• Added mass by PART ID is written into the matsum file when mass scaling is 
used to maintain the time step size, (SMP version only). 

• Upon termination due to a large mass increase during a mass scaled calculation a 
print summary of 20 nodes with the maximum added mass is printed. 

• Eigenvalue analysis of models containing rigid bodies is now available using 
BCSLIB-EXT solvers from Boeing.  (SMP version only). 
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• Second order stress updates can be activated by part ID instead of globally on the 
*CONTROL_ACCURACY input. 

• Interface frictional energy is optionally computed for heat generation and is 
output into the interface force file (SMP version only). 

• The interface force binary database now includes the distance from the contact 
surface for the FORMING contact options.  This distance is given after the nodes 
are detected as possible contact candidates.  (SMP version only). 

• Type 14 acoustic brick element is implemented.  This element is a fully integrated 
version of type 8, the acoustic element (SMP version only). 

• A flooded surface option for acoustic applications is available (SMP version 
only). 

• Attachment nodes can be defined for rigid bodies.  This option is useful for NVH 
applications. 

• CONSTRAINED_POINTS tie any two points together.  These points must lie on 
a shell element. 

• Soft constraint is available for edge-to-edge contact in type 26 contact. 

• CONSTAINED_INTERPOLATION option for beam to solid interfaces and for 
spreading the mass and loads.  (SMP version only). 

• A database option has been added that allows the output of added mass for shell 
elements instead of the time step size. 

• A new contact option allows the inclusion of all internal shell edges in contact 
type *CONTACT_GENERAL, type 26.  This option is activated by adding INTE-
RIOR option. 

• A new option allows the use deviatoric strain rates rather than total rates in 
material model 24 for the Cowper-Symonds rate model. 

• The CADFEM option for ASCII databases is now the default.  Their option 
includes more significant figures in the output files. 

• When using deformable spot welds, the added mass for spot welds is now 
printed for the case where global mass scaling is activated.  This output is in the 
log file, d3hsp file, and the messag file. 

• Initial penetration warnings for edge-to-edge contact are now written into the 
MESSAG file and the D3HSP file. 

• Each compilation of LS-DYNA is given a unique version number. 

• Finite length discrete beams with various local axes options are now available for 
material types 66, 67, 68, 93, and 95.  In this implementation the absolute value of 
SCOOR must be set to 2 or 3 in the *SECTION_BEAM input. 

• New discrete element constitutive models are available: 
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◦ *MAT_ELASTIC_SPRING_DISCRETE_BEAM 

◦ *MAT_INELASTIC_SPRING_DISCRETE_BEAM 

◦ *MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM 

◦ *MAT_INELASTIC_6DOF_SPRING_DISCRETE_BEAM 

The latter two can be used as finite length beams with local coordinate systems. 

• Moving SPC's are optional in that the constraints are applied in a local system 
that rotates with the 3 defining nodes. 

• A moving local coordinate system, CID, can be used to determine orientation of 
discrete beam elements.  

• Modal superposition analysis can be performed after an eigenvalue analysis.  
Stress recovery is based on type 18 shell and brick (SMP only). 

• Rayleigh damping input factor is now input as a fraction of critical damping, i.e. 
0.10. The old method required the frequency of interest and could be highly 
unstable for large input values. 

• Airbag option "SIMPLE_PRESSURE_VOLUME" allows for the constant CN to be 
replaced by a load curve for initialization.  Also, another load curve can be 
defined which allows CN to vary as a function of time during dynamic relaxa-
tion.  After dynamic relaxation CN can be used as a fixed constant or load curve. 

• Hybrid inflator model utilizing CHEMKIN and NIST databases is now available.  
Up to ten gases can be mixed. 

• Option to track initial penetrations has been added in the automatic SMP contact 
types rather than moving the nodes back to the surface.  This option has been 
available in the MPP contact for some time.  This input can be defined on the 
fourth card of the *CONTROL_CONTACT input and on each contact definition 
on the third optional card in the *CONTACT definitions. 

• If the average acceleration flag is active, the average acceleration for rigid body 
nodes is now written into the d3thdt and nodout files.  In previous versions of 
LS-DYNA, the accelerations on rigid nodes were not averaged. 

• A capability to initialize the thickness and plastic strain in the crash model is 
available through the option *INCLUDE_STAMPED_PART, which takes the 
results from the LS-DYNA stamping simulation and maps the thickness and 
strain distribution onto the same part with a different mesh pattern. 

• A capability to include finite element data from other models is available 
through the option, *INCLUDE_TRANSFORM.  This option will take the model 
defined in an INCLUDE file: offset all ID's; translate, rotate, and scale the coordi-
nates; and transform the constitutive constants to another set of units. 
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2.8  Version 970 

Many new capabilities were added during 2001-2002 to create version 970 of LS-DYNA.  
Some of the new features, which are also listed below, were also added to later releases 
of version 960.  Most new explicit capabilities work for both the MPP and SMP versions; 
however, the implicit capabilities for MPP require the development of a scalable 
eigenvalue solver and a parallel implementation of the constraint equations into the 
global matrices.   This work is underway.  A later release of version 970 is planned that 
will be scalable for implicit solutions. 

• MPP decomposition can be controlled using *CONTROL_MPP_DECOMPOSI-
TION commands in the input deck. 

• The MPP arbitrary Lagrangian-Eulerian fluid capability now works for airbag 
deployment in both SMP and MPP calculations. 

• Euler-to-Euler coupling is now available through the keyword *CON-
STRAINED_EULER_TO_EULER. 

• Up to ten ALE multi-material groups may now be defined.  The previous limit 
was three groups. 

• Volume fractions can be automatically assigned during initialization of multi-
material cells.  See the GEOMETRY option of *INITIAL_VOLUME_FRACTION. 

• A new ALE smoothing option is available to accurately predict shock fronts. 

• DATABASE_FSI activates output of fluid-structure interaction data to ASCII file 
DBFSI. 

• Point sources for airbag inflators are available.  The origin and mass flow vector 
of these inflators are permitted to vary with time. 

• A majority of the material models for solid materials are available for calcula-
tions using the SPH (Smooth Particle Hydrodynamics) option.   

• The Element Free Galerkin method (EFG or meshfree) is available for two-
dimensional and three-dimensional solids.  This new capability is not yet imple-
mented for MPP applications. 

• A binary option for the ASCII files is now available.  This option applies to all 
ASCII files and results in one binary file that contains all the information normal-
ly spread between a large number of separate ASCII files. 

• Material models can now be defined by numbers rather than long names in the 
keyword input.  For example the keyword *MAT_PIECEWISE_LINEAR_PLAS-
TICITY can be replaced by the keyword: *MAT_024. 

• An embedded NASTRAN reader for direct reading of NASTRAN input files is 
available.  This option allows a typical input file for NASTRAN to be read direct-
ly and used without additional input.  See the *INCLUDE_NASTRAN keyword. 
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• Names in the keyword input can represent numbers if the *PARAMETER option 
is used to relate the names and the corresponding numbers.  

• Model documentation for the major ASCII output files is now optional.  This 
option allows descriptors to be included within the ASCII files that document the 
contents of the file. 

• ID’s have been added to the following keywords: 

◦ *BOUNDARY_PRESCRIBED_MOTION 

◦ *BOUNDARY_PRESCRIBED_SPC 

◦ *CONSTRAINED_GENERALIZED_WELD 

◦ *CONSTRAINED_JOINT 

◦ *CONSTRAINED_NODE_SET 

◦ *CONSTRAINED_RIVET 

◦ *CONSTRAINED_SPOTWELD 

◦ *DATABASE_CROSS_SECTION 

◦ *ELEMENT_MASS 

• The *DATABASE_ADAMS keyword is available to output a modal neutral file 
d3mnf.  This is available upon customer request since it requires linking to an 
ADAMS library file. 

• Penetration warnings for the contact option, “ignore initial penetration,” are 
added as an option.  Previously, no penetration warnings were written when this 
contact option was activated. 

• Penetration warnings for nodes in-plane with shell mid-surface are printed for 
the AUTOMATIC contact options.  Previously, these nodes were ignored since it 
was assumed that they belonged to a tied interface where an offset was not used; 
consequently, they should not be treated in contact. 

• For the arbitrary spot weld option, the spot welded nodes and their contact 
segments are optionally written into the d3hsp file.  See *CONTROL_CON-
TACT. 

• For the arbitrary spot weld option, if a segment cannot be found for the spot 
welded node, an option now exists to error terminate.  See *CONTROL_CON-
TACT. 

• Spot weld resultant forces are written into the swforc file for solid elements used 
as spot welds. 

• Solid materials have now been added to the failed element report and additional 
information is written for the “node is deleted” messages. 

• A new option for terminating a calculation is available, *TERMINATION_-
CURVE. 
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• A 10-noded tetrahedron solid element is available with either a 4 or 5 point 
integration rule.  This element can also be used for implicit solutions. 

• A new 4 node linear shell element is available that is based on Wilson’s plate 
element combined with a Pian-Sumihara membrane element.  This is shell type 
21. 

• A shear panel element has been added for linear applications.  This is shell type 
22.  This element can also be used for implicit solutions. 

• A null beam element for visualization is available.  The keyword to define this 
null beam is *ELEMENT_PLOTEL.  This element is necessary for compatibility 
with NASTRAN. 

• A scalar node can be defined for spring-mass systems.  The keyword to define 
this node is *NODE_SCALAR.  This node can have from 1 to 6 scalar degrees-of-
freedom. 

• A thermal shell has been added for through-thickness heat conduction.  
Internally, 8 additional nodes are created, four above and four below the mid-
surface of the shell element.  A quadratic temperature field is modeled through 
the shell thickness.  Internally, the thermal shell is a 12 node solid element. 

• A beam OFFSET option is available for the *ELEMENT_BEAM definition to 
permit the beam to be offset from its defining nodal points.  This has the ad-
vantage that all beam formulations can now be used as shell stiffeners. 

• A beam ORIENTATION option for orienting the beams by a vector instead of the 
third node is available in the *ELEMENT_BEAM definition for NASTRAN 
compatibility.   

• Non-structural mass has been added to beam elements for modeling trim mass 
and for NASTRAN compatibility. 

• An optional checking of shell elements to avoid abnormal terminations is 
available.  See *CONTROL_SHELL.  If this option is active, every shell is checked 
each time step to see if the distortion is so large that the element will invert, 
which will result in an abnormal termination.  If a bad shell is detected, either the 
shell will be deleted or the calculation will terminate.  The latter is controlled by 
the input. 

• An offset option is added to the inertia definition.  See *ELEMENT_INERTIA_-
OFFSET keyword.  This allows the inertia tensor to be offset from the nodal 
point. 

• Plastic strain and thickness initialization is added to the draw bead contact 
option.  See *CONTACT_DRAWBEAD_INITIALIZE. 

• Tied contact with offsets based on both constraint equations and beam elements 
for solid elements and shell elements that have 3 and 6 degrees-of-freedom per 
node, respectively.  See BEAM_OFFSET and CONSTRAINED_OFFSET contact 
options.  These options will not cause problems for rigid body motions. 
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• The segment-based (SOFT = 2) contact is implemented for MPP calculations.  
This enables airbags to be easily deployed on the MPP version. 

• Improvements are made to segment-based contact for edge-to-edge and sliding 
conditions, and for contact conditions involving warped segments. 

• An improved interior contact has been implemented to handle large shear 
deformations in the solid elements.  A special interior contact algorithm is avail-
able for tetrahedron elements. 

• Coupling with MADYMO 6.0 uses an extended coupling that allows users to link 
most MADYMO geometric entities with LS-DYNA FEM simulations.  In this 
coupling MADYMO contact algorithms are used to calculate interface forces 
between the two models. 

• Release flags for degrees-of-freedom for nodal points within nodal rigid bodies 
are available.  This makes the nodal rigid body option nearly compatible with the 
RBE2 option in NASTRAN. 

• Fast updates of rigid bodies for metal forming applications can now be 
accomplished by ignoring the rotational degrees-of-freedom in the rigid bodies 
that are typically inactive during sheet metal stamping simulations.  See the 
keyword: *CONTROL_RIGID. 

• Center of mass constraints can be imposed on nodal rigid bodies with the SPC 
option in either a local or a global coordinate system. 

• Joint failure based on resultant forces and moments can now be used to simulate 
the failure of joints. 

• CONSTRAINED_JOINT_STIFFNESS now has a TRANSLATIONAL option for 
the translational and cylindrical joints. 

• Joint friction has been added using table look-up so that the frictional moment 
can now be a function of the resultant translational force. 

• The nodal constraint options *CONSTRAINED_INTERPOLATION and *CON-
STRAINED_LINEAR now have a local option to allow these constraints to be 
applied in a local coordinate system. 

• Mesh coarsening can now be applied to automotive crash models at the 
beginning of an analysis to reduce computation times.  See the new keyword: 
*CONTROL_COARSEN. 

• Force versus time seatbelt pretensioner option has been added. 

• Both static and dynamic coefficients of friction are available for seat belt slip 
rings.  Previously, only one friction constant could be defined. 

• *MAT_SPOTWELD now includes a new failure model with rate effects as well as 
additional failure options. 

• Constitutive models added for the discrete beam elements: 
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◦ *MAT_1DOF_GENERALIZED_SPRING 

◦ *MAT_GENERAL_NONLINEAR_6dof_DISCRETE_BEAM  

◦ *MAT_GENERAL_NONLINEAR_1dof_DISCRETE_BEAM  

◦ *MAT_GENERAL_SPRING_DISCRETE_BEAM 

◦ *MAT_GENERAL_JOINT_DISCRETE_BEAM 

◦ *MAT_SEISMIC_ISOLATOR 

• for shell and solid elements: 

◦ *MAT_PLASTICITY_WITH_DAMAGE_ORTHO 

◦ *MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE 

◦ *MAT_HILL_3R  

◦ *MAT_GURSON_RCDC 

• for the solid elements: 

◦ *MAT_SPOTWELD 

◦ *MAT_HILL_FOAM 

◦ *MAT_WOOD 

◦ *MAT_VISCOELASTIC_HILL_FOAM 

◦ *MAT_LOW_DENSITY_SYNTHETIC_FOAM 

◦ *MAT_RATE_SENSITIVE_POLYMER 

◦ *MAT_QUASILINEAR VISCOELASTIC 

◦ *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM 

◦ *MAT_VACUUM  

◦ *MAT_MODIFIED_CRUSHABLE_FOAM 

◦ *MAT_PITZER_CRUSHABLE FOAM 

◦ *MAT_JOINTED_ROCK 

◦ *MAT_SIMPLIFIED_RUBBER 

◦ *MAT_FHWA_SOIL 

◦ *MAT_SCHWER_MURRAY_CAP_MODEL 

• Failure time added to MAT_EROSION for solid elements. 

• Damping in the material models *MAT_LOW_DENSITY_FOAM and *MAT_-
LOW_DENSITY_VISCOUS_FOAM can now be a tabulated function of the 
smallest stretch ratio. 

• The material model *MAT_PLASTICITY_WITH_DAMAGE allows the table 
definitions for strain rate. 
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• Improvements in the option *INCLUDE_STAMPED_PART now allow all history 
data to be mapped to the crash part from the stamped part.  Also, symmetry 
planes can be used to allow the use of a single stamping to initialize symmetric 
parts. 

• Extensive improvements in trimming result in much better elements after the 
trimming is completed.  Also, trimming can be defined in either a local or global 
coordinate system.  This is a new option in *DEFINE_CURVE_TRIM. 

• An option to move parts close before solving the contact problem is available, see 
*CONTACT_AUTO_MOVE.  

• An option to add or remove discrete beams during a calculation is available with 
the new keyword: *PART_SENSOR. 

• Multiple jetting is now available for the Hybrid and Chemkin airbag inflator 
models. 

• Nearly all constraint types are now handled for implicit solutions. 

• Calculation of constraint and attachment modes can be easily done by using the 
option: *CONTROL_IMPLICIT_MODES. 

• Penalty option, see *CONTROL_CONTACT, now applies to all *RIGIDWALL 
options and is always used when solving implicit problems. 

• Solid elements types 3 and 4, the 4 and 8 node elements with 6 degrees-of-
freedom per node, are available for implicit solutions. 

• The warping stiffness option for the Belytschko-Tsay shell is implemented for 
implicit solutions.  The Belytschko-Wong-Chang shell element is now available 
for implicit applications.  The full projection method is implemented due to it 
accuracy over the drill projection. 

• Rigid to deformable switching is implemented for implicit solutions. 

• Automatic switching can be used to switch between implicit and explicit 
calculations.  See the keyword: *CONTROL_IMPLICIT_GENERAL. 

• Implicit dynamics rigid bodies are now implemented.  See the keyword  *CON-
TROL_IMPLICIT_DYNAMIC. 

• Eigenvalue solutions can be intermittently calculated during a transient analysis. 

• A linear buckling option is implemented.  See the new control input: *CON-
TROL_IMPLICIT_BUCKLE 

• Implicit initialization can be used instead of dynamic relaxation.  See the 
keyword *CONTROL_DYNAMIC_RELAXATION where the parameter, IDFLG, 
is set to 5. 

• Superelements, i.e., *ELEMENT_DIRECT_MATRIX_INPUT, are now available 
for implicit applications. 
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• There is an extension of the option, *BOUNDARY_CYCLIC, to symmetry planes 
in the global Cartesian system.  Also, automatic sorting of nodes on symmetry 
planes is now done by LS-DYNA. 

• Modeling of wheel-rail contact for railway applications is now available, see 
*RAIL_TRACK and *RAIL_TRAIN. 

• A new, reduced CPU, element formulation is available for vibration studies 
when elements are aligned with the global coordinate system.  See *SECTION_-
SOLID and *SECTION_SHELL formulation 98. 

• An option to provide approximately constant damping over a range of frequen-
cies is implemented, see *DAMPING_FREQUENCY_RANGE.
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3    
Preliminaries 

NOTE: Einstein summation convention is used.  For each re-
peated index there is an implied summation. 

 
 Consider the body shown in Figure 3.1.  We are interested in time-dependent 
deformation for which a point in b initially at 𝑋𝛼 (𝛼 = 1, 2, 3) in a fixed rectangular 
Cartesian coordinate system moves to a point 𝑥𝑖 (𝑖 = 1, 2, 3) in the same coordinate 
system.  Since a Lagrangian formulation is considered, the deformation can be 
expressed in terms of the convected coordinates 𝑋𝛼, and time 𝑡 

𝑥𝑖 = 𝑥𝑖(𝑋𝛼, 𝑡). (3.1)
At time 𝑡 = 0, we have the initial conditions 

𝑥𝑖(𝐗, 0) = 𝑋i
𝑥𝑖̇(𝐗, 0) = 𝑉𝑖(𝐗) (3.2)

where 𝐕 is the initial velocity. 

3.1  Governing Equations 

 We seek a solution to the momentum equation 
𝜎𝑖𝑗,𝑗 + 𝜌𝑓𝑖 = 𝜌𝑥𝑖̈ (3.3)

satisfying the traction boundary conditions,  
𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖(𝑡), (3.4)

on boundary 𝜕𝑏1, the displacement boundary conditions, 
𝑥𝑖(𝑋𝛼, 𝑡) = 𝐷𝑖(𝑡), (3.5)

on boundary 𝜕𝑏2, and the contact discontinuity condition, 

(𝜎𝑖𝑗
+ − 𝜎𝑖𝑗

−)𝑛𝑖 = 0, (3.6)
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along an interior boundary 𝜕b3 when 𝑥𝑖
 + = 𝑥𝑖

 −.  Here 𝛔 is the Cauchy stress, 𝜌 is the 
current density, 𝐟 is the body force density, and 𝐱 ̈ is acceleration.  The comma on 𝜎𝑖𝑗,𝑗 
denotes covariant differentiation, and 𝑛𝑗 is a unit outward normal to a boundary 
element on ∂b. 

 
 Mass conservation is trivially stated as 

𝜌𝑉 = 𝜌0 (3.7)
where 𝑉 is the relative volume, i.e., the determinant of the deformation gradient matrix, 
𝐹𝑖𝑗, 

𝐹𝑖𝑗 =
∂𝑥𝑖
∂𝑋𝑗

(3.8)

and 𝜌0 is the reference density.  The energy equation 

𝐸̇ = 𝑉𝑠𝑖𝑗𝜀𝑖̇𝑗 − (𝑝 + 𝑞)𝑉̇ (3.9)

is integrated in time and is used for evaluating equations of state and to track the global 
energy balance.  In Equation (3.9), 𝑠𝑖𝑗 and 𝑝 represent the deviatoric stresses and 
pressure, 

𝑠𝑖𝑗 = 𝜎𝑖𝑗 + (𝑝 + 𝑞)𝛿𝑖𝑗 (3.10)

𝑝 = −
1
3 𝜎𝑖𝑗𝛿𝑖𝑗 − 𝑞 

= −
1
3 𝜎𝑘𝑘 − 𝑞

(3.11)

respectively, where 𝑞 is the bulk viscosity, 𝛿𝑖𝑗 is the Kronecker delta (𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗; 
otherwise 𝛿𝑖𝑗 = 0), and 𝜀𝑖̇𝑗 is the strain rate tensor.  The strain rates and bulk viscosity are 
discussed later. 
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 We can write: 

∫ (𝜌𝑥𝑖̈ − 𝜎𝑖𝑗,𝑗 − 𝜌𝑓 )𝛿𝑥𝑖𝑑𝜐 + ∫ (𝜎𝑖𝑗𝑛𝑗 − 𝑡𝑖)𝛿𝑥𝑖𝑑𝑠
𝜕𝑏1𝑣

+ ∫ (𝜎𝑖𝑗
+ − 𝜎𝑖𝑗

−)𝑛𝑗𝛿𝑥𝑖𝑑𝑠 = 0
𝜕𝑏3

 (3.12)

where 𝛿𝑥𝑖 satisfies all boundary conditions on 𝜕𝑏2, and the integrations are over the 
current geometry.  Application of the divergence theorem gives 

∫ (𝜎𝑖𝑗𝛿𝑥𝑖),𝑗
 𝑑𝜐

𝜐
= ∫ 𝜎𝑖𝑗𝑛𝑗𝛿𝑥𝑖𝑑𝑠

∂𝑏1
+ ∫ (𝜎𝑖𝑗

+ − 𝜎𝑖𝑗
−)𝑛𝑗𝛿𝑥𝑖𝑑𝑠

∂𝑏3
 (3.13)

and noting that 

(𝜎𝑖𝑗𝛿𝑥𝑖),𝑗− 𝜎𝑖𝑗,𝑗𝛿𝑥𝑖 = 𝜎𝑖𝑗𝛿𝑥𝑖,𝑗 (3.14)

leads to the weak form of the equilibrium equation, 

𝛿𝜋 = ∫ 𝜌𝑥𝑖̈𝛿𝑥𝑖𝑑𝜐
𝜐

+ ∫ 𝜎𝑖𝑗𝛿𝑥𝑖,𝑗𝑑𝜐
𝜐

− ∫ 𝜌𝑓𝑖𝛿𝑥𝑖𝑑𝜐
𝜐

− ∫ 𝑡𝑖𝛿𝑥𝑖𝑑𝑠
∂𝑏1

= 0, (3.15)

which is a statement of the principle of virtual work. 
 
 We superimpose a mesh of finite elements interconnected at nodal points on the 
reference configuration and track particles through time, i.e., 

𝑥𝑖(𝑋𝛼, 𝑡) = 𝑥𝑖(𝑋𝛼(𝜉 , 𝜂, 𝜁), 𝑡) = ∑ 𝑁𝑗(𝜉 , 𝜂, 𝜁)𝑥𝑖
 𝑗(𝑡)

𝑘

𝑗=1
(3.16)
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 Figure 3.1.  Notation. 
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where 𝑁𝑗 are shape (interpolation) functions in the parametric coordinates (𝜉 , 𝜂, 𝜁), 𝑘 is 
the number of nodal points defining the element, and 𝑥𝑖

 𝑗 is the nodal coordinate of the jth 
node in the ith direction.  Each shape function has a finite support that is limited to the 
elements for which its associated node is a member (hence the name finite element 
method).  Consequently, within each element the interpolation only depends on the 
nodal values for the nodes in that element, and hence expressions like Equation 
(3.16)are meaningful. 
 
 The condition 𝛿𝜋 = 0 holds for all variations, 𝛿𝑥𝑖, and, in particular, it holds for 
variations along the shape functions.  In each of the 3 Cartesian directions upon setting 
the variation to one of the shape functions the weak form reduces to a necessary (but 
not sufficient) condition that must be satisfied by any solution so that the 

number of equations = 3 × number of nodes. 

At this stage it is useful to introduce a vector space having dimension ℝ(number of nodes) 
with a corresponding cartesian basis {𝐞𝑖

′}𝑖=1
number of nodes.  Since the body is discretized into 

𝑛 disjoint elements, the integral in (3.15) may be separated using the spatial additively 
of integration into 𝑛 terms, one for each element 

𝛿𝜋 = ∑ 𝛿𝜋𝑚 = 0
𝑛

𝑚=1
. (3.17)

The contribution from each element is 

𝛿𝜋𝑚 = ∫ 𝜌𝑥𝑖̈𝛿𝑥𝑖𝑑𝜐
𝜐𝑚

+ ∫ 𝜎𝑖𝑗𝛿𝑥𝑖,𝑗𝑑𝜐
𝜐𝑚

− ∫ 𝜌𝑓𝑖𝛿𝑥𝑖𝑑𝜐
𝜐𝑚

− ∫ 𝑡𝑖𝛿𝑥𝑖𝑑𝑠
∂𝑏1∩𝜕𝑣𝑚

. (3.18)

Assembling the element contributions back into a system of equations leads to 

∑ {∫ 𝜌𝑥𝑖̈(𝐞i⨂𝛎𝑚)𝑑𝜐 +
𝜐𝑚

∫ 𝜎𝑖𝑗
𝑚(𝐞i⨂𝛎,𝑗

𝑚)𝑑𝜐
𝜐𝑚

− ∫ 𝜌𝑓𝑖(𝐞i⨂𝛎𝑚)𝑑𝜐
𝜐𝑚

𝑛

𝑚=1

− ∫ 𝑡𝑖(𝐞i⨂𝛎𝑚)𝑑𝑠
∂𝑏1∩𝜕𝑣𝑚

} = 0. 
(3.19)

In which 

𝛎𝑚 = ∑ 𝑁𝑖𝐞𝑛𝑚(𝑖)
′

𝑘

𝑖=1
(3.20)

where 𝑛𝑚(𝑖) is the global node number. 
 
 Applying the approximation scheme of Equation (3.16) to the dependent 
variables and substituting into Equation (3.19) yields 

∑ {∫ 𝜌𝐍𝑚
T 𝐍𝑚𝐚𝑑𝜐

𝜐𝑚
+ ∫ 𝐁𝑚

T 𝛔𝑑𝜐
𝜐𝑚

− ∫ 𝜌𝐍𝑚
T 𝐛𝑑𝜐

𝜐𝑚
− ∫ 𝐍𝑚

T 𝐭𝑑𝑠
∂𝑏1

}
𝑛

𝑚=1
= 0 (3.21)

where 𝐍 is an interpolation matrix; 𝜎  is the stress vector 

𝛔T = (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, 𝜎𝑦𝑧, 𝜎zx); (3.22)
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B is the strain-displacement matrix; a is the nodal acceleration vector 

⎣
⎢⎡

𝑥1̈
𝑥2̈
𝑥3̈⎦

⎥⎤ = 𝐍

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑎𝑥

1

𝑎𝑥
2

⋮
𝑎𝑦

𝑘

𝑎𝑧
𝑘⎦
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐍𝐚; (3.23)

b is the body force load vector; and 𝒕 is the applied traction load. 

𝐛 =
⎣
⎢⎢
⎡𝑓𝑥

𝑓𝑦
𝑓𝑧⎦

⎥⎥
⎤ ,     𝐭 =

⎣
⎢⎡

𝑡𝑥
𝑡𝑦
𝑡𝑧⎦

⎥⎤ (3.24)
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4    
Solid Elements 

 For a mesh of 8-node hexahedron solid elements, Equation ((3.16)) becomes: 

𝑥𝑖(𝑋𝛼, 𝑡) = 𝑥𝑖(𝑋𝛼(𝜉 , 𝜂, 𝜁), 𝑡) = ∑ 𝜙𝑗(𝜉 , 𝜂, 𝜁)𝑥𝑖
 𝑗(𝑡)

8

𝑗=1
. (4.1)

The shape function 𝜙𝑗 is defined for the 8-node hexahedron as 

𝜙𝑗 =
1
8 (1 + 𝜉𝜉𝑗)(1 + 𝜂𝜂𝑗)(1 + 𝜁𝜁𝑗), (4.2)

where 𝜉𝑗, 𝜂𝑗, 𝜁𝑗 take on their nodal values of (±1, ±1, ±1) and 𝑥𝑖
𝑗 is the nodal coordinate of 

the jth node in the ith direction (see Figure 4.1). 
 
 For a solid element, N is the 3 × 24 rectangular interpolation matrix given by 

N(𝜉, 𝜂, 𝜁) =
⎣
⎢⎡

𝜙1 0 0 𝜙2 0 ⋯ 0 0
0 𝜙1 0 0 𝜙2 ⋯ 𝜙8 0
0 0 𝜙1 0 0 ⋯ 0 𝜙8⎦

⎥⎤, (4.3)

𝝈 is the stress vector 

σT = (𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑥𝑦 𝜎𝑦𝑧 𝜎𝑧𝑥). (4.4)
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𝐁 is the 6 × 24 strain-displacement matrix 

𝐁 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∂

∂𝑥 0 0

0
∂

∂𝑦 0

0 0
∂
∂𝑧

∂
∂𝑦

∂
∂𝑥 0

0
∂
∂𝑧

∂
∂𝑦

∂
∂𝑧 0

∂
∂𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐍. (4.5)

In order to achieve a diagonal mass matrix the rows are summed giving the kth diagonal 
term as 

𝑚𝑘𝑘 = ∫ 𝜌𝜙𝑘 ∑ 𝜙𝑖𝑑𝜐 = ∫ 𝜌𝜙𝑘𝑑𝜐
𝜐

8

𝑖=1𝜐
, (4.6)

since the basis functions sum to unity. 
 
 Terms in the strain-displacement matrix are readily calculated.  Note that 

1

2

3

4

5

6

7

8

-1

1

1

-1

-1

1

1

-1

-1

-1

1

1

-1

-1

1

1

-1

-1

-1

-1

1

1

1

1

Node

8

5

6

1

7

4

3

2

ξ η ζ

 Figure 4.1.  Eight node solid hexahedron element. 
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∂𝜙𝑖
∂𝜉 =

∂𝜙𝑖
∂𝑥

∂𝑥
∂𝜉 +

∂𝜙𝑖
∂𝑦

∂𝑦
∂𝜉 +

∂𝜙𝑖
∂𝑧

∂𝑧
∂𝜉 , 

∂𝜙𝑖
∂𝜂 =

∂𝜙𝑖
∂𝑥

∂𝑥
∂𝜂 +

∂𝜙𝑖
∂𝑦

∂𝑦
∂𝜂 +

∂𝜙𝑖
∂𝑧

∂𝑧
∂𝜂 , 

∂𝜙𝑖
∂𝜁 =

∂𝜙𝑖
∂𝑥

∂𝑥
∂𝜁 +

∂𝜙𝑖
∂𝑦

∂𝑦
∂𝜁 +

∂𝜙𝑖
∂𝑧

∂𝑧
∂𝜁 , 

(4.7)

which can be rewritten as 

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡∂𝜙𝑖

∂𝜉
∂𝜙𝑖
∂𝜂
∂𝜙𝑖
∂𝜁 ⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡∂𝑥

∂𝜉
∂𝑦
∂𝜉

∂𝑧
∂𝜉

∂𝑥
∂𝜂

∂𝑦
∂𝜂

∂𝑧
∂𝜂

∂𝑥
∂𝜁

∂𝑦
∂𝜁

∂𝑧
∂𝜁⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∂𝜙𝑖

∂𝑥
∂𝜙𝑖
∂𝑦
∂𝜙𝑖
∂𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∂𝜙𝑖

∂𝑥
∂𝜙𝑖
∂𝑦
∂𝜙𝑖
∂𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (4.8)

Inverting the Jacobian matrix, J, we can solve for the desired terms 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∂𝜙𝑖

∂𝑥
∂𝜙𝑖
∂𝑦
∂𝜙𝑖
∂𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐉−1

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡∂𝜙𝑖

∂𝜉
∂𝜙𝑖
∂𝜂
∂𝜙𝑖
∂𝜁 ⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

. (4.9)

4.1  Volume Integration 

 Volume integration is carried out with Gaussian quadrature.  If 𝑔 is some 
function defined over the volume, and 𝑛 is the number of integration points, then 

∫ 𝑔𝑑𝜐 = ∫ ∫ ∫ 𝑔|𝐉|𝑑𝜉𝑑𝜂𝑑𝜁
1

−1

1

−1

1

−1𝜐
, (4.10)

is approximated by 

∑ ∑ ∑ 𝑔𝑗𝑘𝑙∣𝐽𝑗𝑘𝑙∣𝑤𝑗𝑤𝑘𝑤𝑙

𝑛

𝑙=1

𝑛

𝑘=1

𝑛

𝑗=1
, (4.11)

where 𝑤𝑗, 𝑤𝑘, 𝑤𝑙 are the weighting factors, 

𝑔𝑗𝑘𝑙 = g(𝜉𝑗, 𝜂𝑘, 𝜁𝑙), (4.12)

and 𝐽 is the determinant of the Jacobian matrix.  For one-point quadrature 
𝑛 = 1,

𝑤𝑖 = 𝑤𝑗 = 𝑤𝑘 = 2,
(4.13)
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𝜉1 = 𝜂1 = 𝜁1 = 0,
and we can write 

∫ 𝑔𝑑𝑣 = 8𝑔(0,0,0)|𝐉(0,0,0)|. (4.14)

Note that 8|𝐽(0,0,0)| approximates the element volume. 
 
 Perhaps the biggest advantage to one-point integration is a substantial savings in 
computer time.  An anti-symmetry property of the strain matrix 

∂𝜙1
∂𝑥𝑖

= −
∂𝜙7
∂𝑥𝑖

,
∂𝜙3
∂𝑥𝑖

= −
∂𝜙5
∂𝑥𝑖

,

∂𝜙2
∂𝑥𝑖

= −
∂𝜙8
∂𝑥𝑖

,
∂𝜙4
∂𝑥𝑖

= −
∂𝜙6
∂𝑥𝑖

,
(4.15)

at 𝜉 = 𝜂 = 𝜁 = 0 reduces the amount of effort required to compute this matrix by more 
than 25 times over an 8-point integration.  This cost savings extends to strain and 
element nodal force calculations where the number of multiplies is reduced by a factor 
of 16.  Because only one constitutive evaluation is needed, the time spent determining 
stresses is reduced by a factor of 8.  Operation counts for the constant stress hexahedron 
are given in Table 4.1.  Included are counts for the Flanagan and Belytschko [1981] 
hexahedron and the hexahedron used by Wilkins [1974] in his integral finite difference 
method, which was also implemented [Hallquist 1979].  
 
 It may be noted that 8-point integration has another disadvantage in addition to 
cost.  Fully integrated elements used in the solution of plasticity problems and other 

 DYNA3D 
Flanagan 

Belytschko 
Wilkins 

FDM 

Strain displacement matrix 94 357 843 

Strain rates 87 156  

Force 117 195 270 

Subtotal 298 708 1113 

Hourglass control 130 620 680 

Total 428 1328 1793 
 

Table 4.1.  Operation counts for a constant stress hexahedron (includes adds,
subtracts, multiplies, and divides in major subroutines, and is independent of
vectorization).  Material subroutines will add as little as 60 operations for the
bilinear elastic-plastic routine to ten times as much for multi-surface plasticity
and reactive flow models.  Unvectorized material models will increase that
share of the cost a factor of four or more. 
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problems where Poisson’s ratio approaches 0.5 lock up in the constant volume bending 
modes.  To preclude locking, an average pressure must be used over the elements; 
consequently, the zero energy modes are resisted by the deviatoric stresses.  if the 
deviatoric stresses are insignificant relative to the pressure or,  even worse, if material 
failure cause loss of this stress state component, hourglassing will still occur, but with 
no means of resisting it.  Sometimes, however, the cost of the fully integrated element 
may be justified by increased reliability and if used sparingly may actually increase the 
overall speed.

4.2  Solid Element 2 

Solid element 2 is a selective reduced (S/R) integrated element that in general is 
regarded as too stiff.  In particular this is the case when the elements exhibit poor aspect 
ratio, i.e., when one element dimension is significantly smaller than the other(s).  This 
occurs for instance when modelling thin walled structures and the time for solving the 
problem prevents using a sufficient number of elements for maintaining close to cubic 
elements throughout the structure.  The reason for the locking phenomenon is that the 
element is not able to represent pure bending modes without introducing transverse 
shear strains, and this may be bad enough to lock the element to a great extent.  In an 
attempt to solve this transverse shear locking problem, two new fully integrated solid 
elements are introduced and documented herein that may become of practical use for 
these types of applications. 

4.2.1  Brief summary of solid element 2 

Let 𝑥𝐼𝑖 represent the nodal coordinate of dimension 𝑖 and node 𝐼, and likewise 𝑣𝐼𝑖 its 
velocity.  Furthermore denote 

𝑁𝐼(𝜉1, 𝜉2, 𝜉3) =
1
8 (1 + 𝜉1

𝐼𝜉1 + 𝜉2
𝐼𝜉2 + 𝜉3

𝐼𝜉3 + 𝜉12
𝐼 𝜉1𝜉2 + 𝜉13

𝐼 𝜉1𝜉3 + 𝜉23
𝐼 𝜉2𝜉3 + 𝜉123

𝐼 𝜉1𝜉2𝜉3),(4.2.16)

the shape functions for the standard isoparametric domain where 
𝜉1

∗ = [−1 1 1 −1 −1 1 1 −1],
𝜉2

∗ = [−1 −1 1 1 −1 −1 1 1], 
𝜉3

∗ = [−1 −1 −1 −1 1 1 1 1], 
𝜉12

∗ = [ 1 −1 1 −1 1 −1 1 −1], 
𝜉13

∗ = [ 1 −1 −1 1 1 −1 1 −1], 
𝜉23

∗ = [ 1 1 −1 −1 −1 −1 1 1], 
𝜉123

∗ = [−1 1 −1 1 1 −1 1 −1], 

(4.2.17)

and let furthermore 

𝜉21
𝐼 = 𝜉12

𝐼 ,
𝜉32

𝐼 = 𝜉23
𝐼 , 

𝜉31
𝐼 = 𝜉13

𝐼 .
(4.2.18)
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 The isoparametric representation of the coordinates of a material point in the 
element is then given as (where the dependence on 𝜉1, 𝜉2, 𝜉3 is suppressed for brevity) 

𝑥𝑖 = 𝑥𝐼𝑖𝑁𝐼, (4.2.19)
and its associated jacobian matrix is 

𝐽𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝜉𝑗

= 𝑥𝐼𝑖
1
8 (𝜉𝑗

𝐼 + 𝜉𝑗𝑘
𝐼 𝜉𝑘 + 𝜉𝑗𝑙

𝐼 𝜉𝑙 + 𝜉123
𝐼 𝜉𝑘𝜉𝑙), (4.2.20)

where 𝑘 = 1 + mod(𝑗, 3) and 𝑙 = 1 + mod(𝑗 + 1,3). For future reference let 

𝐽𝑖𝑗
0 = 𝑥𝐼𝑖(0)

1
8 𝜉𝑗

𝐼, (4.2.21)

be the jacobian evaluated in the element center and in the beginning of the simulation 
(i.e., at time zero).  The velocity gradient computed directly from the shape functions 
and velocity components is 

𝐿𝑖𝑗 =
𝜕𝑣𝑖
𝜕𝑥𝑗

= 𝐽𝑖̇𝑘𝐽𝑘𝑗
−1 = 𝐵𝑖𝑗𝐼𝑘𝑣𝐼𝑘, (4.2.22)

where 

𝐵𝑖𝑗𝐼𝑘 =
𝜕𝑁𝐼
𝜕𝜉𝑙

𝐽𝑙𝑗
−1𝛿𝑖𝑘, (4.2.23)

is the gradient-displacement matrix and represents the element except for the 
alleviation of volumetric locking.  To do just that, let 𝐵𝑖𝑗𝐼𝑘

0  be defined by 

𝐽 ̅𝑖̇𝑘𝐽𝑘̅𝑗
−1 = 𝐵𝑖𝑗𝐼𝑘

0 𝑣𝐼𝑘, (4.2.24)

with 𝐽𝑖̅𝑗 being the element averaged jacobian matrix, and construct the gradient-
displacement matrix used for the element as 

𝐵̅̅̅̅𝑖𝑗𝐼𝑘 = 𝐵𝑖𝑗𝐼𝑘 +
1
3 (𝐵𝑙𝑙𝐼𝑘

0 − 𝐵𝑙𝑙𝐼𝑘)𝛿𝑖𝑗. (4.2.25)

This is what is often called the B-bar method. 
 

q

i

p

 Figure 4.2.2.  Bending mode for a fully integrated brick. 
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4.2.2  Transverse shear locking example 

To get the idea of the modifications needed to alleviate transverse shear locking let’s 
look at the parallelepiped of dimensions 𝑙1 × 𝑙2 × 𝑙3 in the Figure above.  For this simple 
geometry the jacobian matrix is diagonal and the velocity gradient is expressed as 

𝐿𝑖𝑗 =
2
𝑙𝑗

𝐽𝑖̇𝑗 =
1

4𝑙𝑗
𝑣𝐼𝑖(𝜉𝑗

𝐼 + 𝜉𝑗𝑘
𝐼 𝜉𝑘 + 𝜉𝑗𝑙

𝐼 𝜉𝑙 + 𝜉123
𝐼 𝜉𝑘𝜉𝑙), (4.2.26)

where, again, 𝑘 = 1 + mod(𝑗, 3) and 𝑙 = 1 + mod(𝑗 + 1,3). Now let 𝑖 ≠ 𝑝 ≠ 𝑞 ≠ 𝑖, then a 
pure bending mode in the plane with normal in direction 𝑞 and about axis 𝑝 is 
represented by 

𝑣𝐼𝑖 = 𝜉𝑖𝑞
𝐼 ,

𝑣𝐼𝑝 = 0, 
𝑣𝐼𝑞 = 0,

(4.2.27)

and thus the velocity gradient is given as 

𝐿𝑖𝑗 =
1

4𝑙𝑗
(𝜉𝑖𝑞

𝐼 𝜉𝑗𝑘
𝐼 𝜉𝑘 + 𝜉𝑖𝑞

𝐼 𝜉𝑗𝑙
𝐼 𝜉𝑙),

𝐿𝑝𝑗 = 0, 
𝐿𝑞𝑗 = 0,

(4.2.28)

for 𝑗 = 1, 2, 3.  The nonzero expression above amounts to 

𝐿𝑖𝑖 =
1

4𝑙𝑖
𝜉𝑞,

𝐿𝑖𝑝 = 0, 

𝐿𝑖𝑞 =
1

4𝑙𝑞
𝜉𝑖.

(4.2.29)

Notable here is that a pure bending mode gives arise to a transverse shear strain 
represented by the last expression in the above.  Assuming that 𝑙𝑞 is small compared to 
𝑙𝑖 this may actually lock the element. 

4.2.3  Solid element -2 

Given this insight the modifications in the expression of the jacobian matrix are as 
follows.  Let 

𝜅𝑚𝑛 = min
⎝
⎜⎜⎜
⎛1,

√𝐽1𝑚
0 𝐽1𝑚

0 + 𝐽2𝑚
0 𝐽2𝑚

0 + 𝐽3𝑚
0 𝐽3𝑚

0

√𝐽1𝑛
0 𝐽1𝑛

0 + 𝐽2𝑛
0 𝐽2𝑛

0 + 𝐽3𝑛
0 𝐽3𝑛

0 ⎠
⎟⎟⎟
⎞, (4.2.30)

be the aspect ratio between dimensions 𝑚 and 𝑛 at time zero.  The modified jacobian is 
written 

𝐽𝑖̃𝑗 = 𝑥𝐼𝑖
1
8 (𝜉𝑗

𝐼 + 𝜉𝑗𝑘
𝐼 𝜉𝑘𝑖 + 𝜉𝑗𝑙

𝐼 𝜉𝑙𝑖 + 𝜉123
𝐼 𝜉𝑘𝑖𝜉𝑙𝑖), (4.2.31)

where 
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𝜉𝑘𝑖 = {
𝜉𝑘𝜅𝑗𝑘 𝑖 ≠ 𝑗

𝜉𝑘 otherwise, (4.2.32)

and 

𝜉𝑙𝑖 = {
𝜉𝑙𝜅𝑗𝑙 𝑖 ≠ 𝑗

𝜉𝑙 otherwise. (4.2.33)

 
 The velocity gradient is now given as 

𝐿𝑖𝑗 = 𝐽 ̃𝑖̇𝑘𝐽𝑘̃𝑗
−1 = 𝐵̃𝑖𝑗𝐼𝑘𝑣𝐼𝑘, (4.2.34)

where 𝐵̃𝑖𝑗𝐼𝑘 is the gradient-displacement matrix used for solid element type -2 in LS-
DYNA. The B-bar method is used to prevent volumetric locking. 

4.2.4  Transverse shear locking example revisited 

Once again let’s look at the parallelepiped of dimensions 𝑙1 × 𝑙2 × 𝑙3. The jacobian matrix 
is still diagonal and the velocity gradient is with the new element formulation 
expressed as 

𝐿𝑖𝑗 =
2
𝑙𝑗

𝐽 ̃𝑖̇𝑗 =
1

4𝑙𝑗
𝑣𝐼𝑖(𝜉𝑗

𝐼 + 𝜉𝑗𝑘
𝐼 𝜉𝑘𝑖 + 𝜉𝑗𝑙

𝐼 𝜉𝑙𝑖 + 𝜉123
𝐼 𝜉𝑘𝑖𝜉𝑙𝑖), (4.2.35)

where, again, 𝑘 = 1 + mod(𝑗, 3) and 𝑙 = 1 + mod(𝑗 + 1,3). The velocity gradient for a 
pure bending mode is now given as 

𝐿𝑖𝑗 =
1

4𝑙𝑗
(𝜉𝑖𝑞

𝐼 𝜉𝑗𝑘
𝐼 𝜉𝑘𝑖 + 𝜉𝑖𝑞

𝐼 𝜉𝑗𝑙
𝐼 𝜉𝑙𝑖), (4.2.36)

which amounts to (for the potential nonzero elements) 

𝐿𝑖𝑖 =
1

4𝑙𝑖
𝜉𝑞,

𝐿𝑖𝑝 = 0, 

𝐿𝑖𝑞 =
1

4𝑙𝑞
𝜉𝑖𝜅𝑞𝑖. 

(4.2.37)

 
 If we assume that this is the geometry in the beginning of the simulation and that 
𝑙𝑞 is smaller than 𝑙𝑖 the transverse shear strain can be expressed as 

𝐿𝑖𝑞 =
1

4𝑙𝑖
𝜉𝑖, (4.2.38)

meaning that the transverse shear energy is not affected by poor aspect ratios, i.e., the 
transverse shear strain does not grow with decreasing 𝑙𝑞. 

4.2.5  Solid element -1 

Working out the details in the expression of the gradient-displacement matrix for solid 
element type -2 reveals that this matrix is dense, i.e., there are 216 nonzero elements in 
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this matrix that needs to be processed compared to 72 for the standard solid element 
type 2. A slight modification of the jacobian matrix will substantially reduce the 
computational expense for this element.  Simply substitute the expressions for 𝜉𝑘𝑖 and 𝜉𝑙𝑖 
by  

𝜉𝑘𝑖 = 𝜉𝑘𝜅𝑗𝑘, (4.2.39)
and 

𝜉𝑙𝑖 = 𝜉𝑙𝜅𝑗𝑙. (4.2.40)
 
 This will lead to a stiffness reduction for certain modes, in particular the out-of-
plane hourglass mode as can be seen by once again looking at the transverse shear 
locking example.  The velocity gradient for pure bending is now 

𝐿𝑖𝑖 =
1

4𝑙𝑖
𝜉𝑞𝜅𝑖𝑞,

𝐿𝑖𝑝 = 0, 

𝐿𝑖𝑞 =
1

4𝑙𝑞
𝜉𝑖𝜅𝑞𝑖, 

(4.2.41)

and if it turns out that 𝑙𝑖 is smaller than 𝑙𝑞, then this results in 

𝐿𝑖𝑖 =
1

4𝑙𝑞
𝜉𝑞. (4.2.42)

That is, if 𝑖 represents the direction of the thinnest dimension, its corresponding 
bending strain is inadequately reduced. 

4.2.6  Example 

A plate of dimensions 10 × 5 × 1 mm3 is clamped at one end and subjected to a 1 Nm 
torque at the other end.  The Young’s modulus is 210 GPa and the analytical solution for 
the end tip deflection is 0.57143 mm. In order to study the mesh convergence for the 
three fully integrated bricks the plate is discretized into 2 × 1 × 1, 4 × 2 × 2, 8 × 4 × 4, 16 ×
8 × 8and finally 32 × 16 × 16 elements, all elements having the same aspect ratio of 5 × 1. 
The table below shows the results for the different fully integrated elements, and 
indicates an accuracy improvement for solid elements −1 and −2. 
Discretization  Solid element type 2 Solid element type -2 Solid element type -1 
2x1x1 0.0564 (90.1%) 0.6711 (17.4%) 0.6751 (18.1%) 
4x2x2 0.1699 (70.3%) 0.5466 (4.3%) 0.5522 (3.4%) 
8x4x4 0.3469 (39.3%) 0.5472 (4.2%) 0.5500 (3.8%) 
16x8x8 0.4820 (15.7%) 0.5516 (3.5%) 0.5527 (3.3%) 
32x16x16 0.5340 (6.6%) 0.5535 (3.1%) 0.5540 (3.1%) 

4.3  Hourglass Control 

 The biggest disadvantage to one-point integration is the need to control the zero 
energy modes, which arise, called hourglassing modes.  Undesirable hourglass modes 
tend to have periods that are typically much shorter than the periods of the structural 
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response, and they are often observed to be oscillatory.  However, hourglass modes that 
have periods that are comparable to the structural response periods may be a stable 
kinematic component of the global deformation modes and must be admissible.  One 
way of resisting undesirable hourglassing is with a viscous damping or small elastic 
stiffness capable of stopping the formation of the anomalous modes but having a 
negligible affect on the stable global modes.  Two of the early three-dimensional 
algorithms for controlling the hourglass modes were developed by Kosloff and Frazier 
[1974] and Wilkins et al.  [1974]. 
 
 Since the hourglass deformation modes are orthogonal to the strain calculations, 
work done by the hourglass resistance is neglected in the energy equation.  This may 
lead to a slight loss of energy; however, hourglass control is always recommended for 
the under integrated solid elements.  The energy dissipated by the hourglass forces 
reacting against the formations of the hourglass modes is tracked and reported in the 
output files matsum and glstat. 
 
 It is easy to understand the reasons for the formation of the hourglass modes.  
Consider the following strain rate calculations for the 8-node solid element 

𝜀𝑖̇𝑗 =
1
2 (∑

∂𝜙𝑘
∂𝑥𝑖

𝑥𝑗̇
𝑘

8

𝑘=1
+

∂𝜙𝑘
∂𝑥𝑗

𝑥𝑖̇
𝑘). (4.43)

Whenever diagonally opposite nodes have identical velocities, i.e., 

𝑥𝑖̇
1 = 𝑥𝑖̇

7, 𝑥𝑖̇
2 = 𝑥𝑖̇

8, 𝑥𝑖̇
3 = 𝑥𝑖̇

5, 𝑥𝑖̇
4 = 𝑥𝑖̇

6, (4.44)

1k 2k

3k 4k

Figure 4.3.  The hourglass modes of an eight-node element with one
integration point are shown  [Flanagan and Belytschko 1981].  A total of twelve
modes exist. 
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the strain rates are identically zero: 
𝜀𝑖̇𝑗 = 0, (4.45)

due to the asymmetries in Equations (4.15).  It is easy to prove the orthogonality of the 
hourglass shape vectors, which are listed in Table 4 and shown in Figure 4.3 with the 
derivatives of the shape functions: 

∑
∂𝜙𝑘
∂𝑥𝑖

𝛤𝛼𝑘 = 0
8

𝑘=1
, 𝑖 = 1, 2, 3, 𝛼 = 1, 2, 3, 4. (4.46)

The product of the base vectors with the nodal velocities is zero when the element 
velocity field has no hourglass component, 

ℎ𝑖𝛼 = ∑ 𝑥𝑖̇
𝑘𝛤𝛼𝑘

8

𝑘=1
= 0. (4.47)

are nonzero if hourglass modes are present.  The 12 hourglass-resisting force vectors, 𝑓𝑖𝛼𝑘  
are 

𝑓𝑖𝛼𝑘 = 𝑎ℎℎ𝑖𝛼𝛤𝛼𝑘, (4.48)

where 

𝑎ℎ = 𝑄HG𝜌𝑣e
2

3⁄ 𝑐
4, (4.49)

in which 𝑣e is the element volume, 𝑐 is the material sound speed, and 𝑄HG is a user-
defined constant usually set to a value between .05 and .15.  Equation (1.21) is hourglass 
control type 1 in the LS-DYNA User’s Manual. 
 
A shortcoming of hourglass control type 1 is that the hourglass resisting forces of 
Equation (1.21) are not orthogonal to linear velocity field when elements are not in the 
shape of parallelpipeds.  As a consequence, such elements can generate hourglass 
energy with a constant strain field or rigid body rotation.  Flanagan and Belytschko 
[1981] developed an hourglass control that is orthogonal to all modes except the zero 
energy hourglass modes.  Instead of resisting components of the bilinear velocity field 
that are orthogonal to the strain calculation, Flanagan and Belytschko resist components 

 𝛼 = 1 𝛼 = 2 𝛼 = 3 𝛼 = 4
𝛤𝑗1 1 1 1 1 
𝛤𝑗2 1 -1 -1 -1 
𝛤𝑗3 -1 -1 1 1 
𝛤𝑗4 -1 1 -1 -1 
𝛤𝑗5 -1 -1 1 -1 
𝛤𝑗6 -1 1 -1 1 
𝛤𝑗7 1 1 1 -1 
𝛤𝑗8 1 -1 -1 1 

 Table 4.  Hourglass base vectors. 
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of the velocity field that are not part of a fully linear field.  They call this field, defined 
below, the hourglass velocity field 

𝑥𝑖̇
𝑘HG

= 𝑥𝑖̇
𝑘 − 𝑥𝑖̇

𝑘LIN
, (4.50)

where 

𝑥𝑖̇
𝑘LIN

= 𝑥̅i̇ + 𝑥̅𝑖̇,𝑗(𝑥𝑗
𝑘 − 𝑥𝑗̅), (4.51)

and 

𝑥𝑖̅ =
1
8 ∑ 𝑥𝑖

𝑘,
8

𝑘=1

𝑥̅𝑖̇ =
1
8 ∑ 𝑥𝑖̇

𝑘
8

𝑘=1
. 

(4.52)

Flanagan and Belytschko construct geometry-dependent hourglass shape vectors that 
are orthogonal to the fully linear velocity field and the rigid body field.  With these 
vectors they resist the hourglass velocity deformations.  Defining hourglass shape 
vectors in terms of the base vectors as 

𝛾𝛼𝑘 = 𝛤𝛼𝑘 − 𝜙𝑘,𝑖 ∑ 𝑥𝑖
𝑛

8

𝑛=1
𝛤𝛼𝑛, (4.53)

the analogue for (4.47) is, 

𝑔𝑖𝛼 = ∑ 𝑥𝑖̇
𝑘

8

𝑘=1
𝛾𝛼𝑘 = 0, (4.54)

with the 12 resisting force vectors being 

𝑓𝑖𝛼𝑘 = 𝑎ℎ𝑔𝑖𝛼𝛾𝛼𝑘, (4.55)

where 𝑎ℎ is a constant given in Equation (4.48).  Equation (1.28) corresponds to 
hourglass control type 2 in the LS-DYNA User’s Manual.  The 𝛾 terms used of equation 
of Equation (1.26) are used not only type hourglass control type 2, but are the basis for 
all solid element hourglass control except for form 1.  
 
 A cost comparison in Table 4.1 shows that the default type 1 hourglass viscosity 
requires approximately 130 adds or multiplies per hexahedron, compared to 620 and 
680 for the algorithms of Flanagan-Belytschko and Wilkins.  Therefore, for a very 
regular mesh, type 1 hourglass control may provide a faster, sufficiently accurate 
solution, but in general, any of the other hourglass options which are all based on the 
𝛾𝛼𝑘 terms of Equation (1.26) will be a better choice. 
 
 Type 3 hourglass control is identical to type 2, except that the shape function 
derivatives in Eq.  (1.26) are evaluated at the centroid of the element rather than at the 
origin of the referential coordinate system.  With this method, Equation (1.14) produces 
the exact element volume.  However, the anti-symmetry property of Equation (1.15) is 
not true, so there is some increased number of computations. 
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 The remaining hourglass control types calculated hourglass forces proportional 
to total hourglass deformation rather than hourglass viscosity.  A stiffness form of 
hourglass control allows elements to spring back and will absorb less energy than the 
viscous forms. 
 
 Types 4 and 5 hourglass control are similar to types 2 and 3, except that they 
evaluate hourglass stiffness rather than viscosity.  The hourglass rates of equation (1.27) 
are multiplied by the solution time step to produce increments of hourglass 
deformation.  The hourglass stiffness is scaled by the element’s maximum frequency so 
that stability can is maintained as long as the hourglass scale factor, 𝑎ℎ, is sufficiently 
small. 
 
 Type 6 hourglass control improves on type 5 by scaling the stiffness such that the 
hourglass forces match those generated by a fully integrated element control by doing 
closed form integration over the element volume scaling the hourglass stiffness by 
matching the stabilization for the 3D hexahedral element is available for both implicit 
and explicit solutions.  Based on material properties and element geometry, this 
stiffness type stabilization is developed by an assumed strain method [Belytschko and 
Bindeman 1993] such that the element does not lock with nearly incompressible 
material.  When the user defined hourglass constant 𝑎h is set to 1.0, accurate coarse 
mesh bending stiffness is obtained for elastic material.  For nonlinear material, a smaller 
value of 𝑎h is suggested and the default value is set to 0.1.  In the implicit form, the 
assumed strain stabilization matrix is: 

𝐊stab = 2𝜇𝑎h
⎣
⎢⎡

𝐤11 𝐤12 𝐤13
𝐤21 𝐤22 𝐤23
𝐤31 𝐤32 𝐤33⎦

⎥⎤, (4.56)

where the 8 × 8 submatricies are calculated by: 

𝐤𝑖𝑖 ≡ 𝐻𝑖𝑖 [(
1

1 − 𝜐) (𝛄𝑗𝛄𝑗
T + 𝛄𝑘𝛄𝑘

T) + (
1 + 𝜐

3 ) 𝛄4𝛄4
T] +

1
2 (𝐻𝑗𝑗 + 𝐻𝑘𝑘)𝛄𝑖𝛄1

T, 

𝐤𝑖𝑗 ≡ 𝐻𝑖𝑗 [(
𝜐

1 − 𝜐) 𝛄𝑗𝛄𝑖
T +

1
2 𝛄𝑖𝛄𝑗

T], 
(4.57)

with, 
𝐻𝑖𝑖 ≡ ∫(ℎ𝑗,𝑖)

2

𝑣
𝑑𝑣 = ∫(ℎ𝑘,𝑖)2

𝑣
𝑑𝑣 = 3 ∫(ℎ4,𝑖)2

𝑣
𝑑𝑣, 

𝐻𝑖𝑗 ≡ ∫ ℎ𝑖,𝑗ℎ𝑗,𝑖
𝑣

𝑑𝑣, 
(4.58)

where, 
ℎ1 = 𝜉𝜂    ℎ2 = 𝜂𝜁 ℎ3 = 𝜁𝜉 ℎ4 = 𝜉𝜂𝜁 , (4.59)

 
 Subscripts 𝑖, 𝑗, and 𝑘 are permuted as in Table 44.2.  A comma indicates a 
derivative with respect to the spatial variable that follows.  The hourglass vectors, 𝛾𝛼 
are defined by equation (4.53).  The stiffness matrix is evaluated in a corotational 
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coordinate system that is aligned with the referential axis of the element.  The use of a 
corotational system allows direct evaluation of integrals in equations (4.58) by 
simplified equations that produce a more accurate element than full integration. 

𝐻𝑖𝑖 = 1
3

(𝚲𝑗
T𝐱𝑗)(𝚲𝑘

T𝐱𝑘)
(𝚲𝑖

T𝐱𝑖)
𝑖 ≠ 𝑗 ≠ 𝑘, (4.60)

𝐻𝑖𝑗 = 1
3 (𝚲𝑘

T𝐱𝑘) 𝑖 ≠ 𝑗 ≠ 𝑘, (4.61)

Λ𝑖 are 8 × 1 matrices of the referential coordinates of the nodes as given in Figure 4.1, 
and x𝑖 are 8 × 1 matrices of the nodal coordinates in the corotational system.  For each 
material type, a Poisson's ratio, 𝑣, and an effective shear modulus, 𝜇, is needed. 
 
 In the explicit form, the 12 hourglass force stabilization vectors are 

𝐟𝑖
stab = ∑ 𝑎h𝑔𝑖𝛼𝛄𝛼

T
4

𝛼=1
, (4.62)

where the 12 generalized stresses are calculated incrementally by 

𝑔𝑖𝛼
𝑛 = 𝑔𝑖𝛼

𝑛−1 + Δ𝑡𝑔𝑖̇𝛼
𝑛−1

2, (4.63)

and 
𝑔𝑖̇𝑖 = 𝜇[(𝐻𝑗𝑗 + 𝐻𝑘𝑘)𝑞𝑖̇𝑖 + 𝐻𝑖𝑗𝑞𝑗̇𝑗 + 𝐻𝑖𝑘𝑞𝑘̇𝑘],

𝑔𝑖̇𝑗 = 2𝜇 [
1

1 − 𝜐 𝐻𝑖𝑖𝑞𝑖̇𝑗 + 𝜐𝐻𝑘𝑘𝑞𝑖̇𝑖], 

𝑔𝑖̇4 = 2𝜇 (
1 + 𝜈

3 ) 𝐻𝑖𝑖𝑞𝑖̇4, 

(4.64)

where, 

𝑞𝑖̇𝛼 = (𝛄𝛼
T𝐱𝑖̇). (4.65)

Subscripts 𝑖, 𝑗, and 𝑘 are permuted as per Table 44.2.  As with the implicit form, 
calculations are done in a corotational coordinate system in order to use the simplified 
equations (4.60) and (4.61). 

𝑖 𝑗 𝑘
1 2 3 
1 3 2 
2 3 1 
2 1 3 
3 1 2 
3 2 1 

 
 Table 44.2.  Permutations of i, j, and k. 
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Type 7 hourglass control is very similar to type 6 hourglass control but with one 
significant difference.  As seen in Equation (1.36), type 6 obtains the current value of the 
generalized stress from the previous value and the current increment.  The incremental 
method is nearly always sufficiently accurate, but it is possible for hourglass modes to 
fail to spring back to the initial element geometry since the hourglass stiffness varies as 
the H terms given by Equations (1.33) and (1.34) are recalculated in the deformed 
configuration each cycle.  Type 7 hourglass control eliminates this possible error by 
calculating the total hourglass deformation in each cycle.  For type 7 hourglass control, 
Equations (1.37) are rewritten using 𝑔 and 𝑞 in place of 𝑔̇ and 𝑞,̇ and Equation (1.38) is 
replaced by (1.39). 

𝑞𝑖𝛼 = (𝛄𝛼
T𝐱𝑖) − (𝛄0𝛼

T 𝐱0𝑖). (4.39)

In Equation (1.39), 𝐱𝟎𝒊 and 𝛄𝟎𝜶 are evaluated using the initial, undeformed nodal 
coordinate values.  Type 7 hourglass control is considerably slower than type 6, so it is 
not generally recommended, but may be useful when the solution involves at least 
several cycles of loading and unloading that involve large element deformation of 
elastic or hyperelastic material. 
 
Both type 6 and 7 hourglass control are stiffness type methods, but may have viscosity 
added through the VDC parameter on the *HOURGLASS card.  The VDC parameter 
scales the added viscosity, and VDC = 1.0 corresponds approximately to critical 
damping.  The primary motivation for damping is to reduce high frequency oscillations.  
A small percentage of critical damping should be sufficient for this, but it is also 
possible to add supercritical damping along with a small value of QM to simulate a 
very viscous material that springs back slowly.

4.4  Puso Hourglass Control 

 Regarding the solid elements in LS-DYNA, the fully integrated brick uses 
selective-reduced integration, which is known to alleviate volumetric locking but not 
shear locking for elements with poor aspect ratio.  The enhanced assumed strain 
methods have been the most successful at providing coarse mesh accuracy for general 
non-linear material models.  In short, these elements tend to sacrifice computational 
efficiency for accuracy and are hence of little interest in explicit analysis.  Puso [2000] 
developed an enhanced assumed strain element that combines coarse mesh accuracy 
with computational efficiency.  It is formulated as a single point integrated brick with 
an enhanced assumed strain physical stabilization.  In this project, we have 
implemented this element in LS-DYNA and made comparisons with the assumed strain 
element developed by Belytschko and Bindeman [1993] to see whether it brings 
anything new to the existing LS-DYNA element library.  This is hourglass control type 
9. 
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 The element formulation is that of Puso [2000], and is essentially the mean strain 
hexahedral element by Flanagan and Belytschko [1981] in which the perturbation 
hourglass control is substituted for an enhanced assumed strain stabilization force. 
Given the matrices 

𝐒 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡

1
1
1
1
1
1
1
1⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

, 𝚵 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡

−1 −1 −1
1 −1 −1
1 1 −1

−1 1 −1
−1 −1 1

1 −1 1
1 1 1

−1 1 1⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

, 𝐇 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡

1 1 1 −1
1 −1 −1 1

−1 −1 1 −1
−1 1 −1 1
−1 −1 1 1
−1 1 −1 −1

1 1 1 1
1 −1 −1 −1⎦

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

, (4.66)

we can define the vector of shape functions as 

𝐍(𝛏) =
1
8 [𝐬 + 𝚵𝛏 + 𝐇𝐡(𝛏)], (4.67)

where 

𝛏 =
⎣
⎢⎡

𝜉
𝜂
𝜍⎦

⎥⎤ , 𝐡(𝛏) =

⎣
⎢⎢
⎢
⎡

𝜂𝜍
𝜉𝜍
𝜉𝜂
𝜉𝜂𝜍⎦

⎥⎥
⎥
⎤

. (4.68)

The position vector 

𝐱(𝛏) =
⎣
⎢⎡

𝑥(𝛏)
𝑦(𝛏)
𝑧(𝛏)⎦

⎥⎤, (4.69)

is for isoparametric finite elements given as 

𝐱(𝛏) = 𝐗T𝐍(𝛏), (4.70)

where 

𝐗 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4
𝑥5 𝑦5 𝑧5
𝑥6 𝑦6 𝑧6
𝑥7 𝑦7 𝑧7
𝑥8 𝑦8 𝑧8⎦

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

, (4.71)

is the matrix of nodal coordinates.  The Jacobian matrix maps the isoparametric domain 
to the physical domain as 

𝐉(𝛏) =
∂𝐱(𝛏)

∂𝛏 , (4.72)

and we find the Jabobian matrix at the element centroid to be 
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𝐉0 = 𝐉(0) =
1
8 𝐗T𝚵. (4.73)

We may use this to rewrite the vector of shape functions partially in terms of the 
position vector as 

𝐍(𝛏) = 𝐛0 + 𝐁0𝐱 + 𝚪𝐡(𝛏), (4.74)
Where 

𝐛0 =
1
8 {𝐈 − 𝐁0𝐗T}𝐬 , (4.75a)

𝚪 =
1
8 {𝐈 − 𝐁0𝐗T}𝐇, (4.75b)

𝐁0 =
1
8 𝚵𝐉0

−1 . (4.75c)

The gradient-displacement matrix from this expression is given as 
𝐁(𝛏) = 𝐁0 + 𝐁𝑠(𝛏), (4.76)

where 

𝐁𝑠(𝛏) = 𝚪
∂𝐡(𝛏)

∂𝛏 𝐉(𝛏)−1. (4.77)

We have 

∂𝐡(𝛏)
∂𝛏 =

⎣
⎢⎢
⎢
⎡

0 𝜍 𝜂
𝜍 0 𝜉
𝜂 𝜉 0
𝜂𝜍 𝜉𝜍 𝜉𝜂⎦

⎥⎥
⎥
⎤

. (4.78)

At this point we substitute the gradient-displacement matrix at the centroid of the 
element 𝐁0 with the mean gradient-displacement matrix 𝐁 defined as 

𝐁 =
1

𝑉𝑒
∫ 𝐁(𝛏)𝑑𝑉𝑒
𝑒

, (4.79)

where 𝑒 refers to the element domain and 𝑉𝑒 is the volume of the element, in all of the 
expressions above.  That is 

𝚪 =
1
8 {𝐈 − 𝐁𝐗T}𝐇, (4.80)

and 
𝐁(𝛏) = 𝐁 + 𝐁𝑠(𝛏), (4.81)

where 

𝐁𝑠(𝛏) = 𝚪
∂𝐡(𝛏)

∂𝛏 𝐉(𝛏). (4.82)

Proceeding, we write the expression for the rate-of-deformation as 



Solid Elements LS-DYNA Theory Manual 

4-18 (Solid Elements) LS-DYNA DEV 06/21/18 (r:10113) 

𝛆̇ =
1
2 [𝐗̇T𝐁(𝛏) + 𝐁(𝛏)T𝐗̇] 

=
1
2 (𝐗̇T𝐁 + 𝐁T𝐗̇) +

1
2 [𝐗̇T𝐁𝑠(𝛏) + 𝐁𝑠(𝛏)T𝐗̇] 

=
1
2 (𝐗̇T𝐁 + 𝐁T𝐗̇) +

1
2 ⎩{⎨

{⎧𝐗̇T𝚪
∂𝐡(𝛏)

∂𝛏 𝐉(𝛏)−1 + 𝐉(𝛏)−T [
∂𝐡(𝛏)

∂𝛏 ]
T

𝚪T𝐗̇
⎭}⎬
}⎫ 

=
1
2 (𝐗̇T𝐁 + 𝐁T𝐗̇) +

1
2 𝐉(𝛏)−T

⎩{⎨
{⎧𝐉(𝛏)T𝐗̇T𝚪

∂𝐡(𝛏)
∂𝛏 + [

∂𝐡(𝛏)
∂𝛏 ]

T
𝚪T𝐗̇𝐉(𝛏)

⎭}⎬
}⎫ 𝐉(𝛏)−1,

(4.83)

where we substitute the occurrences of the jacobian matrix 𝐉(ξ)with the following 
expressions 

𝛆̇ ≈
1
2 (𝐗̇T𝐁 + 𝐁T𝐗̇) +

1
2 𝐉0̂

−T

⎩{⎨
{⎧𝐉0

T𝐗̇T𝚪
∂𝐡(𝛏)

∂𝛏 + [
∂𝐡(𝛏)

∂𝛏 ]
T

𝚪T𝐗̇𝐉0
⎭}⎬
}⎫ 𝐉0̂

−1, (4.84)

where 

𝐉0̂ =
⎣
⎢
⎡

∥𝐣1∥
∥𝐣2∥

∥𝐣3∥⎦
⎥
⎤, (4.85)

and j𝑖 is the i:th column in the matrix 𝐉0. This last approximation is the key to the mesh 
distortion insensitivity that characterizes the element. 
 
 Changing to Voigt notation, we define the stabilization portion of the strain rate 
as 

𝛆𝑠̇ = 𝐉0̂
−1𝐁̃𝑠(𝛏)𝐮̃̇, (4.86)

where now 

𝐉0
−1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡∥𝐣1∥−2

∥𝐣2∥−2

∥𝐣3∥−2

∥𝐣1∥−1∥𝐣2∥−1

∥𝐣3∥−1∥𝐣2∥−1

∥𝐣1∥−1∥𝐣3∥−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (4.87)

𝐁̃𝑠(𝛏) =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡

γ2𝜍 + γ3𝜂 + γ4𝜍𝜂 0 0
0 γ1𝜍 + γ3𝜉 + γ4𝜍𝜉 0
0 0 γ1𝜂 + γ2𝜉 + γ4𝜉𝜂

γ1𝜍 γ2𝜍 0
0 γ2𝜉 γ3𝜉

γ1𝜂 0 γ3𝜂 ⎦
⎥⎥
⎥⎥
⎥⎥
⎥
⎤

, (4.88)

and 𝐮̃̇ is the vector of nodal velocities transformed to the isoparametric system 
according to  
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𝐮̃̇ = 𝕵𝐮̇, (4.89)
where 𝕵 is the 24 × 24 matrix that transforms the 8 nodal velocity vectors to the 
isoparametric domain given by 

𝕵 = perm
⎣
⎢⎢
⎡𝐉0

T

⋱
𝐉0

T⎦
⎥⎥
⎤. (4.90)

Moreover, 𝛄𝑖 is the ith row of 𝚪T.  We have deliberately neglected terms that cause 
parallelepiped finite elements to lock in shear. 
 
 To eliminate Poisson type locking in bending and volumetric locking, an 
enhanced isoparametric rate-of-strain field is introduced as 

𝛆𝑒̇ = 𝐉0̂
−1𝐆̃(𝛏)𝛂̇, (4.91)

with 

𝐆̃(𝛏) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜉 0 0 𝜉𝜂 𝜂𝜍 𝜍𝜉
0 𝜂 0 𝜉𝜂 𝜂𝜍 𝜍𝜉
0 0 𝜍 𝜉𝜂 𝜂𝜍 𝜍𝜉
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (4.92)

Hence, the stabilized strain field becomes 

𝛆𝑠̇ = 𝐉0̂
−1[𝐁̃𝑠(𝛏)𝐮̃̇ + 𝐆̃(𝛏)𝛂̇] = 𝐉0̂

−1𝛆̇𝑠̃, (4.93)

where 𝜶 ̇ is the enhanced strain vector that must be determined from an equilibrium 
condition.  
 
 The virtual work equation can be written 

𝛿𝑊int = ∫ 𝛿𝛆T𝛔𝐝𝑉𝑒
𝑒

, (4.94a)

= ∫ 𝛿𝛆T𝐽−1𝐉T𝐒𝑑𝑉𝑒
𝑒

, (4.94b)

= ∫ 𝛿𝛆T𝐽−1𝐉T

⎝
⎜⎛∫𝐂𝑆𝐸𝐄̇𝑑𝜏
𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑒

𝑒
, (4.94c)

= ∫ 𝛿𝛆T𝐽−1𝐉T

⎝
⎜⎛∫ 𝐽𝐉−T𝐂𝜎𝛆𝑑̇𝜏
𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑒

𝑒
, (4.94d)

= ∫ 𝛿𝛆T𝑗0𝐉0
T

⎝
⎜⎛∫ 𝐽𝐉0

−T𝐂𝜎𝛆𝑑̇𝜏
𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑝

𝑝
, (4.94e)

≈ ∫ 𝛿𝛆T̃

⎝
⎜⎛∫

𝑉𝑒
8 𝐉0̂

−T𝐂𝜎𝐉0̂
−1𝛆̇𝑑̃𝜏

𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑝

𝑝
, (4.94f)
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where 𝐽 is the determinant of the deformation gradient, 𝐉 is the push-forward operator 
of a symmetric 2nd order tensor, 𝑗0 is the determinant of the jacobian matrix, 𝑗0 is the 
determinant of the jacobian matrix at time 0, σ is the true stress tensor, 𝐒 is the 2nd Piola-
Kirchhoff stress tensor, 𝐂𝑆𝐸 is the material tangent modulus, 𝐂σ is the spatial tangent 
modulus and 𝑉𝑒 is the volume of the element.  In the above, we have used various 
transformation formulae between different stress and constitutive tensors.  At this point 
we are only interested in how to handle the stabilization portion of the strain rate field, 
the constant part is only used to update the midpoint stress as usual.  Because of 
orthogonality properties of the involved matrices, it turns out that we may just insert 
the expression for the stabilization strain rate field to get 

𝛿𝑊int
𝑠 ≈ ∫ 𝛿𝛆𝑠̃

T

⎝
⎜⎛∫

𝑉𝑒
8 𝐉0̂

−T𝐂𝜎𝐉0̂
−1𝛆̇𝑠̃𝑑𝜏

𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑝

𝑝           
, (4.95a)

= [𝛿𝐮̃𝑇 𝛿𝜶T] ∫ [𝚩̃𝑠(𝛏)𝑇

𝐆̃(𝛏)𝑇
]

⎝
⎜⎛∫

𝑉𝑒
8 𝐉0̂

−T𝐂𝜎𝐉0̂
−1[𝚩̃𝑠(𝛏) 𝐆̃(𝛏)] [𝐮̃̇

𝛂̇
] 𝑑𝜏

𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑝

𝑝
. (4.95b)

The stabilization contribution to the internal force vector is given by 

[𝐟𝑢
𝐟𝛼

] = [𝕵T 0
0 𝐈

] ∫ [𝚩̃𝑠(𝛏)T

𝐆̃(𝛏)T]⎝
⎜⎛∫

𝑉𝑒
8 𝐉0̂

−T𝐂𝜎𝐉0̂
−1[𝚩̃𝑠(𝛏) 𝐆̃(𝛏)][𝕵 0

0 𝐈][𝐮̇
𝛂̇]𝑑𝜏

𝑡

0 ⎠
⎟⎞ 𝑑𝑉𝑝

𝑝
. (4.96)

In a discretization, the condition 𝐟𝛼 = 0 is used to determine Δ𝛂, the increment of the 
enhanced strain variables, from Δu, the increment in displacements.  This is inserted 
back into the expression for the internal force vectors to determine 𝐟𝑢, the stabilization 
contribution to the internal force vector. 
 
 The implementation of the element is very similar to the implementation of the 
one point integrated mean strain hexahedral by Flanagan and Belytschko [1981].  The 
hourglass forces are calculated in a different manner. 
 
 From the midpoint stress update we get a bulk and shear modulus characterizing 
the material at this specific point in time.  From this we form the isotropic spatial 
tangent modulus 𝐂𝛔 to be used for computing the stabilization force from Equation 
(4.96).

4.5  Fully Integrated Brick Elements and Mid-Step Strain 
Evaluation 

 To avoid locking in the fully integrated brick elements strain increments at a 
point in a constant pressure, solid element are defined by [see Nagtegaal, Parks, 
anmmmmmd Rice 1974] 
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Δ𝜀𝑥𝑥 =
∂Δ𝑢

∂𝑥𝑛+1
2⁄

+ 𝜙, Δ𝜀𝑥𝑦 =

∂Δ𝑣
∂𝑥𝑛+1

2⁄
+ ∂Δ𝑢

∂𝑦𝑛+1
2⁄

2 , 

Δ𝜀𝑦𝑦 =
∂Δ𝑣

∂𝑦𝑛+1
2⁄

+ 𝜙, Δ𝜀𝑦𝑧 =

∂Δ𝑤
∂𝑦𝑛+1

2⁄
+ ∂Δ𝑣

∂𝑧𝑛+1
2⁄

2 , 

Δ𝜀𝑧𝑧 =
∂Δ𝑤

∂𝑧𝑛+1
2⁄

+ 𝜙, Δ𝜀𝑧𝑥 =

∂Δ𝑢
∂𝑧𝑛+1

2⁄
+ ∂Δ𝑤

∂𝑥𝑛+1
2⁄

2 ,

(4.97)

where 𝜙 modifies the normal strains to ensure that the total volumetric strain increment 
at each integration point is identical 

𝜙 =   Δ𝜀𝑣
𝑛+1

2⁄ −

∂Δ𝑢
∂𝑥𝑛+1

2⁄
+ ∂Δ𝑣

∂𝑦𝑛+1
2⁄

+ ∂Δ𝑤
∂𝑧𝑛+1

2⁄

3 ,
(4.98)

and Δ𝜀𝑣
𝑛+1

2⁄ is the average volumetric strain increment in the midpoint geometry 

1
3∫ ⎝

⎜⎜⎛ ∂Δ𝑢
∂𝑥𝑛+1

2⁄
+ ∂Δ𝑣

∂𝑦𝑛+1
2⁄

+ ∂Δ𝑤
∂𝑧𝑛+1

2⁄ ⎠
⎟⎟⎞ 𝑑𝑣𝑛+1

2⁄
𝑣𝑛+1

2⁄

∫ 𝑑𝑣𝑛+1
2⁄

𝑣𝑛+1
2⁄

, (4.99)

Δ𝑢,. Δ𝑣, and Δ𝑤 are displacement increments in the x, y, and z directions, respectively, 
and 

𝑥𝑛+1
2⁄ =

(𝑥𝑛 + 𝑥𝑛+1)
2 , (4.100a)

𝑦𝑛+1
2⁄ =

(𝑦𝑛 + 𝑦𝑛+1)
2 , (4.100b)

𝑧𝑛+1
2⁄ =

(𝑧𝑛 + 𝑧𝑛+1)
2 . (4.100c)

To satisfy the condition that rigid body rotations cause zero straining, it is necessary to 
use the geometry at the mid-step in the evaluation of the strain increments.  As the 
default, LS-DYNA currently uses the geometry at step 𝑛 + 1 to save operations; 
however, for implicit calculations the mid-step strain calculation is always 
recommended, and, for explicit calculations, which involve rotating parts, the mid-step 
geometry should be used especially if the number of revolutions is large.  The mid-step 
geometry can be activated either globally or for a subset of parts in the model by using 
the options on the control card, *CONTROL_ACCURACY. 
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 Since the bulk modulus is constant in the plastic and viscoelastic material 
models, constant pressure solid elements result.  In the thermoelastoplastic material, a 
constant temperature is assumed over the element.  In the soil and crushable foam 
material, an average relative volume is computed for the element at time step 𝑛 + 1, and 
the pressure and bulk modulus associated with this relative volume is used at each 
integration point.  For equations of state, one pressure evaluation is done per element 
and is added to the deviatoric stress tensor at each integration point. 
 
 The foregoing procedure requires that the strain-displacement matrix 
corresponding to Equations (4.66) and consistent with a constant volumetric strain, 𝐁̅̅̅̅̅, 
be used in the nodal force calculations [Hughes 1980].  It is easy to show that: 

𝐅 = ∫ (𝐁̅̅̅̅̅𝑛+1)T

𝑣𝑛+1
𝛔𝑛+1𝑑𝑣 = ∫ (𝐁𝑛+1)T

𝑣𝑛+1
𝛔𝑛+1𝑑𝑣, (4.101)

and avoid the needless complexities of computing 𝐁̅̅̅̅̅.

4.6  Four Node Tetrahedron Element 

 The four node tetrahedron element with one point integration, shown in Figure 
4.4, is a simple, fast, solid element that has proven to be very useful in modeling low 
density foams that have high compressibility.  For most applications, however, this 
element is too stiff to give reliable results and is primarily used for transitions in 
meshes.  The formulation follows the formulation for the one point solid element with 
the difference that there are no kinematic modes, so hourglass control is not needed.  
The basis functions are given by: 

𝑁1(𝑟, 𝑠, 𝑡) = 𝑟, (4.102a)
𝑁2(𝑟, 𝑠, 𝑡) = 𝑠, (4.102b)
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 Figure 4.4.  Four node tetrahedron. 
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𝑁3(𝑟, 𝑠, 𝑡) = 1 − 𝑟 − 𝑠 − 𝑡, (4.102c)
𝑁4(𝑟, 𝑠, 𝑡) = 𝑡. (4.102d)

 
 If a tetrahedron element is needed, this element should be used instead of the 
collapsed solid element since it is, in general, considerably more stable in addition to 
being much faster.  Automatic sorting can be used, see *CONTROL_SOLID keyword, to 
segregate these elements in a mesh of 8 node solids for treatment as tetrahedrons.  

4.7  Nodal Pressure Tetrahedron 

 For applications requiring a tetrahedron mesh, the volume averaged tetrahedron 
type 13 is an interesting alternative to the standard single point tetrahedron, also known 
as the 1 point nodal pressure tetrahedron.  The idea is to average the volumetric strain 
over adjacent elements to smooth the pressure response.  To this end, we assume that 𝐸 
is the set of all such elements in a model, and likewise 𝑁 is the set of all nodes 
belonging to these elements.  We introduce the indicator 

𝜒𝑒
𝑛 = {1/4 if node 𝑛 is connecting to element 𝑒

0 otherwise
 (4.103)

 

The volume of a node 𝑛 is defined as 
 𝑉𝑛 = ∑ 𝜒𝑒

𝑛𝑉𝑒𝑒∈𝐸  (4.104)
 

where 𝑉𝑒 is the exact volume of element 𝑒. This allows us to define an average jacobian 
𝐽𝑒̅ for element 𝑒 as 

𝐽𝑒̅ = ∑ 𝜒𝑒
𝑛 {

𝑉𝑛
𝑉𝑛

0}
𝑛∈𝑁

 (4.105)
 

which is essentially the relative volume.  Here 𝑉𝑛
0 is the nodal volume in the reference 

configuration.  The element is completely defined by the assumed deformation gradient 
given as 

𝑭𝑒̅ = (
𝐽𝑒̅
𝐽𝑒

)
1/3

𝑭𝑒 (4.106)
 

where 𝑭𝑒 is the deformation gradient from the isoparametric shape functions and 𝐽𝑒 =
det𝑭𝑒, also given as 

𝐽𝑒 =
𝑉𝑒
𝑉𝑒

0. (4.107)
 

The assumed rate of deformation, derived from 𝑭𝑒̅, is given as 

𝛿𝜺𝑒̅ =
1
3 (

𝛿𝐽𝑒̅

𝐽𝑒̅
−

𝛿𝐽𝑒
𝐽𝑒

) 𝑰 + 𝛿𝑭𝑒𝑭𝑒
−1 (4.108)

 

meaning that the volumetric strain is replaced by that of the averaged one.  Continuing, 
the virtual work equation is given as 

∑ 𝒇𝑛𝑇𝛿𝒙𝑛𝑛∈𝑁
= ∑ 𝝈𝑒: 𝛿𝜺𝑒̅𝐽𝑒𝑉𝑒

0
𝑒∈𝐸

 (4.109)
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which provides the equation for the nodal forces, 𝒇𝑛. An expression for the strain-
displacement matrix, 𝑩𝑒

𝑛, is deduced from combining (4.108) and the relation 𝛿𝜺𝑒̅ =
∑ 𝑩𝑒

𝑛𝛿𝒙𝑛𝑛∈𝑁 . It turns out to be given as 

𝑩𝑒
𝑛 = ∑ ∑ 𝜒𝑓𝑚

𝑉𝑓 𝜒𝑒
𝑚

𝐽𝑒̅𝑉𝑚
0 𝑩̅̅̅̅̅𝑓

𝑛
𝑚∈𝑁𝑓∈𝐸

+ 𝑩̃𝑒
𝑛 (4.110)

 

where 𝑩̅̅̅̅̅𝑒
𝑛 and 𝑩̃𝑒

𝑛 are the volumetric and deviatoric parts of the standard (derived from 
isoparametric shape functions) strain displacement matrix.  Noticable is that the 
support for the assumed strain displacement is not restricted to the nodal connectivity 
of a single element but is spread over a region of adjacent elements.  This renders a less 
sparse stiffness matrix, but also explains the smoothening effect of the pressure.

4.8  Six Node Pentahedron Element 

 The pentahedron element with two point Gauss integration along its length, 
shown in Figure 4.5, is a solid element that has proven to be very useful in modeling 
axisymmetric structures where wedge shaped elements are used along the axis-of-
revolution.  The formulation follows the formulation for the one point solid element 
with the difference that, like the tetrahedron element, there are no kinematic modes, so 
hourglass control is not needed.  The basis functions are given by: 

𝑁1(𝑟, 𝑠, 𝑡) =
1
2 (1 − 𝑡)𝑟, (4.111a)

𝑁2(𝑟, 𝑠, 𝑡) =
1
2 (1 − 𝑡)(1 − 𝑟 − 𝑠), (4.111b)
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 Figure 4.5.  Six node Pentahedron. 
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𝑁3(𝑟, 𝑠, 𝑡) =
1
2 (1 + 𝑡)(1 − 𝑟 − 𝑠), (4.111c)

𝑁4(𝑟, 𝑠, 𝑡) =
1
2 (1 + 𝑡)𝑟, (4.111d)

𝑁5(𝑟, 𝑠, 𝑡) =
1
2 (1 − 𝑡)𝑠, (4.111e)

𝑁6(𝑟, 𝑠, 𝑡) =
1
2 (1 + 𝑡)𝑠. (4.111f)

 
 If a pentahedron element is needed, this element should be used instead of the 
collapsed solid element since it is, in general, more stable and significantly faster.  
Automatic sorting can be used, see *CONTROL_SOLID keyword, to segregate these 
elements in a mesh of 8 node solids for treatment as pentahedrons.   Selective-reduced 
integration is used to prevent volumetric locking, i.e., a constant pressure over the 
domain of the element is assumed.

4.9  Fully Integrated Brick Element With 48 Degrees-of-
Freedom 

 The forty-eight degree of freedom brick element is derived from the twenty node 
solid element; see Figure 4.6, through a transformation of the nodal displacements and 
rotations of the mid-side nodes [Yunus, Pawlak, and Cook, 1989].  This element has the 
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ui, vi, wi, θxi, θyi, θzi

Figure 4.6.  The 20-node solid element is transformed to an 8-node solid with 6 
degrees-of-freedom per node. 
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advantage that shell nodes can be shared with brick nodes and that the faces have just 
four nodes — a real advantage for the contact-impact logic.  The accuracy of this 
element is relatively good for problems in linear elasticity but degrades as Poisson’s 
ratio approaches the incompressible limit.  This can be remedied by using incompatible 
modes in the element formulation, but such an approach seems impractical for explicit 
computations. 
 
 The instantaneous velocity for a midside node 𝑘 is given as a function of the 
corner node velocities as (See Figure 4.7), 

𝑢𝑘̇ =
1
2 (𝑢𝑖̇ + 𝑢𝑗̇) +

𝑦𝑗 − 𝑦𝑖

8 (𝜃𝑧̇𝑗 − 𝜃𝑧̇𝑖) +
𝑧𝑗 − 𝑧𝑖

8 (𝜃𝑦̇𝑖 − 𝜃𝑦̇𝑗), 

𝑣̇𝑘 =
1
2 (𝑣𝑖̇ + 𝑣̇𝑗) +

𝑧𝑗 − 𝑧𝑖

8 (𝜃𝑥̇𝑗 − 𝜃𝑥̇𝑖) +
𝑥𝑗 − 𝑥𝑖

8 (𝜃𝑧̇𝑖 − 𝜃𝑧̇𝑗), 

𝑤̇𝑘 =
1
2 (𝑤̇𝑖 + 𝑤̇𝑗) +

𝑥𝑗 − 𝑥𝑖

8 (𝜃𝑦̇𝑗 − 𝜃𝑦̇𝑖) +
𝑦𝑗 − 𝑦𝑖

8 (𝜃𝑥̇𝑖 − 𝜃𝑥̇𝑗), 

(4.112)

where 𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦, and 𝜃z are the translational and rotational displacements in the 
global 𝑥, 𝑦, and 𝑧 directions.  The velocity field for the twenty-node hexahedron element 
in terms of the nodal velocities is: 

⎩{⎨
{⎧𝑢̇

𝑣̇
𝑤̇⎭}⎬

}⎫ =
⎣
⎢⎡

𝜙1 𝜙2 … 𝜙20 0 0 … 0 0 0 … 0
0 0 … 0 𝜙1 𝜙2 … 𝜙20 0 0 … 0
0 0 … 0 0 0 … 0 𝜙1 𝜙2 … 𝜙20⎦

⎥⎤

⎩{
{{
{{
{{
⎨
{{
{{
{{
{⎧
𝑢1̇
⋮
𝑢2̇0
𝑣̇1
⋮

𝑣2̇0
𝑤̇1
⋮

𝑤̇20⎭}
}}
}}
}}
⎬
}}
}}
}}
}⎫

, (4.113)

where 𝜙𝑖 are given by [Bathe and Wilson 1976] as, 

z

y

i

j

k
v

u

x

w

θ
x

θ
y

θ
z

Figure 4.7.  A typical element edge is shown from [Yunus, Pawlak, and Cook,
1989]. 
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𝜙1 = 𝑔1 −
(𝑔9 + 𝑔12 + 𝑔17)

2 , 𝜙5 = 𝑔5 −
(𝑔13 + 𝑔16 + 𝑔17)

2 , 

𝜙2 = 𝑔2 −
(𝑔9 + 𝑔10 + 𝑔18)

2 , 𝜙6 = 𝑔6 −
(𝑔13 + 𝑔14 + 𝑔18)

2 , 

𝜙3 = 𝑔3 −
(𝑔10 + 𝑔11 + 𝑔19)

2 , 𝜙7 = 𝑔7 −
(𝑔14 + 𝑔15 + 𝑔19)

2 , 

𝜙4 = 𝑔4 −
(𝑔11 + 𝑔12 + 𝑔20)

2 , 𝜙8 = 𝑔8 −
(𝑔15 + 𝑔16 + 𝑔20)

2 , 
𝜙𝑖 = 𝑔𝑖 for 𝑗 = 9,… , 20 
𝑔𝑖 = 𝐺(𝜉, 𝜉𝑖)𝐺(𝜂, 𝜂𝑖)𝐺(𝜁 , 𝜁𝑖), 

𝐺(𝛽, 𝛽𝑖) =
⎩{
⎨
{⎧1

2 (1 + 𝛽𝛽𝑖) for,   𝛽𝑖 = ±1;     𝛽 = 𝜉, 𝜂, 𝜁

1 − 𝛽2 for,   𝛽𝑖 = 0
 .  

(4.114)

The standard formulation for the twenty node solid element is used with the above 
trans-formations.  The element is integrated with a fourteen point integration rule 
[Cook 1974]: 

∫ ∫ ∫ 𝑓 (𝜉  , 𝜂 , 𝜁)𝑑𝜉𝑑𝜂𝑑𝜁 =
  1

−1

  1

−1

  1

−1
         𝐵6  [𝑓 (−𝑏, 0,0) + 𝑓 (𝑏, 0,0) + 𝑓 (0, −𝑏, 0) + ⋯ + (6 terms)] + 
         𝐶8 [𝑓 (−𝑐, −𝑐, −𝑐) + 𝑓 (𝑐, −𝑐, −𝑐) + 𝑓 (𝑐, 𝑐, −𝑐) + ⋯ + (8 terms)], 

(4.115)

where 
𝐵6 = 0.8864265927977938, 𝑏 = 0.7958224257542215,
𝐶8 = 0.3351800554016621, 𝑐 = 0.7587869106393281. (4.116)

ui, vi, wi
ui, vi, wi, θxi, θyi, θziDOF DOF

Figure 4.8.  Twenty-four degrees of freedom tetrahedron element [Yunus,
Pawlak, and Cook, 1989]. 
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Cook reports that this rule has nearly the same accuracy as the twenty-seven point 
Gauss rule, which is very costly.  The difference in cost between eight point and 
fourteen point integration, though significant, is necessary to eliminate the zero energy 
modes.

4.10  Fully Integrated Tetrahedron Element With 24 Degrees-
of-Freedom 

 The twenty-four degree of freedom tetrahedron element is derived from the ten-
node tetrahedron element; see Figure 4.8, following the same procedure used above for 
the forty-eight degree of freedom brick element [Yunus, Pawlak, and Cook, 1989].  This 
element has the advantage that shell nodes can be shared with its nodes and it is 
compatible with the brick element discussed above.  The accuracy of this element is 
relatively good-at least when compared to the constant strain tetrahedron element.  This 
is illustrated by the bar impact example in Figure 4.9 which compares the 12 and 24 
degree of freedom tetrahedron elements.  The 12 degree-of-freedom tetrahedron 
displays severe volumetric locking. 
 
 In our implementation we have not strictly followed the reference.  In order to 
prevent locking in applications that involve incompressible behavior, selective reduced 
integration is used with a total of 5 integration points.  Although this is rather 
expensive, no zero energy modes exist.  We use the same approach in determining the 
rotary mass that is used in the implementation of the shell elements. 
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Figure 4.9.  A comparison of the 12 and 24 degree-of-freedom tetrahedron 
elements is shown.  The 12 degree-of-freedom tetrahedron element on the top 
displays severe volumetric locking. 
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 Figures 4.10a and 4. 10b show the construction of a hexahedron element from 
five and six tetrahedron elements, respectively.  When two sides of the adjacent bricks 
made from five tetrahedrons are together, it is likely that four unique triangular 
segments exist.  This creates a problem in LS-PREPOST, which uses the numbering as a 
basis for eliminating interior polygons prior to display.  Consequently, the graphics in 
the post-processing phase can be considerably slower with the degeneration in Figure 
4.10a.  However, marginally better results may be obtained with five tetrahedrons per 
hexahedron due to a better constraint count.
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 Figure 4.10a.  Construction of a hexahedron element with five tetrahedrons.

2

3
4

1

5
6

78

2

3
4

1

5 6

78

2

3
4

1

5
6

78

2

3

4

1

5
6

78

2

34

1

5
6

78

2

3
4

1

5 6

78

 Figure 4. 10b.  Construction of a hexahedron element with six tetrahedrons 
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4.11  The Cosserat Point Elements in LS-DYNA 

4.11.1  Introduction 

The Cosserat Point Elements (CPE) are based on the works by Jabareen et.al.[1,2].  In 
contrast with a conventional approach, the CPE is treated as a structure rather than a 
continuum.  The kinematic variables of the CPE are characterized by a volume averaged 
deformation gradient and other measures of inhomogeneous deformations.  The CPE 
models the response of a simple continuum (not a generalized Cosserat media) and the 
additional kinematic degrees of freedom model physical modes of deformation of the 
structure.  Moreover, the CPE uses a hyperelastic constitutive equation for elastic 
response with the strain energy of the CPE being separated additively into a part 
dependent on the strain energy of the three-dimensional material and another strain 
energy associated with inhomogeneous deformations.  Also, for the tetrahedral CPE use 
is made of a new measure of dilatation that stabilizes hourglass type modes in large 
deformations.  This formulation is valid for large deformations and the coefficients in 
the inhomogeneous strain energy are ingeniously determined by comparison with exact 
linear solutions.  This ensures that CPE yields accurate results for elementary 
deformation modes in linear elasticity.  Moreover, using the average deformation 
gradient for the response to homogeneous deformations the CPE formulation can be 
coupled with arbitrary material models in LS-DYNA. Still the element is, due to its 
complexity and slight loss of generality, first and foremost recommended for 
hyperelasticy in implicit analysis. 
 
 Section 4.11.2 through 4.11.8 describes the theory for the hexahedral CPE 
element, the tetrahedron is based on the same concepts except for the volumetric 
correction presented in Section 4.11.5. For more details we refer to [1] and [2].  We end 
with two examples in Sections 4.11.9 and 4.11.10. 
 

D3

D1

D2

L

W

H

d1

d2

d3

 Figure 4.11.  The CPE hexahedron 
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4.11.2  Geometry 

The geometry of the hexahedral CPE element is characterized by the three-dimensional 
directors 𝐃𝑖 and 𝐝𝑖, 𝑖 = 0,1,… ,7, where the formers are associated with the reference 
configuration and the latters with the current configuration.  The reciprocal vectors 𝐃𝑖 
and 𝐝𝑖, 𝑖 = 1,2,3, are such that 

𝐝𝑖 ⋅ 𝐝𝑗 = 𝐃𝑖 ⋅ 𝐃𝑗 = 𝛿𝑖
𝑗, 𝑖, 𝑗 = 1, 2, 3, (4.11.117)

and we also have that 
|𝐃𝑖| = 1, 𝑖 = 1, 2, 3, (4.11.118)

The coordinates 𝜃𝑖, 𝑖 = 1,2,3, ranges between 

−𝐻/2 ≤ 𝜃1 ≤ 𝐻/2,    − 𝑊/2 ≤ 𝜃2 ≤ 𝑊/2, − 𝐿/2 ≤ 𝜃3 ≤ 𝐿/2, (4.11.119)

and the 𝐀 matrix is given such that 

𝐃𝑖 = ∑𝐴𝑖
𝑗𝐗𝑗

7

𝑗=0
,    𝐝𝑖 = ∑𝐴𝑖

𝑗𝐱𝑗

7

𝑗=0
, 𝑖 = 0, 1, . . . , 7, (4.11.120)

where 𝐗𝑖 and 𝐱𝑖 are the nodal coordinates in the reference and current configuration, 
respectively.  Hence the 𝐀 matrix represents the mapping between the nodal 
coordinates and the Cosserat point directors.  The reference position vector 𝐗 is 
expressed as 

𝐗 = 𝐗(𝜃1, 𝜃2, 𝜃3) = ∑ 𝑁𝑗(𝜃1, 𝜃2, 𝜃3)𝐃𝑗

7

𝑗=0
, (4.11.121)

and likewise the current position 𝐱 as 

𝐱 = 𝐱(𝜃1, 𝜃2, 𝜃3) = ∑ 𝑁𝑗(𝜃1, 𝜃2, 𝜃3)𝐝𝑗,
7

𝑗=0
(4.11.122)

The shape functions are given as 

𝑁0 = 1, 𝑁1 = 𝜃1, 𝑁2 = 𝜃2, 𝑁3 = 𝜃3,
𝑁4 = 𝜃1𝜃2, 𝑁5 = 𝜃1𝜃3, 𝑁6 = 𝜃2𝜃3, 𝑁7 = 𝜃1𝜃2𝜃3.

(4.11.123)

4.11.3  Deformation and strain 

The deformation measures used are 

𝐅 = ∑𝐝𝑖 ⊗𝐃𝑖
3

𝑖=1
,    𝛃𝑖 = 𝐅−1𝐝𝑖+3 − 𝐃𝑖+3 (𝑖 = 1,2,3,4), 𝐅̅̅̅̅ = 𝐅(𝐈 + ∑𝛃𝑖 ⊗ 𝐕𝑖

4

𝑖=1
), (4.11.124)

where 𝐅̅̅̅̅ is the volume averaged deformation gradient and thus represents the 
homogeneous deformations whereas 𝛃𝑖 are measures of the inhomogeneous 
deformations.  As for the 𝐕𝑖 we have 
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𝑉 = 𝐻𝑊𝐿 (𝐃1 × 𝐃2 ⋅ 𝐃3 +
𝐻2

12 𝐃4 × 𝐃5 ⋅ 𝐃1 +
𝑊2

12 𝐃6

× 𝐃4 ⋅ 𝐃2 +
𝐿2

12𝐃5 × 𝐃6 ⋅ 𝐃3) , 

𝐕1 = 𝑉−1𝐻𝑊𝐿 (
𝐻2

12 𝐃5 × 𝐃1 +
𝑊2

12 𝐃2 × 𝐃6) , 

𝐕2 = 𝑉−1𝐻𝑊𝐿 (
𝐻2

12 𝐃1 × 𝐃4 +
𝐿2

12𝐃6 × 𝐃3) , 

𝐕3 = 𝑉−1𝐻𝑊𝐿 (
𝑊2

12 𝐃4 × 𝐃2 +
𝐿2

12𝐃3 × 𝐃5) , 

𝐕4 = 𝟎, 

(4.11.125)

The velocity gradient consistent with 𝐅̅̅̅̅ is given as 

𝐋̅ = 𝐅̇̅̅̅̅𝐅̅̅̅̅−1 = 𝐋 + ∑(𝐝̇𝑗+3 − 𝐋𝐝𝑗+3) ⊗ 𝐕𝑗
4

𝑗=1
𝐅̅̅̅̅−1, (4.11.126)

where 𝐋 = 𝐅̇𝐅−1, which in turn gives the rate –of-deformation and spin tensors as 

𝛆̅̇ =
1
2 (𝐋̅ + 𝐋̅𝑇), 𝛚̅̅̅̅̅̅ =

1
2 (𝐋̅ − 𝐋̅𝑇). (4.11.127)

 

4.11.4  Stress and Force 

On the other hand, 

𝐋 = ∑𝐝̇𝑖 ⊗ 𝐝𝑖
3

𝑖=1
, (4.11.128)

so we can rewrite 𝐋̅ as 

𝐋̅ = ∑𝐝̇𝑖 ⊗ 𝐝𝑖
3

𝑖=1 ⎝
⎜⎛𝐅̅̅̅̅ − ∑𝐝𝑗+3 ⊗ 𝐕𝑗

4

𝑗=1 ⎠
⎟⎞ 𝐅̅̅̅̅−1 + ∑𝐝̇𝑖+3 ⊗ 𝐕𝑖

4

𝑖=1
𝐅̅̅̅̅−1. (4.11.129)

The Cauchy stress is given by the constitutive law 

𝛔∇ = 𝐟hypo(𝛆̅,̇ . . . ), (4.11.130)

or for the hyperelastic case 

𝛔 = 𝐟hyper(𝐅̅̅̅̅, . . . ), (4.11.131)

so the nonzero internal force vectors are given as 
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𝐭𝜎𝑖 = 𝐽𝑉̅𝛔𝐅̅̅̅̅−𝑇

⎝
⎜⎛𝐅̅̅̅̅𝑇 − ∑ 𝐕𝑗 ⊗ 𝐝𝑗+3

4

𝑗=1 ⎠
⎟⎞𝐝𝑖, 𝐭𝜎𝑖+3 = 𝑉𝛔𝐅̅̅̅̅−𝑇𝐕𝑖, 𝑖 = 1, 2, 3. (4.11.132)

The first expression above can in turn be rewritten as 

𝐭𝜎𝑖 =
⎝
⎜⎛𝐽𝑉̅𝛔 − ∑ 𝐭𝜎

𝑗+3 ⊗ 𝐝𝑗+3

4

𝑗=1 ⎠
⎟⎞𝐝𝑖, 𝑖 = 1, 2, 3. (4.11.133)

4.11.5  CPE3D10 modification 

For the 10-noded tetrahedron, a modified deformation gradient is used in the 
constitutive law, given by 

𝐅̃ = (𝐽 ̃
𝐽 ̅⁄)

1/3
𝐅̅̅̅̅, (4.11.134)

meaning it has been modified for the volumetric response.  Here 

𝐽 ̃ = 𝐽 ̅+ 𝜂𝐽, (4.11.135)

This gives a consistent velocity gradient as 

𝐋̃ = 𝐋̅ +
1
3

𝐽
𝐽 ̃⎝

⎜⎛𝜂̇ + 𝜂
⎩{⎨
{⎧𝐽 ̇

𝐽 −
𝐽 ̅̇

𝐽⎭̅}⎬
}⎫

⎠
⎟⎞ 𝐈. (4.11.136)

The Cauchy stress is now given by the constitutive law 

𝛔∇ = 𝐟hypo(𝛆̃,̇ … ), 𝛆̃̇ =
1
2 (𝐋̃ + 𝐋̃𝑇), (4.11.137)

or for the hyperelastic case 

𝛔 = 𝐟hyper(𝐅̃, . . . ), (4.11.138)

and the corresponding internal force can be identified through a principle of virtual 
work 

∑ 𝐭𝜎𝑖 ⋅ 𝐝̇𝑖

9

𝑖=0
= 𝐽𝑉̃𝐋̃ ⋅ 𝛔. (4.11.139)

For the hyperelastic special case we have 

𝛔 =
∂Σ
∂𝐽 ̃ 𝐈 + 2𝐽−̃1 [𝐅̅̅̅̅′

∂Σ
∂𝐂′̅

𝐅̅̅̅̅′𝑇 −
1
3 (

∂Σ
∂𝐂′̅

⋅ 𝐂′̅) 𝐈], (4.11.140)

and since 
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𝐋̃ = ∑𝐝̇𝑖 ⊗ 𝐝𝑖
3

𝑖=1 ⎝
⎜⎛𝐅̅̅̅̅ − ∑𝐝𝑗+3 ⊗ 𝐕𝑗

6

𝑗=1 ⎠
⎟⎞ 𝐅̅̅̅̅−1 + ∑𝐝̇𝑖+3 ⊗ 𝐕𝑖

6

𝑖=1
𝐅̅̅̅̅−1

+ 
1
3

𝐽
𝐽 ̃∑ ∑

⎣
⎢⎡

∂𝜂
∂𝑏𝑗

𝑘 ((𝐝𝑘)
𝑇
𝐝̇𝑗+3 − ∑𝐝𝑖 ⋅ 𝐝𝑗+3𝐝𝑘 ⋅ 𝐝̇𝑖

3

𝑖=1
)

⎦
⎥⎤

3

𝑘=1

6

𝑗=1
𝐈

+ 
1
3

𝐽
𝐽 ̃⎣

⎢⎡𝜂
⎝
⎜⎛∑ ∑𝐝𝑖 ⋅ 𝐝𝑗+3𝐝̇𝑖 ⋅ 𝐅̅̅̅̅−𝑇𝐕𝑗

3

𝑖=1
−

6

𝑗=1
∑𝐝̇𝑖+3 ⋅ 𝐅̅̅̅̅−𝑇𝐕𝑖

6

𝑖=1 ⎠
⎟⎞

⎦
⎥⎤ 𝐈, 

(4.11.141)

putting back these expressions into the virtual work expression above and adding the 
hourglass internal forces from below we get the same as in [2].  

4.11.6  Hourglass 

The hourglass resistance is based on a strain energy potential given as 

𝜓 =
𝑉𝜇

12(1 − 𝜈) ∑ ∑ ∑ ∑ 𝑏𝑖
𝑗𝐵𝑗𝑙

𝑖𝑘𝑏𝑘
𝑙

3

𝑙=1

4

𝑘=1

3

𝑗=1

4

𝑖=1
, (4.11.142)

where the inhomogeneous (hourglass) strain quantities are defined as 

𝑏𝑖
𝑗 = 𝛃𝑖 ⋅ 𝐃𝑗, 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, 3, (4.11.143)

and the constant symmetric matrix 𝐁 contains geometry and constitutive information 
for obtaining accurate results for small deformations.  Furthermore, 𝜇 represents the 
shear modulus of the material and 𝜈 is the Poisson’s ratio.  The hourglass force is then 
given as 

𝐭ℎ
𝑖 = (

∂𝜓
∂𝐝𝑖

)
T

= ∑ ∑
∂𝜓
∂𝑏𝑗

𝑘 ⎝
⎜⎛

∂𝑏𝑗
𝑘

∂𝐝𝑖⎠
⎟⎞

T3

𝑘=1

4

𝑗=1
, 𝑖 = 0, 1,… ,7. (4.11.144)

Differentiating the strain quantities results in 

∂𝑏𝑗
𝑘

∂𝐝𝑖
= −𝐝𝑖 ⋅ 𝐝𝑗+3(𝐝𝑘)

T
,

∂𝑏𝑗
𝑘

∂𝐝𝑖+3
= 𝛿𝑖

𝑗(𝐝𝑘)
T

,

𝑖 = 1, 2, 3

𝑖 = 1,2,3,4
 (4.11.145)

which inserted into the expression for the force yields 
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𝐭ℎ
𝑖 = −

⎝
⎜⎛∑ 𝐭ℎ

𝑗+3 ⊗ 𝐝𝑗+3

4

𝑗=1 ⎠
⎟⎞𝐝𝑖,

𝐭ℎ
𝑖+3 = ∑

∂𝜓
∂𝑏𝑖

𝑗 𝐝
𝑗

3

𝑗=1
,

𝑖 = 1,2,3

𝑖 = 1,2,3,4
 (4.11.146)

 

4.11.7  Comparison to Jabareen & Rubin 

Putting the material and hourglass force together yields  

𝐭𝑖 = 𝐭𝜎𝑖 + 𝐭ℎ
𝑖 , 𝑖 = 0,1, . . . ,7, (4.11.147)

hence 

𝐭𝑖 =
⎝
⎜⎛𝐽𝑉̅𝛔 − ∑ 𝐭𝑗+3 ⊗ 𝐝𝑗+3

4

𝑗=1 ⎠
⎟⎞𝐝𝑖

𝐭𝑖+3 = 𝐽𝑉̅𝛔𝐅̅̅̅̅−T𝐕𝑖 + ∑
∂𝜓
∂𝑏𝑖

𝑗 𝐝
𝑗

3

𝑗=1

𝑖 = 1,2,3

𝑖 = 1,2,3,4
 (4.11.148)

In [1], the hourglass strains 𝑏𝑖
𝑗 are augmented with the geometry parameters 𝐻,𝑊 and 𝐿, 

whereas here we have merged this information into the constitutive matrix 𝐁 for the 
purpose of simplifying the presentation.  In [1] a hyperelastic constitutive law is 
assumed with a strain energy potential  Σ = Σ(𝐂)̅ and the Cauchy stress is then given 
as 

𝛔 = 2𝐽−̅1𝐅̅̅̅̅
∂Σ
∂𝐂̅ 𝐅̅̅̅̅

T. (4.11.149)

Taking all this into account, and consulting (2.13-2.14) in [1], the implemented CPE 
element in LS-DYNA should be consistent with the theory. 

4.11.8  Nodal formulation 

To be of use in LS-DYNA, the CPE element has to be formulated in terms of the nodal 
variables, meaning that the internal forces that are conjugate to 𝐱𝑖̇, 𝑖 = 0,1, . . . ,7, with 
respect to internal energy rate are given as 

𝐟𝑖 = ∑𝐴𝑗
𝑖𝐭𝑗

7

𝑗=0
, 𝑖 = 0,1,… ,7. (4.11.150)
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4.11.9  Cantilever Beam Example 

First a mesh distortion test for small deformations where a cantilever beam with various 
mesh densities and distortions were simulated.  The stress profiles for loading in two 
directions are shown in Figure 4.11. The tip displacements were monitored and 
compared to the analytical solution, and the results for the CPE element is very 
promising as is shown in figure below and  Table 4.11 when compared to the 
Belytschko-Bindeman and Puso element [3,4]. 

 

 0

 0.1

 0.2
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 Figure 4.11.  Mesh convergence rate for different element formulations 

Figure 4.11.  Stress profile for tip loading in two directions for various mesh
densities and distortions 
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4.11.10  Compression Test for Rubber Example 

The second example is a plane strain deformation of an incompressible rubber block on 
a frictionless surface when partially loaded by a rigid plate.  The block is modeled with 
quadratic tetrahedrons and a large deformation formulation applies.  Five different 
mesh topologies are investigated for two different element formulations (CPE and full 
integration) where the orientation of the tetrahedral elements is different in each mesh 
whereas the mesh density is kept constant.  The outer edges of the block for the 
different meshes are depicted in the figure above and indicate once again that the CPE 
element formulation is relatively insensitive to the mesh. 
 

 
 

4.11.11  References 

[1]M. Jabareen and M.B. Rubin, A Generalized Cosserat Point Element (CPE) for 
Isotropic Nonlinear Elastic Materials including Irregular 3-D Brick and Thin 
Structures, J. Mech.  Mat.  Struct.  3-8, pp.  1465-1498, 2008. 

[2]M. Jabareen, E. Hanukah and M.B. Rubin, A Ten Node Tetrahedral Cosserat Point 
Element (CPE) for Nonlinear Isotropic Elastic Materials.  Comput Mech 52, 
pp 257-285, 2013.  

 Figure 4.11.  Insensitivity illustration of the 10-noded CPE tetrahedron 

Cosserat Belytschko-Bindeman Puso 
1.7% 61.8% 24.8% 
0.8% 46.8% 14.7% 
0.6% 40.0% 14.5% 
0.3% 39.8% 9.2% 
0.2% 33.9% 8.5% 
0.2% 27.0% 6.2% 
0.1% 24.6% 5.3% 
0.1% 22.3% 3.6% 
0.1% 19.0% 0.9% 
0.1% 15.4% 0.3% 

 
 Table 4.11.  Comparison to analytical solution for tip loading 
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Hexahedral Element, In.  J. Num.  Methods.  Eng 49-8, pp.  1029-1064, 2000. 

[4]T. Belytschko and L.P. Bindeman , Assumed Strain Stabilization of the Eight Node 
Hexahedral Element, Comp.  Methods Appl.  Mech.  Eng.  105-2, pp.  225-
260, 1993.

4.12  Integral Difference Scheme as Basis For 2D Solids 

 Two dimensional solid element in LS-DYNA include: 

• Plane stress 2D element 

• Plane strain 2D shell element 

• Axisymmetric 2D Petrov-Galerkin (area weighted) element 

• Axisymmetric 2D Galerkin (volume weighted) element 

These elements have their origins in the integral difference method of Noh [1964] which 
is also used the HEMP code developed by Wilkins [1964, 1969].  In LS-DYNA, both two 
dimensional planar and axisymmetric geometries are defined in the 𝑥𝑦 plane.  In 
axisymmetric geometry, however, the 𝑥 axis corresponds to the radial direction and the 
𝑦 axis becomes the axis of symmetry.  The integral difference method defines the 
components of the gradient of a function 𝐹 in terms of the line integral about the 
contour 𝑆 which encloses the area 𝐴: 

∂𝐹
∂𝑥 = lim

A→0

∫ 𝐹(𝐧̂ ⋅ 𝐱)̂𝑑𝑆𝑐
|A| , 

∂𝐹
∂𝑦 = lim

A→0

∫ 𝐹(𝐧̂ ⋅ 𝐲̂)𝑑𝑆𝑐
|A| . 

(4.151)

Here, 𝐧̂ is the normal vector to 𝑆 and 𝐱 ̂and 𝐲̂ are unit vectors in the x and y directions, 
respectively.  See Figure 4.11. 

S

n

x

y

j

i

 Figure 4.11.  The contour S encloses an area A. 
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 In this approach the velocity gradients which define the strain rates are element 
centered, and the velocities and nodal forces are node centered.  See Figure 4.12.  Noting 
that the normal vector 𝐧̂ is defined as: 

𝐧̂ =
∂𝑦
∂𝑆 𝐱̂ +

∂𝑥
∂𝑆 𝐲̂, (4.152)

and referring to Figure 4.13, we can expand the numerator in equation (4.64): 

∫ 𝐹(n̂ ⋅ x̂)𝑑𝑆
𝑐

= ∫ 𝐹
∂𝑦
∂𝑆 𝑑𝑆 

= 𝐹23(𝑦3 − 𝑦2) + 𝐹34(𝑦4 − 𝑦3) + 𝐹41(𝑦1 − 𝑦4) + 𝐹12(𝑦2 − 𝑦1), 
(4.153)

where 𝐹𝑖𝑗 = (𝐹𝑖 + 𝐹𝑗)/2. 
 
 Therefore, letting 𝐴 again be the enclosed area, the following expressions are 
obtained: 

∂𝐹
∂𝑥 =

𝐹23(𝑦3 − 𝑦2) + 𝐹34(𝑦4 − 𝑦3) + 𝐹41(𝑦1 − 𝑦4) + 𝐹12(𝑦2 − 𝑦1)
𝐴  

=
(𝐹2 − 𝐹4)(𝑦3 − 𝑦1) + (𝑦2 − 𝑦4)(𝐹3 − 𝐹1)

2𝐴 .
(4.154)

Hence, the strain rates in the x and y directions become: 
∂𝐹
∂𝑥 =

𝐹23(𝑦3 − 𝑦2) + 𝐹34(𝑦4 − 𝑦3) + 𝐹41(𝑦1 − 𝑦4) + 𝐹12(𝑦2 − 𝑦1)
𝐴  

=
(𝐹2 − 𝐹4)(𝑦3 − 𝑦1) + (𝑦2 − 𝑦4)(𝐹3 − 𝐹1)

2𝐴 ,
(4.155)

strain rates nodal forces

Figure 4.12.  Strain rates are element centered and nodal forces are node
centered. 
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and 

𝜀𝑦𝑦 =
∂𝑦̇
∂𝑦 =

(𝑦2̇ − 𝑦4̇)(𝑥3 − 𝑥1) + (𝑥2 − 𝑥4)(𝑦3̇ − 𝑦1̇)
2𝐴 . (4.156)

The shear strain rate is given by: 

𝜀𝑥𝑦 =
1
2 (

∂𝑦̇
∂𝑥 +

∂𝑥̇
∂𝑦), (4.157)

where  
∂𝑦̇
∂𝑥 =

(𝑦2̇ − 𝑦4̇)(𝑦3 − 𝑦1) + (𝑦2 − 𝑦4)(𝑦3̇ − 𝑦1̇)
2𝐴 ,

∂𝑥̇
∂𝑦 =

(𝑥2̇ − 𝑥4̇)(𝑥3 − 𝑥1) + (𝑥2 − 𝑥4)(𝑥3̇ − 𝑥1̇)
2𝐴 .

(4.158)

 
 The zero energy modes, called hourglass modes, as in the three dimensional 
solid elements, can be a significant problem.  Consider the velocity field given by: 𝑥3̇ =
𝑥1̇, 𝑥2̇ = 𝑥4̇, 𝑦3̇ = 𝑦1̇, and 𝑦2̇ = 𝑦4̇.  As can be observed from Equations (4.97) and (4.98), 
𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑥𝑦 = 0 and the element "hourglasses" irrespective of the element geometry.  
In the two-dimensional case, two modes exist versus twelve in three dimensions.  The 
hourglass treatment for these modes is identical to the approach used for the shell 
elements, which are discussed later. 
 
 In two-dimensional planar geometries for plane stress and plane strain, the finite 
element method and the integral finite difference method are identical.  The velocity 
strains are computed for the finite element method from the equation: 

𝛆̇ = 𝐁𝐯, (4.159)
where 𝛆 ̇ is the velocity strain vector, B is the strain displacement matrix, and 𝐯 is the 
nodal velocity vector.  Equation (4.100a) exactly computes the same velocity strains as 
the integral difference method if  

𝐁 = 𝐁(𝑠, 𝑡)|𝑠=𝑡=0. (4.160)

y

x

1 2

34

 Figure 4.13.  Element numbering. 
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 The update of the nodal forces also turns out to be identical.  The momentum 
equations in two-dimensional planar problems are given by  

1
𝜌 (

∂𝜎𝑥𝑥
∂𝑥 +

∂𝜎𝑥𝑦

∂𝑦 ) = 𝑥,̈

1
𝜌 (

∂𝜎𝑥𝑦

∂𝑥 +
∂𝜎𝑦𝑦

∂𝑦 ) = 𝑦.̈
(4.161)

Referring to Figure 4.14, the integral difference method gives Equation (4.113): 
 

1
𝜌

∂𝜎𝑥𝑥
∂𝑥 =

𝜎𝑥𝑥1
(𝑦𝐼 − 𝑦𝐼𝑉) + 𝜎𝑥𝑥2(𝑦𝐼𝐼 − 𝑦𝐼) + 𝜎𝑥𝑥3

(𝑦𝐼𝐼𝐼 − 𝑦𝐼𝐼) + 𝜎𝑥𝑥4(𝑦𝐼𝑉 − 𝑦𝐼𝐼𝐼)
1
2 (𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 + 𝜌4𝐴4)

. (4.162)

 An element wise assembly of the discretized finite difference equations is 
possible leading to a finite element like finite difference program.  This approach is used 
in the DYNA2D program by Hallquist [1980]. 
 
 In axisymmetric geometries additional terms arise that do not appear in planar 
problems: 

1
𝜌 (

∂𝜎𝑥𝑥
∂𝑥 +

∂𝜎𝑥𝑦

∂𝑦 +
𝜎𝑥𝑥 − 𝜎𝜃𝜃

𝑥 ) = 𝑥,̈ 

1
𝜌 (

∂𝜎𝑥𝑦

∂𝑥 +
∂𝜎𝑦𝑦

∂𝑦 +
∂𝜎𝑥𝜃

𝑥 ) = 𝑦,̈ 
(4.163)

where again note that 𝑦 is the axis of symmetry and 𝑥 is the radial direction.  The only 
difference between finite element approach and the finite difference method is in the 
treatment of the terms, which arise from the assumption of axisymmetry.  In the finite 
difference method the radial acceleration is found from the calculation: 

III

II

I

IV

1 2

34

 Figure 4.14.  The finite difference stencil for computing nodal forces is shown.
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𝑥̈ =
1
2 [

𝜎𝑥𝑥1
(𝑦𝐼 − 𝑦𝐼𝑉) + 𝜎𝑥𝑥2(𝑦𝐼𝐼 − 𝑦𝐼) + 𝜎𝑥𝑥3

(𝑦𝐼𝐼𝐼 − 𝑦𝐼𝐼) + 𝜎𝑥𝑥4(𝑦𝐼𝑉 − 𝑦𝐼𝐼𝐼)
(𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 + 𝜌4𝐴4) −

    
𝜎𝑥𝑦1

(𝑥𝐼 − 𝑥𝐼𝑉) + 𝜎𝑥𝑦2(𝑥𝐼𝐼 − 𝑥𝐼) + 𝜎𝑥𝑦3
(𝑥𝐼𝐼𝐼 − 𝑥𝐼𝐼) + 𝜎𝑥𝑦4(𝑥𝐼𝑉 − 𝑥𝐼𝐼𝐼)

(𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 + 𝜌4𝐴4) ] + 𝛽,
 (4.164)

where 𝛽𝑓𝑒 is found by a summation over the four surrounding elements: 

𝛽 =
1
4 ∑ [

𝜎𝑥𝑥𝑖 − 𝜎𝜃𝜃𝑖
(𝜌𝑥)𝑖

]
4

𝑖=1
. (4.165)

𝑥𝑖 is the centroid of the ith element defined as the ratio of its volume 𝑉𝑖 and area 𝐴𝑖: 

𝑥𝑖 =
𝑉𝑖
𝐴𝑖

, (4.166)

𝜎𝜃𝜃𝑖 is the hoop stress, and 𝜌𝑖 is the current density. 
 
 When applying the Petrov-Galerkin finite element approach, the weighting 
functions are divided by the radius, 𝑟: 

∫
1
𝑟 𝛟

T(∇ ⋅ 𝛔 + 𝐛 − 𝜌𝐮̈)𝑑𝑉 = ∫𝛟T(∇ ⋅ 𝛔 + 𝐛 − 𝜌𝐮̈)𝑑𝐴 = 0, (4.167)

where the integration is over the current geometry.  This is sometimes referred to as the 
"Area Galerkin" method.  This approach leads to a time dependent mass vector.  LS-
DYNA also has an optional Galerkin axisymmetric element, which leads to a time 
independent mass vector.  For structural analysis problems where pressures are low the 
Galerkin approach works best, but in problems of hydrodynamics where pressures are 
a large fraction of the elastic modulus, the Petrov-Galerkin approach is superior since 
the behavior along the axis of symmetry is correct. 
 
 The Petrov-Galerkin approach leads to equations similar to finite differences.  
The radial acceleration is given by. 

𝑥̈ =
1
2 [

𝜎𝑥𝑥1
(𝑦𝐼 − 𝑦𝐼𝑉) + 𝜎𝑥𝑥2(𝑦𝐼𝐼 − 𝑦𝐼) + 𝜎𝑥𝑥3

(𝑦𝐼𝐼𝐼 − 𝑦𝐼𝐼) + 𝜎𝑥𝑥4(𝑦𝐼𝑉 − 𝑦𝐼𝐼𝐼)
(𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 + 𝜌4𝐴4) −

𝜎𝑥𝑦1
(𝑥𝐼 − 𝑥𝐼𝑉) + 𝜎𝑥𝑦2(𝑥𝐼𝐼 − 𝑥𝐼) + 𝜎𝑥𝑦3

(𝑥𝐼𝐼𝐼 − 𝑥𝐼𝐼) + 𝜎𝑥𝑦4(𝑥𝐼𝑉 − 𝑥𝐼𝐼𝐼)
(𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 + 𝜌4𝐴4) ] + 𝛽𝑓𝑒,

 (4.168)

where 𝛽𝑓𝑒 is now area weighted. 

𝛽𝑓𝑒 =
1

4(𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 + 𝜌4𝐴4) ∑
⎣
⎢⎡

(𝜎𝑥𝑥𝑖 − 𝜎𝜃𝜃𝑖)𝐴𝑖

𝑥𝑖 ⎦
⎥⎤

4

𝑖=1
. (4.169)

 
 In LS-DYNA, the two-dimensional solid elements share the same constitutive 
subroutines with the three-dimensional elements.  The plane stress element calls the 
plane stress constitutive models for shells.  Similarly, the plane strain and axisymmetric 
elements call the full three-dimensional constitutive models for solid elements.  Slight 
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overheads exists since the strain rate components 𝜀𝑦̇𝑧 and 𝜀𝑧̇𝑥 are set to zero in the two-
dimensional case prior to updating the six stress component; consequently, the 
additional work is related to having six stresses whereas only four are needed.  A 
slowdown of LS-DYNA compared with DYNA2D of fifteen percent has been observed; 
however, some of the added cost is due to the internal and hourglass energy 
calculations, which were not done in DYNA2D.

4.12.1  Rezoning With 2D Solid Elements 

 Lagrangian solution techniques generally function well for problems when 
element distortions are moderate.  When distortions become excessive or when material 
breaks up, i.e., simply connected regions become multi-connected, these codes break 
down, and an Eulerian approach is a necessity.  Between these two extremes, 
applications exist for which either approach may be appropriate but Lagrangian 
techniques are usually preferred for speed and accuracy.  Rezoning may be used to 
extend the domain of application for Lagrangian codes. 
 
 Rezoning capability was added to DYNA2D in 1980 and to LS-DYNA in version 
940.  In the current implementation the rezoning can be done interactively and used to 
relocate the nodal locations within and on the boundary of parts.  This method is 
sometimes referred to as r-adaptive. 
 
 The rezoning is accomplished in three steps listed below: 

1. Generate nodal values for all variables to be remapped 

2. Rezone one or more materials either interactively or automatically with 
command file. 

3. Initialize remeshed regions by interpolating from nodal point values of old 
mesh. 

 
 In the first step each variable is approximated globally by a summation over the 
number of nodal points 𝑛: 

𝑔(𝑟, 𝑧) = ∑ 𝑔𝑖Φ𝑖(𝑟, 𝑧)
𝑛

𝑖=1
, (4.170)

where 
Φ𝑖 = set of piecewise continuous global basis functions 
𝑔𝑖 = nodal point values 

 
 Given a variable to be remapped h(𝑟, 𝑧), a least squares best fit is found by 
minimizing the functional 

Π = ∫(𝑔 − ℎ)2𝑑𝐴, (4.171)
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i.e., 
𝑑Π
𝑑𝑔𝑖

= 0, 𝑖 = 1, 2,… , 𝑛. (4.172)

This yields the set of matrix equations 
𝐌𝐠 = 𝐟, (4.173)

where 

𝐌 = ∑𝐌𝑒 = ∑ ∫𝚽𝚽T𝑑𝐴
𝑒

,

𝐟 = ∑ 𝐟𝑒 = ∑ ∫ ℎ𝚽𝑑𝐴
𝑒

.
(4.174)

Lumping the mass makes the calculation of 𝑔 trivial 

𝑀𝑖 = ∑𝑀𝑖𝑗

𝑛

𝑗
,

𝑔𝑖 =
𝑓𝑖
𝑀𝑖

.
(4.175)

In step 2, the interactive rezoning phase permits: 

• Plotting of solution at current time 

• Deletion of elements and slidelines 

• Boundary modifications via dekinks, respacing nodes, etc. 

• Mesh smoothing 

 
 A large number of interactive commands are available and are described in the 
Help package.  Current results can be displayed by 

• Color fringes 

• Contour lines 

• Vectors plots 

Ajusted

node

12 8

3 7

4 65

 Figure 4.15.  The stencil used to relax an interior nodal point. 
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• Principal stress lines 

• Deformed meshes and material outlines 

• Profile plots 

• Reaction forces 

• Interface pressures along 2D contact interfaces 

 
Three methods are available for smoothing: 

• Equipotential 

• Isoparametric 

• Combination of equipotential and isoparametric. 

In applying the relaxation, the new nodal positions are found and given by Equation 
(1.176) 

𝑥 =
∑ 𝜉𝑖𝑥𝑖

8
𝑖=1

∑ 𝜉𝑖
8
𝑖=1

, 

𝑦 =
∑ 𝜉𝑖𝑦𝑖

8
𝑖=1

∑ 𝜉𝑖
8
𝑖=1

, 
(4.176)

where the nodal positions relative to the node being moved are shown in the sketch in 
Figure 4.15. 

old mesh

new mesh

Figure 4.16.  A four point Gauss quadrature rule over the new element is used
to determine the new element centered value. 
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 The weights, 𝜉𝑖, for equipotential smoothing are 

𝜉1 = 𝜉5 =
1
4 [(𝑥7 − 𝑥3)2 + (𝑦7 − 𝑦3)2], (4.177a)

𝜉4 = 𝜉8 = −𝜉2, (4.177b)

𝜉2 = 𝜉6 =
1
2 [(𝑥1 − 𝑥5)(𝑥7 − 𝑥3) + (𝑦1 − 𝑦5)(𝑦7 − 𝑦3)], (4.177c)

𝜉3 = 𝜉7 =
1
4 [(𝑥1 − 𝑥5)2 + (𝑦1 − 𝑦5)2], (4.177d)

and are given by 
𝜉1 = 𝜉3 = 𝜉5 = 𝜉7 = .50,
𝜉2 = 𝜉4 = 𝜉6 = 𝜉8 = −.25, (4.178)

for isoparametric smoothing.  Since logical regularity is not assumed in the mesh, we 
construct the nodal stencil for each interior node and then relax it.  The nodes are 
iteratively moved until convergence is obtained.  In Chapter 14 of this manual, the 
smoothing procedures are discussed for three-dimensional applications. 
 
 The new element centered values, ℎ∗, computed in Equation (1.179) are found by 
a 4 point Gauss Quadrature as illustrated in Figure 4.16. 

ℎ∗ =
∫𝑔𝑑𝐴
∫𝑑𝐴

. (4.179)

The Gauss point values are interpolated from the nodal values according to Equation 
(1.180).  This is also illustrated by Figure 4.17. 

𝑔𝑎 = ∑ 𝜙𝑖 (𝑠𝑎, 𝑡𝑎)𝑔𝑖. (4.180)

g4

a

g3

g1
g2

s

t

Figure 4.17.  A four point Gauss quadrature rule over the new element is used
to determine the new element centered value. 
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5    
Cohesive elements 

The cohesive elements are used for modelling cohesive interfaces between faces of solid 
elements (types 19 and 21), faces of shell elements (types 20 and 22) and edges of shell 
elements (type ±29), typically for treating delamination. 
 

 
As a comparison to other elements, the cohesive “strain” is the separation distance 
(length) between the two surfaces, and the cohesive stress (force per area) is its 

𝑛4 
𝑛3𝑛2 

𝑛1 

𝑚2 𝑚3

𝑚4 𝑚1 

𝒒3 

𝒒2

𝒒1 
𝑛4 

𝑛3𝑛2

𝑛1

𝑚2 𝑚3

𝑚4 
𝑚1

𝑡

𝒒3 

𝒒2

𝒒1

𝑡 𝒒3

𝒒2

𝒒1 

𝑛4 

𝑛3 

𝑛2 

𝑛1 

𝑚2 

𝑚3 

𝑚4 

𝑚1 
𝒙b

𝒙t
𝒒3 

𝒒1

𝒒2

𝐴

 

Element 19 Element 20

Cohesive layer

 Element ±29 

 Figure 5.18.  Illustration of cohesive elements 19, 20 and ±29 
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conjugate with respect to the energy surface density (energy per area).  Cohesive 
elements 21 and 22 are pentahedral versions of elements 19 and 20, respectively, where 
the top and bottom surface are triangles.  These elements are not treated here per se, but 
the only difference is that the iso-parametric interpolation functions change. 

5.1  Kinematics 

For this presentation we refer to Figure 5.18 for an illustration. Let 

𝒅 = 𝑸𝑻(𝒙𝑡 − 𝒙𝑏) − 𝒅0, (5.181)

be the separation of the cohesive layer in the local system, where 

𝑸 = [𝒒1 𝒒2 𝒒3], (5.182)
  

is the local coordinate system and 𝒙𝑡 and 𝒙𝑏 are global coordinates on the top and 
bottom surfaces for a given iso-parametric coordinate (𝜉 , 𝜂). The distance vector 𝒅0 
represents the initial gap for cases where the cohesive interface has a nonzero thickness, 
so 𝒅 = 𝟎 initially.  
For cohesive element 19 the separation is given directly from the solid element 
geometries (sum over i) 

𝒙𝑡 = 𝒙𝑖
𝑛𝑁𝑖(𝜉 , 𝜂),

𝒙𝑏 = 𝒙𝑖
𝑚𝑁𝑖(𝜉 , 𝜂),

(5.183)

where 

𝑁𝑖(𝜉 , 𝜂) =
1
4 (1 + 𝜉 𝑖𝜉)(1 + 𝜂𝑖𝜂),

(5.18
4)

and  
𝜉 ∗ = [−1, 1, 1, −1],
𝜂∗ = [−1, −1, 1, 1], 

 

(5.185)

are the in-plane shape functions.  From here and onwards, superscripts n and m denote 
the top and bottom surfaces, respectively, and thus 𝒙𝑖

𝑛 and 𝒙𝑖
𝑚 are the nodal coordinates 

associated with the two surfaces.  
For cohesive elements 20 and ±29, the separation 𝒅 is updated using an incremental 
formulation and we have 

𝒅 ̇= 𝑸𝑇(𝒙𝑡̇ − 𝒙𝑏̇) + 𝑸̇𝑇𝑸𝒅. (5.186)

Furthermore, for cohesive element 20 we have (sum over i) 
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𝒙𝑡̇ = {𝒙𝑖̇
𝑛 −

𝑡
2𝝎𝑖

𝑛 × 𝒏𝑡} 𝑁𝑖(𝜉 , 𝜂),

𝒙𝑏̇ = {𝒙𝑖̇
𝑚 +

𝑡
2𝝎𝑖

𝑚 × 𝒏𝑏} 𝑁𝑖(𝜉 , 𝜂),
(5.187)

where the thicknesses of the two shells adjacent to the cohesive layer are denoted t, 
currently assumed to be the same for the both.  In these equations, 𝒏𝑡 and 𝒏𝑏 are the top 
and bottom shell normal, initially equal to 𝒒3 but they may evolve independently with 
time.  For cohesive element ±29 we instead have 

𝒙𝑡̇ = {𝒙1̇
𝑛 + 𝜉

𝑡
2𝝎1

𝑛 × 𝒏𝑡}
1 − 𝜂

2 + {𝒙2̇
𝑛 + 𝜉

𝑡
2𝝎2

𝑛 × 𝒏𝑡}
1 + 𝜂

2 , 

𝐱𝑏̇ = {𝐱4̇
𝑚 + 𝜉

𝑡
2𝝎4

𝑚 × 𝐧𝑏}
1 − 𝜂

2 + {𝐱3̇
𝑚 + 𝜉

𝑡
2𝝎3

𝑚 × 𝐧𝑏}
1 + 𝜂

2 . 
(5.188)

In these expressions 𝝎𝑖
𝑚  and 𝝎𝑖

𝑛 denote nodal rotational velocities, and also note that 
for evaluation the velocities of 𝒙𝑡 and 𝒙𝑏 we assume that the fiber pointing from 
assumed mid layer coincides with that of the coordinate axes.  This is in analogy to how 
the Belytschko-Tsay element is treating the fiber vectors and presumably enhances 
robustness of the elements.  Note also that the shell normal are in this case initially 
equal to 𝒒1. 
For the local coordinate system, cohesive elements 19 and 20 evaluate this according to 
the invariant node numbering approach for shells using the mid layer node coordinates 

𝒙𝑖̅ =
𝒙𝑖

𝑛 + 𝒙𝑖
𝑚

2 , 𝑖 = 1,2,3,4, (5.189)

as follows.  First let 

𝒆1 =
𝒙3̅ − 𝒙1̅
∣𝒙3̅ − 𝒙1̅∣

,

𝒆2 =
𝒙4̅ − 𝒙2̅
|𝒙4̅ − 𝒙2̅|,

(5.190)

and then 

𝒒1 = −
𝒆1 + 𝒆2
|𝒆1 + 𝒆2|,

𝒒2 =
𝒆1 − 𝒆2
|𝒆1 − 𝒆2|,

(5.191)

 
followed by 

𝒒3 = 𝒒1 × 𝒒2. (5.192)
Cohesive element +29 starts by computing 

𝒒2 =
𝒙2

𝑛 + 𝒙3
𝑚 − 𝒙1

𝑛 − 𝒙4
𝑚

∣𝒙2
𝑛 + 𝒙3

𝑚 − 𝒙1
𝑛 − 𝒙4

𝑚∣, (5.193)
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followed by 
𝒒 = 𝒙4

𝑛 + 𝒙3
𝑛 − 𝒙1

𝑚 − 𝒙2
𝑚, (5.194)

𝒒3 =
𝒒 − 𝒒2𝒒𝑇𝒒2
|𝒒 − 𝒒2𝒒𝑇𝒒2|

, (5.195)

and 
𝒒1 = 𝒒2 × 𝒒3. (5.196)

Cohesive element -29 starts by computing 

𝒒2 =
𝒙2

𝑛 + 𝒙3
𝑚 − 𝒙1

𝑛 − 𝒙4
𝑚

∣𝒙2
𝑛 + 𝒙3

𝑚 − 𝒙1
𝑛 − 𝒙4

𝑚∣, (5.197)
 

followed by 

𝒒 =
1
2 (

(𝒙3
𝑛 − 𝒙1

𝑛) × (𝒙4
𝑛 − 𝒙2

𝑛)
∣(𝒙3

𝑛 − 𝒙1
𝑛) × (𝒙4

𝑛 − 𝒙2
𝑛)∣ +

(𝒙3
𝑚 − 𝒙1

𝑚) × (𝒙4
𝑚 − 𝒙2

𝑚)
∣(𝒙3

𝑚 − 𝒙1
𝑚) × (𝒙4

𝑚 − 𝒙2
𝑚)∣), (5.198)

 

𝒒1 =
𝒒 − 𝒒2𝒒𝑇𝒒2
|𝒒 − 𝒒2𝒒𝑇𝒒2|

, (5.199)
 

and 
𝒒3 = 𝒒1 × 𝒒2. (5.200)

 

Thus, in pure out-of-plane shear, type +29 will initially have pure tangential traction in 
the 𝑞1-direction, that turns into a normal traction in the 𝑞3-direction, as the separation 
increases.  Element type -29, however, will only have tangential traction in this case. 

5.2  Constitutive law 

The cohesive constitutive law amounts to determine the normal and shear stress, 
expressed here as the stress vector 𝝈, as function of the separation vector 𝒅, 𝝈 =
𝝈(𝒅,… ). The typical appearance of each component of this vector is illustrated in Figure 
5.19., the interface behaves elastically up to a critical separation distance 𝑑𝑒 and peak 
stress 𝜎𝑒 after which damage commences.  The interface is damaged and failure occur at 
a certain critical separation distance 𝑑𝑐, the unloading is typically elastic as indicated by 
the dashed arrow.  
 
For detailed information on individual cohesive constitutive laws we refer to the 
materials section. 
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5.3  Nodal forces 

The principle of virtual work states that (sum over i) 

∫ 𝒅𝑇̇𝝈𝑑𝐴
𝐴

= {𝒙𝑖̇
𝑚}𝑇𝒇𝑖𝑚 + {𝒙𝑖̇

𝑛}𝑇𝒇𝑖𝑛 + {𝝎𝑖
𝑚}𝑇𝒓𝑖𝑚 + {𝝎𝑖

𝑛}𝑇𝒓𝑖𝑛, (5.201)

where 𝒇𝑖
𝑗 and 𝒓𝑖

𝑗 is the nodal force and moment for node i on element j, respectively. The 
area A represents the cohesive mid layer spanned by the iso-parametric representation 
and this is used to identify the nodal forces and moments.  In the following we work 
out the details for cohesive element ±29. Cohesive elements 19 and 20 are treated 
analogous. 
Using Equation (5.186) we also have 

∫ 𝐝̇𝑇𝛔𝑑𝐴
𝐴

= ∫ 𝐱𝑡̇𝑇𝐐𝛔𝑑𝐴
𝐴

− ∫ 𝐱𝑏̇
𝑇𝐐𝛔𝑑𝐴

𝐴
− ∫ 𝐝𝑇𝐐̇𝑇𝐐𝛔𝑑𝐴
𝐴

, (5.202)

and before continuing we rewrite (5.188) as 

𝒙𝑡̇𝑇 = {𝒙1̇
𝑛}𝑇

1 − 𝜂
2 − {𝝎1

𝑛}𝑇𝑹𝑡𝑇
1 − 𝜂

2 𝜉
𝑡
2 + {𝒙2̇

𝑛}𝑇
1 + 𝜂

2 − {𝝎2
𝑛}𝑇𝑹𝑡𝑇

1 + 𝜂
2 𝜉

𝑡
2, 

𝒙𝑏̇
𝑇 = {𝒙4̇

𝑚}𝑇
1 − 𝜂

2 − {𝝎4
𝑚}𝑇𝑹𝑏

𝑇 1 − 𝜂
2 𝜉

𝑡
2 + {𝒙3̇

𝑚}𝑇
1 + 𝜂

2 − {𝝎3
𝑚}𝑇𝑹𝑏

𝑇 1 + 𝜂
2 𝜉

𝑡
2, 

(5.203)

where 𝑹∗ is the linear operator defined by 
𝑹∗𝝎 = 𝒏∗ × 𝝎 (5.204)

and insert this into the right of (5.202) which after some simplifications gives 

𝑑𝑐𝑑𝑒 

𝜎𝑒 
𝜎  

𝑑 

 Figure 5.19.Common stress versus separation for a cohesive interface 
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∫ 𝒅𝑇̇𝝈𝑑𝐴
𝐴

= − ∫ 𝒅𝑇𝑸̇𝑇𝑸𝝈𝑑𝐴
𝐴

 

+{𝐱1̇
𝑛}𝑇 ∫ (

1 − 𝜂
2 )𝐐𝛔𝑑𝐴

𝐴
+ {𝝎1

𝑛}𝑇 ∫ (−
1 − 𝜂

2 𝜉
𝑡
2)𝐑𝑡𝑇𝐐𝛔𝑑𝐴

𝐴
 

+{𝒙2̇
𝑛}𝑇 ∫ (

1 + 𝜂
2 )𝑸𝝈𝑑𝐴

𝐴
+ {𝝎2

𝑛}𝑇 ∫ (−
1 + 𝜂

2 𝜉
𝑡
2)𝑹𝑡𝑇𝑸𝝈𝑑𝐴

𝐴
 

+{𝒙4̇
𝑚}𝑇 ∫ (−

1 − 𝜂
2 )𝑸𝝈𝑑𝐴

𝐴
+ {𝝎4

𝑚}𝑇 ∫ (
1 − 𝜂

2 𝜉
𝑡
2)𝑹𝑏

𝑇𝑸𝝈𝑑𝐴
𝐴

 

+{𝒙3̇
𝑚}𝑇 ∫ (−

1 + 𝜂
2 )𝑸𝝈𝑑𝐴

𝐴
+ {𝝎3

𝑚}𝑇 ∫ (
1 + 𝜂

2 𝜉
𝑡
2)𝑹𝑏

𝑇𝑸𝝈𝑑𝐴
𝐴

. 

(5.205)

If the first term on the right hand side of (5.205) is neglected we can, using (5.201) and 
(5.205), identify the nonzero nodal forces and moments 

𝒇1𝑛 = ∫ (
1 − 𝜂

2 )𝑸𝝈𝑑𝐴,
𝐴

𝒓1𝑛 = −
𝑡
2 ∫ (

1 − 𝜂
2 𝜉)𝑹𝑡𝑇𝑸𝝈𝑑𝐴,

𝐴
 

𝒇2𝑛 = ∫ (
1 + 𝜂

2 )𝑸𝝈𝑑𝐴,
𝐴

𝒓2𝑛 = −
𝑡
2 ∫ (

1 + 𝜂
2 𝜉)𝑹𝑡𝑇𝑸𝝈𝑑𝐴,

𝐴
 

𝒇3𝑚 = −𝒇2𝑛, 𝒓3𝑚 =
𝑡
2 ∫ (

1 + 𝜂
2 𝜉)𝑹𝑏

𝑇𝑸𝝈𝑑𝐴,
𝐴

 

𝒇4𝑚 = −𝒇1𝑛, 𝒓4𝑚 =
𝑡
2 ∫ (

1 − 𝜂
2 𝜉)𝑹𝑏

𝑇𝑸𝝈𝑑𝐴.
𝐴

(5.206)

In the implementation these integrals are evaluated using 4-point Gaussian quadrature, 
where the integration point locations are given by 

𝜉∗ =
⎣
⎢⎡−

1
√3

,
1
√3

,
1
√3

, −
1
√3⎦

⎥⎤,

𝜂∗ =
⎣
⎢⎡−

1
√3

, −
1
√3

,
1
√3

,
1
√3⎦

⎥⎤.
(5.207)

 
Thus an integral is evaluated as 

∫ 𝜙(𝜉 , 𝜂)𝛔𝑑𝐴
𝐴

≈ ∑ 𝜙(𝜉𝑖, 𝜂𝑖)𝛔𝑖𝐴𝑖

4

𝑖=1
, (5.208)
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where 𝜙 is an arbitrary function of the iso-parametric coordinates, 𝐴𝑖 in the right hand 
side stands for the area of the cohesive layer and 𝛔𝑖 is the cohesive interface stress, both 
evaluated at and with respect to integration point i. 
 

5.4  Drilling constraint in shell ±29 

From (5.188) and the picture of shell type ±29 in Figure 5.18, we see that rotational 
velocities with respect to the adjacent shell normals will not induce translational 
velocities in the integration points, so a stabilization scheme is applied.  To this end we 
introduce the generalized drilling strains δ𝑖

𝑛 and δ𝑗
𝑚, 𝑖 = 1,2, 𝑗 = 3,4, distances that are 

incremented by their respective  velocities 

𝛿𝑖̇
𝑛 = 𝒏𝑡𝑇{𝝎𝑖

𝑛𝑑21 − 𝑹21(𝒙2̇
𝑛 − 𝒙1̇

𝑛)}, 𝑖 = 1,2,  

𝛿𝑗̇
𝑚 = 𝒏𝑏

𝑇{𝝎𝑗
𝑚𝑑34 − 𝑹34(𝒙3̇

𝑚 − 𝒙4̇
𝑚)}, 𝑗 = 3,4, 

(5.209)

where 
𝑑21 = ∣𝒙2

𝑛 − 𝒙1
𝑛∣,

𝑑34 = ∣𝒙3
𝑚 − 𝒙4

𝑚∣, 
 

(5.210)

and we make use of the following definitions for arbitrary vector 𝐯, 

𝑹21𝒗 =
1

𝑑21
(𝒙2

𝑛 − 𝒙1
𝑛) × 𝒗,

𝑹34𝒗 =
1

𝑑34
(𝒙3

𝑚 − 𝒙4
𝑚) × 𝒗.

(5.211)

A characteristic material stiffness 𝐸, typically a fraction of the elastic stiffness of the 
underlying cohesive material, is used to set up the drilling stress 

𝜍𝑖
𝑛 = 𝐸𝛿𝑖

𝑛, 𝑖 = 1,2,
𝜍𝑗

𝑚 = 𝐸𝛿𝑗
𝑚, 𝑗 = 3,4, 

(5.212)

and the stabilization nodal forces are evaluated as 
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𝐟1
𝑛 = 𝐴(𝜍1

𝑛+𝜍2
𝑛)𝐑21

𝑇 𝐧𝑡, 𝐫1𝑛 = 𝐴𝜍1
𝑛𝑑21𝐧𝑡,

𝐟2
𝑛 = −𝐟1

𝑛, 𝐫2𝑛 = 𝐴𝜍2
𝑛𝑑21𝐧𝑡, 

𝐟3
𝑚 = −𝐟4

𝑚, 𝐫3𝑚 = 𝐴𝜍3
𝑚𝑑34𝐧𝑏, 

𝐟4
𝑚 = 𝐴(𝜍3

𝑚+𝜍4
𝑚)𝐑34

𝑇 𝐧𝑏, 𝐫4𝑚 = 𝐴𝜍4
𝑚𝑑34𝐧𝑏,

(5.213)

and these forces and moments are added to the structural ones in the previous section. 

5.5  Rotational masses in shell ±29 

The rotational mass in shell ±29 is determined from a simple energy criterion.  
Assuming that the cohesive layer is thin and the layer spins with a rotational velocity 𝜔 
around axis 𝒒2, the kinetic energy from the nodal rotational masses 𝑚𝑟 is 

𝑊 =
1
2 (𝑚𝑟 + 𝑚𝑟 + 𝑚𝑟 + 𝑚𝑟)𝜔2 = 2𝑚𝑟𝜔2. (5.214)

 
This is compared to the corresponding kinetic energy for an equivalent solid type 19 
cohesive layer, using that the shell type ±29 translational nodal mass 𝑚𝑡 is twice that of 
the solid type 19 nodal masses, 

𝑊 =
1
2 (

𝑚𝑡
2 +

𝑚𝑡
2 +

𝑚𝑡
2 +

𝑚𝑡
2 +

𝑚𝑡
2 +

𝑚𝑡
2 +

𝑚𝑡
2 +

𝑚𝑡
2 ) (

𝑡
2𝜔)

2
=

1
2 𝑚𝑡𝑡2𝜔2, (5.215)

 
which results in 

𝑚𝑟 =
1
4 𝑚𝑡𝑡2. (5.216)

 

5.6  Stiffness matrix in shell ±29 

The stiffness matrix is the sum of contributions from the constitutive law and the 
drilling force, and is for simplicity implemented for a force free configuration, i.e., 

𝝈 = 𝟎,
𝝇 = 𝟎,

(5.217)

where we have used the notation 
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𝝇 =

⎣
⎢⎢
⎢
⎡𝜍1

𝑛

𝜍2
𝑛

𝜍3
𝑚

𝜍4
𝑚⎦

⎥⎥
⎥
⎤

. (5.218)

 
For a given integration point and referring to Equation (5.206) and (5.213), we collect 
these nodal force triplets into complete nodal vectors 𝒇  and 𝒈, associated with the 
constitutive and drilling part, respectively.  That is, 

𝒇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝒇1

𝑛

𝒓1𝑛
𝒇2𝑛
𝒓2𝑛
𝒇3𝑚
𝒓3𝑚
𝒇4𝑚
𝒓4𝑚⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (5.219)

and the same expression holds for 𝒈. Likewise we let 𝒗 be the collection of nodal 
velocities, i.e., 

𝒗 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝒙1̇

𝑛

𝝎1
𝑛

𝒙2̇
𝑛

𝝎2
𝑛

𝒙3̇
𝑚

𝝎3
𝑚

𝒙4̇
𝑚

𝝎4
𝑚⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (5.220)

and note that we can identify generalized strain-displacement matrices 𝑩𝑓  (3 by 24 
matrix) and 𝑩𝑔 (4 by 24 matrix) from (5.186) and (5.188) as well as (5.209) so that 

𝒅 ̇= 𝑩𝑓 𝒗,

𝜹 ̇ = 𝑩𝑔𝒗,
(5.221)

where we have collected the drilling kinematic velocities in a vector 

𝜹 ̇ =

⎣
⎢⎢
⎢⎢
⎡𝛿1̇

𝑛

𝛿2̇
𝑛

𝛿3̇
𝑚

𝛿4̇
𝑚⎦

⎥⎥
⎥⎥
⎤

 (5.222)

With this notation we can rewrite (5.206) and (5.213) into a more compact form 
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𝒇 = 𝑩𝑓𝑇𝝈𝐴,

𝒈 = 𝑩𝑔𝑇𝝇𝐴,
(5.223)

with 𝐴 here being the area of the integration point of interest.  The stiffness matrix is 
then simply the differentiation of these force vectors with respect to the nodal 
coordinates, and by using (5.212), (5.217) and the chain rule of differentiation we get 

𝑲𝑓 = 𝑩𝑓𝑇
𝜕𝝈
𝜕𝒅 𝑩𝑓𝐴,

𝑲𝑔 = 𝐸𝑩𝑔𝑇𝑩𝑔𝐴,
(5.224)

where 𝜕𝝈/𝜕𝒅 is the constitutive tangent from the cohesive material used.
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6  
Belytschko Beam 

 The Belytschko beam element formulation [Belytschko et al.  1977] is part of a 
family of structural finite elements, by Belytschko and other researchers that employ a 
‘co-rotational technique’ in the element formulation for treating large rotation.  This 
section discusses the co-rotational formulation, since the formulation is most easily 
described for a beam element, and then describes the beam theory used to formulate the 
co-rotational beam element. 

6.1  Co-rotational Technique 

 In any large displacement formulation, the goal is to separate the deformation 
displacements from the rigid body displacements, as only the deformation 
displacements give rise to strains and the associated generation of strain energy.  This 
separation is usually accomplished by comparing the current configuration with a 
reference configuration. 
 
 The current configuration is a complete description of the deformed body in its 
current spatial location and orientation, giving locations of all points (nodes) 
comprising the body.  The reference configuration can be either the initial configuration 
of the body, i.e., nodal locations at time zero, or the configuration of the body at some 
other state (time).  Often the reference configuration is chosen to be the previous 
configuration, say at time 𝑡𝑛 = 𝑡𝑛+1 − Δ𝑡. 
 
 The choice of the reference configuration determines the type of deformations 
that will be computed:  total deformations result from comparing the current 
configuration with the initial configuration, while incremental deformations result from 
comparing with the previous configuration.  In most time stepping (numerical) 
Lagrangian formulations, incremental deformations are used because they result in 
significant simplifications of other algorithms, chiefly constitutive models. 
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 A direct comparison of the current configuration with the reference 
configuration does not result in a determination of the deformation, but rather provides 
the total (or incremental) displacements.  We will use the unqualified term 
displacements to mean either the total displacements or the incremental displacements, 
depending on the choice of the reference configuration as the initial or the last state.  
This is perhaps most obvious if the reference configuration is the initial configuration.  
The direct comparison of the current configuration with the reference configuration 
yields displacements, which contain components due to deformations and rigid body 
motions.  The task remains of separating the deformation and rigid body displacements.  
The deformations are usually found by subtracting from the displacements an estimate 
of the rigid body displacements.  Exact rigid body displacements are usually only 
known for trivial cases where they are prescribed a priori as part of a displacement 
field.  The co-rotational formulations provide one such estimate of the rigid body 
displacements. 
 
 The co-rotational formulation uses two types of coordinate systems:  one system 
associated with each element, i.e., element coordinates which deform with the element, 
and another associated with each node, i.e., body coordinates embedded in the nodes.  
(The term ‘body’ is used to avoid possible confusion from referring to these coordinates 
as ‘nodal’ coordinates.  Also, in the more general formulation presented in [Belytschko 
et al., 1977], the nodes could optionally be attached to rigid bodies.  Thus the term ‘body 
coordinates’ refers to a system of coordinates in a rigid body, of which a node is a 
special case.)  These two coordinate systems are shown in the upper portion of Figure 
6.1. 
 
 The element coordinate system is defined to have the local x-axis 𝐱 ̂originating at 
node 𝐼 and terminating at node 𝐽; the local y-axis 𝐲̂ and, in three dimension, the local z-
axis 𝐳,̂ are constructed normal to 𝐱.̂  The element coordinate system (𝐱,̂ 𝐲̂, 𝐳)̂ and 
associated unit vector triad (𝐞1, 𝐞2, 𝐞3) are updated at every time step by the same 
technique used to construct the initial system; thus the unit vector e1 deforms with the 
element since it always points from node 𝐼 to node 𝐽. 
 

(a)  Initial Configuration

X̄

Ȳ

X
^

e0

2
e0

1

b1

b2

Y
^

I J

Figure 6.1.  Co-rotational coordinate system:  (a) initial configuration, (b) rigid
rotational configuration and (c) deformed configuration. 
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 The embedded body coordinate system is initially oriented along the principal 
inertial axes; either the assembled nodal mass or associated rigid body inertial tensor is 
used in determining the inertial principal values and directions.  Although the initial 
orientation of the body axes is arbitrary, the selection of a principal inertia coordinate 
system simplifies the rotational equations of motion, i.e., no inertial cross product terms 
are present in the rotational equations of motion.  Because the body coordinates are 
fixed in the node, or rigid body, they rotate and translate with the node and are 
updated by integrating the rotational equations of motion, as will be described 
subsequently. 
 
 The unit vectors of the two coordinate systems define rotational transformations 
between the global coordinate system and each respective coordinate system.  These 
transformations operate on vectors with global components 𝐀 = (𝐴𝑥,𝐴𝑦, 𝐴𝑧), body 
coordinates components 𝐀̅̅̅̅̅̅ = (𝐴𝑥̅, 𝐴𝑦̅, 𝐴𝑧̅), and element coordinate components Â =
(𝐴𝑥̂, 𝐴𝑦̂, 𝐴𝑧̂) which are defined as: 

𝐀 =
⎩{
⎨
{⎧𝐴𝑥
𝐴𝑦
𝐴𝑧⎭}

⎬
}⎫

=
⎣
⎢⎢
⎡𝑏1𝑥 𝑏2𝑥 𝑏3𝑥

𝑏1𝑦 𝑏2𝑦 𝑏3𝑦
𝑏1𝑧 𝑏2𝑧 𝑏3𝑧⎦

⎥⎥
⎤

⎩{{
⎨
{{⎧𝐴𝑥̅
𝐴𝑦̅

𝐴𝑧̅⎭}}
⎬
}}⎫

= [𝛌]{𝐀̅̅̅̅̅̅}, (6.1)

where 𝑏𝑖𝑥, 𝑏𝑖𝑦, 𝑏𝑖𝑧 are the global components of the body coordinate unit vectors.  
Similarly for the element coordinate system: 

𝐀 =
⎩{
⎨
{⎧𝐴𝑥
𝐴𝑦
𝐴𝑧⎭}

⎬
}⎫

=
⎣
⎢⎡

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥
𝑒1𝑦 𝑒2𝑦 𝑒3𝑦
𝑒1𝑧 𝑒2𝑧 𝑒3𝑧⎦

⎥⎤

⎩{
{⎨
{{
⎧𝐴𝑥̂
𝐴𝑦̂

𝐴𝑧̂⎭}
}⎬
}}
⎫

= [𝛍]{𝐀̂}, (6.2)

where 𝑒𝑖𝑥, 𝑒𝑖𝑦, 𝑒𝑖𝑧 are the global components of the element coordinate unit vectors.  The 
inverse transformations are defined by the matrix transpose, i.e., 

{𝐀̅̅̅̅̅̅} = [𝛌]T{𝐀}
{𝐀̂} = [𝛍]T{𝐀},

(6.3)

(b) Rigid Rotation Configuration

b2

b1

e2

e1

Ȳ

X̄

Y
^

X
^

I

J

Figure 6.2.  Co-rotational coordinate system: (a) initial configuration, (b) rigid
rotational configuration and (c) deformed configuration. 
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since these are proper rotational transformations. 
 
 The following two examples illustrate how the element and body coordinate 
system are used to separate the deformations and rigid body displacements from the 
displacements: 
 
Rigid Rotation.  First, consider a rigid body rotation of the beam element about node 𝐼, 
as shown in the center of Figure 6.2, i.e., consider node 𝐼 to be a pinned connection.  
Because the beam does not deform during the rigid rotation, the orientation of the unit 
vector 𝐞1 in the initial and rotated configuration will be the same with respect to the 
body coordinates.  If the body coordinate components of the initial element unit vector 
𝐞1

0 were stored, they would be identical to the body coordinate components of the 
current element unit vector e1. 
 
Deformation Rotation.  Next, consider node 𝐼 to be constrained against rotation, i.e., a 
clamped connection.  Now node 𝐽 is moved, as shown in the lower portion of Figure 6.3, 
causing the beam element to deform.  The updated element unit vector e1 is constructed 
and its body coordinate components are compared to the body coordinate components 
of the original element unit vector 𝐞1

0.  Because the body coordinate system did not 
rotate, as node I was constrained, the original element unit vector and the current 
element unit vector are not colinear.  Indeed, the angle between these two unit vectors is 
the amount of rotational deformation at node I, i.e., 

𝐞1 × 𝐞1
0 = 𝜃ℓ𝐞3. (6.4)

 
 Thus the co-rotational formulation separates the deformation and rigid body 
deformations by using: 

• a coordinate system that deforms with the element, i.e., the element coordinates; 

• or a coordinate system that rigidly rotates with the nodes, i.e., the body 
coordinates; 

(c) Deformed Configuration

e2
e1

e
0

1

b1

b2
Y
^

X
^

Ȳ

X̄

I

J

Figure 6.3.  Co-rotational coordinate system:  (a) initial configuration, (b) rigid
rotational configuration and (c) deformed configuration. 
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Then it compares the current orientation of the element coordinate system with the 
initial element coordinate system, using the rigidly rotated body coordinate system, to 
determine the deformations.  
 

6.2  Belytschko Beam Element Formulation 

 The deformation displacements used in the Belytschko beam element 
formulation are: 

𝐝̂T = {𝛿𝐼𝐽, 𝜃𝑥̂𝐽𝐼, 𝜃𝑦̂𝐼, 𝜃𝑦̂𝐽, 𝜃𝑧̂𝐼, 𝜃𝑧̂𝐽}, (6.5)

where, 
𝛿𝐼𝐽 = length change 
𝜃𝑥̂𝐽𝐼 = torsional deformation 

𝜃𝑦̂𝐼, 𝜃𝑦̂𝐽, 𝜃𝑧̂𝐼, 𝜃𝑧̂𝐽 = bending rotation deformations 

The superscript ^ emphasizes that these quantities are defined in the local element 
coordinate system, and 𝐼 and 𝐽 are the nodes at the ends of the beam. 
 
 The beam deformations, defined above in Equation (6.5), are the usual small 
displacement beam deformations (see, for example, [Przemieniecki 1986]).  Indeed, one 
advantage of the co-rotational formulation is the ease with which existing small 
displacement element formulations can be adapted to a large displacement formulation 
having small deformations in the element system.  Small deformation theories can be 
easily accommodated because the definition of the local element coordinate system is 
independent of rigid body rotations and hence deformation displacement can be 
defined directly. 

6.2.1  Calculation of Deformations 

 The elongation of the beam is calculated directly from the original nodal 
coordinates (𝑋𝐼, 𝑌𝐼, 𝑍𝐼) and the total displacements (𝑢𝑥𝐼, 𝑢𝑦𝐼, 𝑢𝑧𝐼): 

𝛿𝐼𝐽 =
1

𝑙 + 𝑙𝑜 [2(𝑋𝐽𝐼𝑢𝑥𝐽𝐼 + 𝑌𝐽𝐼𝑢𝑦𝐽𝐼 + 𝑍𝐽𝐼𝑢𝑧𝐽𝐼) + 𝑢𝑥𝐽𝐼
2 + 𝑢𝑦𝐽𝐼

2 + 𝑢𝑧𝐽𝐼
2 ], (6.6)

where 
𝑋𝐽𝐼 = 𝑋𝐽 − 𝑋𝐼
𝑢𝑥𝐽𝐼 = 𝑢𝑥𝐽 − 𝑢𝑥𝐼, etc. (6.7)

 The deformation rotations are calculated using the body coordinate components 
of the original element coordinate unit vector along the beam axis, i.e., 𝐞1

0, as outlined in 
the previous section.  Because the body coordinate components of initial unit vector 𝐞1

0 
rotate with the node, in the deformed configuration it indicates the direction of the 
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beam’s axis if no deformations had occurred.  Thus comparing the initial unit vector 𝐞1
0 

with its current orientation 𝐞1 indicates the magnitude of deformation rotations.  
Forming the vector cross product between 𝐞1

0 and 𝐞1: 

𝐞1 × 𝐞1
0 = 𝜃𝑦̂𝐞2 + 𝜃𝑧̂𝐞3, (6.8)

where 

𝜃𝑦̂ = is the incremental deformation about the local 𝑦 ̂axis 
𝜃𝑧̂ = is the incremental deformation about the local 𝑧 ̂axis 

The calculation is most conveniently performed by transforming the body components 
of the initial element vector into the current element coordinate system: 

⎩{
{⎨
{{
⎧𝑒1̂𝑥

0

𝑒1̂𝑦
 0

𝑒1̂𝑧
0 ⎭}

}⎬
}}
⎫

= [𝛍]T[𝛌]
⎩{
{⎨
{{
⎧𝑒1̅𝑥

0

𝑒1̅𝑦
 0

𝑒1̅𝑧
0 ⎭}

}⎬
}}
⎫

. (6.9)

Substituting the above into Equation (4.10) 

𝐞1 × 𝐞1
0 = det

⎣
⎢⎡

𝐞1 𝐞2 𝐞3
1 0 0

𝑒1̂𝑥
 0 𝑒1̂𝑦

 0 𝑒1̂𝑧
 0 ⎦

⎥⎤ = −𝑒1̂𝑧
 0 𝐞2 + 𝑒1̂𝑦

 0 𝐞3 = 𝜃𝑦̂𝐞2 + 𝜃𝑧̂𝐞3. (6.10)

Thus, 

𝜃𝑦̂ = −𝑒1̂𝑧
0

𝜃𝑧̂ = 𝑒1̂𝑦
 0 .

(6.11)

 The torsional deformation rotation is calculated from the vector cross product of 
initial unit vectors, from each node of the beam, that were normal to the axis of the 
beam, i.e., 𝑒2̂𝐼

 0  and 𝑒2̂𝐽
 0 ; note that 𝑒3̂𝐼

 0  and 𝑒3̂𝐽
 0  could also be used.  The result from this 

vector cross product is then projected onto the current axis of the beam, i.e.,  

𝜃𝑥̂𝐽𝐼 = 𝐞1 ⋅ (𝐞2̂𝐼
0 × 𝐞2̂𝐽

0 ) = 𝐞1 ⋅ det
⎣
⎢⎢
⎡

𝐞1 𝐞2 𝐞3
𝑒𝑥̂2𝐼

 0 𝑒𝑦̂2𝐼
 0 𝑒𝑧̂2𝐼

 0

𝑒𝑥̂2𝐽
 0 𝑒𝑦̂2𝐽

 0 𝑒𝑧̂2𝐽
 0 ⎦

⎥⎥
⎤

= 𝑒𝑦̂2𝐼
 0 𝑒𝑧̂2𝐽

 0 − 𝑒𝑦̂2𝐽
 0 𝑒𝑧̂2𝐼

 0 . (6.12)

Note that the body components of 𝑒2̅𝐼
 0  and 𝑒2̅𝐽

 0  are transformed into the current element 
coordinate system before performing the indicated vector products. 
 

6.2.2  Calculation of Internal Forces 

 There are two methods for computing the internal forces for the Belytschko beam 
element formulation: 

1. functional forms relating the overall response of the beam, e.g.,  moment-
curvature relations, 

2. direct through-the-thickness integration of the stress. 
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Currently only the former method, as explained subsequently, is implemented; the 
direct integration method is detailed in [Belytschko et al., 1977]. 
 
Axial Force.  The internal axial force is calculated from the elongation of the beam 𝛿 as 
given by Equation (6.6), and an axial stiffness: 

𝑓𝑥̂𝐽 = 𝐾𝑎𝛿, (6.13)

where 

𝐾𝑎 =
𝐴𝐸
𝑙0

= is the axial stiffness 
𝐴 = cross sectional area of the beam 
𝐸 = Young's Modulus 
𝑙0 = original length of the beam 

 
Bending Moments.  The bending moments are related to the deformation rotations by 

{
𝑚̂𝑦𝐼
𝑚̂𝑦𝐽
} =

𝐾𝑦
𝑏

1 + 𝜙𝑦
[

4 + 𝜙𝑦2 − 𝜙𝑦
2 − 𝜙𝑦4 + 𝜙𝑦

]
⎩{⎨
{⎧𝜃𝑦̂𝐼

𝜃𝑦̂𝐽⎭}⎬
}⎫, (6.14a)

{𝑚̂𝑧𝐼
𝑚̂𝑧𝐽

} =
𝐾𝑧

𝑏

1 + 𝜙𝑧
[4 + 𝜙𝑧2 − 𝜙𝑧

2 − 𝜙𝑧4 + 𝜙𝑧
] {𝜃𝑧̂𝐼
𝜃𝑧̂𝐽
}, (6.14b)

where Equation (6.14a) is for bending in the 𝐱̂ − 𝐳 ̂ plane and Equation (6.14b) is for 
bending in the 𝐱̂ − 𝐲̂ plane.  The bending constants are given by 

𝐾𝑦
𝑏 =

𝐸𝐼𝑦𝑦

𝑙0
 (6.15a)

𝐾𝑧
𝑏 =

𝐸𝐼𝑧𝑧
𝑙0

(6.15b)

𝐼𝑦𝑦 = ∫ ∫ 𝑧2̂𝑑𝑦𝑑̂𝑧 ̂ (6.15c)

𝐼𝑧𝑧 = ∫ ∫ 𝑦2̂𝑑𝑦𝑑̂𝑧 ̂ (6.15d)

𝜙𝑦 =
12𝐸𝐼𝑦𝑦

𝐺𝐴𝑠𝑙2
 (6.15e)

𝜙𝑧 =
12𝐸𝐼𝑧𝑧
𝐺𝐴𝑠𝑙2

. (6.15f)

Hence 𝜙 is the shear factor, 𝐺 the shear modulus, and 𝐴𝑠 is the effective area in shear. 
 
Torsional Moment.  The torsional moment is calculated from the torsional deformation 
rotation as 
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𝑚̂𝑥𝐽 = 𝐾𝑡𝜃𝑥̂𝐽𝐼, (6.16)

where 

𝐾𝑡 =
𝐺𝐽
𝑙0

, (6.17)

and, 
𝐽 = ∫ ∫ 𝑦𝑧̂𝑑̂𝑦𝑑̂𝑧.̂ (6.18)

 
 The above forces are conjugate to the deformation displacements given 
previously in Equation (6.5), i.e., 

𝐝̂T = {𝛿𝐼𝐽, 𝜃𝑥̂𝐽𝐼, 𝜃𝑦̂𝐼, 𝜃𝑦̂𝐽, 𝜃𝑧̂𝐼, 𝜃𝑧̂𝐽}, (6.19)

where 

𝐝̂T𝐟 ̂ = 𝑊int. (6.20)

And with 

𝐟 ̂T = {𝑓𝑥̂𝐽, 𝑚̂𝑥𝐽, 𝑚̂𝑦𝐼, 𝑚̂𝑦𝐽, 𝑚̂𝑧𝐼, 𝑚̂𝑧𝐽}. (6.21)

The remaining internal force components are found from equilibrium: 

𝑓𝑥̂𝐼 = −𝑓𝑥̂𝐽

𝑓𝑧̂𝐼 = −
𝑚̂𝑦𝐼 + 𝑚̂𝑦𝐽

𝑙0

𝑓𝑦̂𝐽 = −
𝑚̂𝑧𝐼 + 𝑚̂𝑧𝐽

𝑙0

 

𝑚̂𝑥𝐼 = −𝑚̂𝑥𝐽

𝑓𝑧̂𝐼 = −𝑓𝑧̂𝐽

𝑓𝑦̂𝐼 = −𝑓𝑦̂𝐽

 (6.22)

6.2.3  Updating the Body Coordinate Unit Vectors 

 The body coordinate unit vectors are updated using the Newmark 𝛽-Method 
[Newmark 1959] with 𝛽 = 0, which is almost identical to the central difference method 
[Belytschko 1974].  In particular, the body component unit vectors are updated using 
the formula 

𝐛𝑖
 𝑗+1 = 𝐛𝑖

 𝑗 + Δ𝑡
d𝐛𝑖

𝑗

d𝑡 +
Δ𝑡2

2
d2𝐛𝑖

𝑗

d𝑡2 , (6.23)

where the superscripts refer to the time step and the subscripts refer to the three unit 
vectors comprising the body coordinate triad.  The time derivatives in the above 
equation are replaced by their equivalent forms from vector analysis: 

d𝐛𝑖
 𝑗

d𝑡 = 𝛚 × 𝐛𝑖 

d2𝐛𝑖
 𝑗

d𝑡2 = 𝛚 × (𝛚 × 𝐛𝑖) + (𝛂𝑖 × 𝐛𝑖),
(6.24)
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where 𝜔 and 𝛼 are vectors of angular velocity and acceleration, respectively, obtained 
from the rotational equations of motion.  With the above relations substituted into 
Equation (6.23), the update formula for the unit vectors becomes 

𝐛𝑖
 𝑗+1 = 𝐛𝑖

 𝑗 + Δ𝑡(𝛚 × 𝐛𝑖) +
Δ𝑡2

2 {[𝛚 × (𝛚 × 𝐛𝑖) + (𝛂𝑖 × 𝐛𝑖)]}. (6.25)

 
 To obtain the formulation for the updated components of the unit vectors, the 
body coordinate system is temporarily considered to be fixed and then the dot product 
of Equation (6.25) is formed with the unit vector to be updated.  For example, to update 
the 𝑥 ̅component of 𝐛3, the dot product of Equation (6.25), with 𝑖 = 3, is formed with b1, 
which can be simplified to the relation 

𝑏̅
𝑥3
 𝑗+1 = 𝐛1

 𝑗 ⋅ 𝐛3
 𝑗+1 = Δ𝑡𝜔𝑦

 𝑗 +
Δ𝑡2

2 (𝜔𝑥
 𝑗𝜔𝑧

 𝑗 + 𝛼𝑦
 𝑗), (6.26)

Similarly, 

𝑏̅
𝑦3
 𝑗+1 = 𝐛2

 𝑗 ⋅ 𝐛3
 𝑗+1 = Δ𝑡𝜔𝑥

 𝑗 +
Δ𝑡2

2 (𝜔𝑦
 𝑗𝜔𝑧

 𝑗 + 𝛼𝑥
 𝑗) 

𝑏̅
𝑧3
 𝑗+1 = 𝐛1

 𝑗 ⋅ 𝐛2
 𝑗+1 = Δ𝑡𝜔𝑧

𝑗 +
Δ𝑡2

2 (𝜔𝑥
 𝑗𝜔𝑦

 𝑗 + 𝛼𝑧
 𝑗).

(6.27)

The remaining components 𝐛3
 𝑗+1 and 𝐛1

 𝑗+1 are found by using normality and 
orthogonality, where it is assumed that the angular velocities w are small during a time 
step so that the quadratic terms in the update relations can be ignored.  Since 𝐛3

 𝑗+1 is a 
unit vector, normality provides the relation 

𝑏̅
𝑧3
 𝑗+1 = √1 − (𝑏̅

𝑥3
 𝑗+1)

2
− (𝑏̅

𝑦3
 𝑗+1)

2
. (6.28)

Next, if it is assumed that 𝑏̅
𝑥1
 𝑗+1 ≈ 1, orthogonality yields 

𝑏̅
𝑧1
 𝑗+1 = −

𝑏̅
𝑥3
𝑗+1 + 𝑏̅

𝑦1
𝑗+1𝑏̅

𝑦3
𝑗+1

𝑏̅
𝑧3
 𝑗+1 . (6.29)

The component 𝑏̅
𝑥1
 𝑗+1 is then found by enforcing normality: 

𝑏̅
𝑥1
 𝑗+1 = √1 − (𝑏̅

𝑦1
 𝑗+1)

2
− (𝑏̅

𝑧1
 𝑗+1)

2
. (6.30)

The updated components of 𝐛1 and 𝐛3 are defined relative to the body coordinates at 
time step 𝑗.  To complete the update and define the transformation matrix, Equation 
(6.1), at time step 𝑗 + 1, the updated unit vectors 𝐛1 and 𝐛3 are transformed to the global 
coordinate system, using Equation (6.1) with [𝛌] defined at step 𝑗, and their vector cross 
product is used to form 𝐛2.
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7    
Hughes-Liu Beam 

 The Hughes-Liu beam element formulation, based on the shell [Hughes and Liu 
1981a, 1981b] discussed later, was the first beam element we implemented.  It has 
several desirable qualities: 

• It is incrementally objective (rigid body rotations do not generate strains), 
allowing for the treatment of finite strains that occur in many practical applica-
tions; 

• It is simple, which usually translates into computational efficiency and robust-
ness 

• It is compatible with the brick elements, because the element is based on a 
degenerated brick element formulation;  

• It includes finite transverse shear strains.  The added computations needed to 
retain this strain component, compare to those for the assumption of no trans-
verse shear strain, are insignificant. 

7.1  Geometry 

 The Hughes-Liu beam element is based on a degeneration of the isoparametric 8-
node solid element, an approach originated by Ahmad et al., [1970].  Recall the solid 
element isoparametric mapping of the biunit cube 

𝐱(𝜉 , 𝜂, 𝜁) = ∑ 𝑁𝑎(𝜉, 𝜂, 𝜁)𝑥𝑎
8

𝑎=1
, (7.1)

with, 

𝑁𝑎(𝜉, 𝜂, 𝜁) =
(1 + 𝜉𝑎𝜉)(1 + 𝜂𝑎𝜂)(1 + 𝜁𝑎𝜁)

8 , (7.2)
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where 𝐱 is an arbitrary point in the element, (𝜉 , 𝜂, 𝜁) are the parametric coordinates, 𝐱𝑎 
are the global nodal coordinates of node 𝑎, and 𝑁𝑎 are the element shape functions 
evaluated at node 𝑎, i.e.,  (𝜉𝑎, 𝜂𝑎, 𝜁𝑎) are  (𝜉 , 𝜂, 𝜁) evaluated at node 𝑎. 
 
 In the beam geometry, 𝜉  determines the location along the axis of the beam and 
the coordinate pair  (𝜂, 𝜁) defines a point on the cross section.  To degenerate the 8-node 
brick geometry into the 2-node beam geometry, the four nodes at 𝜉 = −1 and at 𝜉 = 1 

are combined into a single node with three translational and three rotational degrees of 
freedom.  Orthogonal, inextensible nodal fibers are defined at each node for treating the 
rotational degrees of freedom.  Figure 7.1 shows a schematic of the biunit cube and the 
beam element.  The mapping of the biunit cube into the beam element is separated into 
three parts: 

𝐱(𝜉 , 𝜂, 𝜁) = 𝐱(̅𝜉) + 𝐗(𝜉, 𝜂, 𝜁),
= 𝐱(̅𝜉) + 𝐗𝜁(𝜉 , 𝜁) + 𝐗𝜂(𝜉 , 𝜂), (7.3)

where 𝐱 ̅denotes a position vector to a point on the reference axis of the beam, and 𝐗𝜁  
and 𝐗𝜂 are position vectors at point 𝐱 ̅on the axis that define the fiber directions through 
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 Figure 7.1.  Hughes-Liu beam element. 
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that point.  In particular, 

𝐱(̅𝜉) = ∑ 𝑁𝑎(𝜉)𝐱𝑎̅
2

𝑎=1
,

𝐗𝜂(𝜉 , 𝜂) = ∑ 𝑁𝑎(𝜉)𝐗𝜂𝑎(𝜂)
2

𝑎=1
, 

𝐗𝜁(𝜉 , 𝜁) = ∑ 𝑁𝑎(𝜉)𝐗𝜁𝑎(𝜁)
2

𝑎=1
.

(7.4)

With this description, arbitrary points on the reference line 𝐱 ̅ are interpolated by the 
one- dimensional shape function 𝑁(𝜉) operating on the global position of the two beam 
nodes that define the reference axis, i.e., 𝐱a̅.  Points off the reference axis are further 
interpolated by using a one-dimensional shape function along the fiber directions, i.e., 
𝐗𝜂𝑎(𝜂) and 𝐗𝜁𝑎(𝜁) where 

𝐗𝜂𝑎(𝜂) = 𝑧𝜂𝑎(𝜂)𝐗̂𝜂𝑎 
𝑧𝜂𝑎(𝜂) = 𝑁+(𝜂)𝑧𝜂𝑎+ + 𝑁−(𝜂)𝑧𝜂𝑎−  

𝑁+(𝜂) =
(1 + 𝜂)

2  

𝑁−(𝜂) =
(1 − 𝜂)

2  

𝐗𝜁𝑎(𝜁) = 𝑧𝜁𝑎(𝜁)𝐗̂𝜁𝑎
𝑧𝜁𝑎(𝜁) = 𝑁+(𝜁)𝑧𝜁𝑎

+ + 𝑁−(𝜁)𝑧𝜁𝑎−  

𝑁+(𝜁) =
(1 + 𝜁)

2  

𝑁−(𝜁) =
(1 − 𝜁)

2

(7.5)

where 𝑧𝜁(𝜁) and 𝑧𝜂(𝜂) are “thickness functions”. 
 
 The Hughes-Liu beam formulation uses four position vectors, in addition to 𝜉 , to 
locate the reference axis and define the initial fiber directions.  Consider the two 
position vectors 𝐱𝜁𝑎

+  and 𝐱𝜁𝑎−  located on the top and bottom surfaces, respectively, at 
node 𝑎.  Then 

𝐱𝜁̅𝑎 =
1
2 (1 − 𝜁)̅𝐱𝜁𝑎− + (1 + 𝜁)̅𝐱𝜁𝑎

+ ,

𝐗̂𝜁𝑎 =
(𝐱𝜁𝑎

+ − 𝐱𝜁𝑎− )

∥𝐱𝜁𝑎
+ − 𝐱𝜁𝑎− ∥

, 

𝑧𝜁𝑎
+ =

1
2 (1 − 𝜁)̅∥𝐱𝜁𝑎

+ − 𝐱𝜁𝑎− ∥, 

𝑧𝜁𝑎− = −
1
2 (1 + 𝜁)̅∥𝐱𝜁𝑎

+ − 𝐱𝜁𝑎− ∥, 

𝐱𝜂̅𝑎 =
1
2 (1 − 𝜁)̅𝐱𝜂𝑎− + (1 + 𝜁)̅𝐱𝜂𝑎+ ,

𝐗̂𝜂𝑎 =
(𝐱𝜂𝑎+ − 𝐱𝜂𝑎− )
∥𝐱𝜂𝑎+ − 𝐱𝜂𝑎− ∥

, 

𝑧𝜂𝑎+ =
1
2 (1 − 𝜂)̅∥𝐱𝜂𝑎+ − 𝐱𝜂𝑎− ∥, 

𝑧𝜂𝑎− = −
1
2 (1 + 𝜂)̅∥𝐱𝜂𝑎+ − 𝐱𝜂𝑎− ∥, 

(7.6)

where ‖ ⋅ ‖ is the Euclidean norm.  The reference surface may be located at the 
midsurface of the beam or offset at the outer surfaces.  This capability is useful in 
several practical situations involving contact surfaces, connection of beam elements to 
solid elements, and offsetting elements such as for beam stiffeners in stiffened shells.  
The reference surfaces are located within the beam element by specifying the value of 
the parameters 𝜂 ̅and 𝜁 ,̅ (see lower portion of Figure 7.1).  When these parameters take 
on the values –1 or +1, the reference axis is located on the outer surfaces of the beam.  If 
they are set to zero, the reference axis is at the center. 
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 The same parametric representation used to describe the geometry of the beam 
elements is used to interpolate the beam element displacements, i.e., an isoparametric 
representation.  Again the displacements are separated into the reference axis 
displacements and rotations associated with the fiber directions: 

𝐮(𝜉, 𝜂, 𝜁) = 𝐮̅̅̅̅(𝜉) + 𝐔(𝜉, 𝜂, 𝜁),
= 𝐮̅̅̅̅(𝜉) + 𝐔𝜁(𝜉, 𝜁) + 𝐔𝜂(𝜉, 𝜂). (7.7)

The reference axis is interpolated as usual 

𝐮̅̅̅̅(𝜉) = ∑ 𝑁𝑎(𝜉)𝐮̅̅̅̅𝑎
2

𝑎=1
. (7.8)

The displacements are also interpolated along the reference axis 

𝐔𝜂(𝜉, 𝜂) = ∑ 𝑁𝑎(𝜉)𝐔𝜂𝑎(𝜂),
2

𝑎=1

𝐔𝜁(𝜉, 𝜁) = ∑ 𝑁𝑎(𝜉)𝐔𝜁𝑎(𝜁)
2

𝑎=1
. 

(7.9)

The fiber displacement is interpolated consistently with the thickness, 

𝐔𝜂𝑎(𝜂) = 𝑧𝜂𝑎(𝜂)𝐔̂𝜂𝑎,
𝐔𝜁𝑎(𝜁) = 𝑧𝜁𝑎(𝜁)𝐔̂𝜁𝑎, 

(7.10)

where 𝐮 is the displacement of a generic point, 𝐮̅̅̅̅ is the displacement of a point on the 
reference surface, and 𝑈 is the “fiber displacement” rotations.  The motion of the fibers 
can be interpreted as either displacements or rotations as will be discussed. 
 
 Hughes and Liu introduced the notation that follows, and the associated 
schematic shown in Figure 7.2, to describe the current deformed configuration with 
respect to the reference configuration.   

𝐲 = 𝐲̅̅̅̅ + 𝐘, 𝐲̅̅̅̅ = 𝐱̅ + 𝐮̅̅̅̅,
𝐲̅̅̅̅𝑎 = 𝐱𝑎̅ + 𝐮̅̅̅̅𝑎,

𝐘 = 𝐗 +𝐔,
𝐘𝑎 = 𝐗𝑎 + 𝐔𝑎,

𝐘̂𝜂𝑎 = 𝐗̂𝜂𝑎 + 𝐔̂𝜂𝑎,
𝐘̂𝜁𝑎 = 𝐗̂𝜁𝑎 + 𝐔̂𝜁𝑎,

(7.11)

In the above relations, and in Figure 7.2, the 𝐱 quantities refer to the reference 
configuration, the 𝐲 quantities refer to the updated (deformed) configuration and the 𝐮 
quantities are the displacements.  The notation consistently uses a superscript bar (⋅)̅ to 
indicate reference surface quantities, a superscript caret (⋅)̂ to indicate unit vector 
quantities, lower case letter for translational displacements, and upper case letters for 
fiber displacements.  Thus to update to the deformed configuration, two vector 
quantities are needed:  the reference surface displacement 𝐮̅̅̅̅ and the associated nodal 
fiber displacement 𝐔.  The nodal fiber displacements are defined in the fiber coordinate 
system, described in the next subsection. 
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7.2  Fiber Coordinate System 

 For a beam element, the known quantities will be the displacements of the 
reference surface 𝑢 ̅ obtained from the translational equations of motion and the 
rotational quantities at each node obtained from the rotational equations of motion.  
What remains to complete the kinematics is a relation between nodal rotations and fiber 
displacements 𝐔.  The linearized relationships between the incremental components Δ𝐔̂ 
the incremental rotations are given by  

⎩{
{⎨
{{
⎧Δ𝑈̂𝜂1

Δ𝑈̂𝜂2

Δ𝑈̂𝜂3⎭}
}⎬
}}
⎫

=

⎣
⎢⎢
⎢
⎡ 0 𝑌̂𝜂3 −𝑌̂𝜂2

−𝑌̂𝜂3 0 𝑌̂𝜂1

𝑌̂𝜂2 −𝑌̂𝜂1 0 ⎦
⎥⎥
⎥
⎤

⎩{
⎨
{⎧Δ𝜃1

Δ𝜃2
Δ𝜃3⎭}

⎬
}⎫ = 𝐡𝜂Δ𝛉, 

⎩{
{⎨
{{
⎧Δ𝑈̂𝜁1

Δ𝑈̂𝜁2
Δ𝑈̂𝜁3⎭}

}⎬
}}
⎫

=

⎣
⎢⎢
⎢
⎡ 0 𝑌̂𝜁3 −𝑌̂𝜁2

−𝑌̂𝜁3 0 𝑌̂𝜁1
𝑌̂𝜁2 −𝑌̂𝜁1 0 ⎦

⎥⎥
⎥
⎤

⎩{
⎨
{⎧Δ𝜃1

Δ𝜃2
Δ𝜃3⎭}

⎬
}⎫ = 𝐡𝜁Δ𝛉. 

(7.12)

 
 Equations (7.12) are used to transform the incremental fiber tip displacements to 
rotational increments in the equations of motion.  The second-order accurate rotational 
update formulation due to Hughes and Winget [1980] is used to update the fiber 
vectors: 

𝑌̂𝜂𝑖
𝑛+1 = 𝑅𝑖𝑗(Δ𝜃)𝑌̂𝜂𝑖

𝑛,
𝑌̂𝜁𝑖

 𝑛+1 = 𝑅𝑖𝑗(Δ𝜃)𝑌̂𝜁𝑖 𝑛,
(7.13)

then 

Deformed Configuration

Reference Surface

reference axis in

undeformed 

geometry

(parallel construction)

x

X

x̄

Y

Uu

ū

Figure 7.2.  Schematic of deformed configuration displacements and position
vectors. 
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Δ𝐔̂𝜂𝑎 = 𝐘̂𝜂𝑎𝑛+1 − 𝐘̂𝜂𝑎𝑛 ,
Δ𝐔̂𝜁𝑎 = 𝐘̂𝜁𝑎

𝑛+1 − 𝐘̂𝜁𝑎𝑛 ,
(7.14)

where 

𝑅𝑖𝑗(Δ𝜃) = 𝛿𝑖𝑗 +
(2𝛿𝑖𝑗 + Δ𝑆𝑖𝑘)Δ𝑆𝑖𝑘

2𝐷 , 
Δ𝑆𝑖𝑗 = 𝑒𝑖𝑘𝑗Δ𝜃𝑘, 

2𝐷 = 2 +
1
2 (Δ𝜃1

 2 + Δ𝜃2
 2 + Δ𝜃3

 2).

(7.15)

Here 𝛿𝑖𝑗 is the Kronecker delta and 𝑒𝑖𝑘𝑗 is the permutation tensor. 
 

7.2.1  Local Coordinate System 

 In addition to the above described fiber coordinate system, a local coordinate 
system is needed to enforce the zero normal stress conditions transverse to the axis.  
The orthonormal basis with two directions 𝐞2̂ and 𝐞3̂ normal to the axis of the beam is 
constructed as follows: 

𝐞1̂ =
𝐲̅̅̅̅2 − 𝐲̅̅̅̅1

∥𝐲̅̅̅̅2 − 𝐲̅̅̅̅1∥ ,

𝐞′2 =
𝐘̂𝜂1 + 𝐘̂𝜂2

∥𝐘̂𝜂1 + 𝐘̂𝜂2∥
. 

(7.16)

From the vector cross product of these local tangents. 

𝐞3̂ = 𝐞1̂ × 𝐞′2, (7.17)
and to complete this orthonormal basis, the vector 

𝐞2̂ = 𝐞3̂ × 𝐞1̂, (7.18)
is defined.  This coordinate system rigidly rotates with the deformations of the element. 
 
 The transformation of vectors from the global to the local coordinate system can 
now be defined in terms of the basis vectors as 

𝐀̂ =
⎩{
{⎨
{{
⎧𝐴𝑥̂
𝐴𝑦̂

𝐴𝑧̂⎭}
}⎬
}}
⎫

=
⎣
⎢⎡

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥
𝑒1𝑦 𝑒2𝑦 𝑒3𝑦
𝑒1𝑧 𝑒2𝑧 𝑒3𝑧⎦

⎥⎤
T

⎩{
⎨
{⎧𝐴𝑥
𝐴𝑦
𝐴𝑧⎭}

⎬
}⎫

= [𝐪]{𝐀}, (7.19)

where 𝑒𝑖𝑥, 𝑒𝑖𝑦, 𝑒𝑖𝑧 are the global components of the local coordinate unit vectors, 𝐀̂ is a 
vector in the local coordinates, and 𝐀 is the same vector in the global coordinate system. 
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7.3  Strains and Stress Update 

7.3.1  Incremental Strain and Spin Tensors 

 The strain and spin increments are calculated from the incremental displacement 
gradient 

𝐺𝑖𝑗 =
∂Δ𝑢𝑖
∂𝑦𝑗

, (7.20)

where Δ𝑢𝑖 are the incremental displacements and 𝑦𝑗 are the deformed coordinates.  The 
incremental strain and spin tensors are defined as the symmetric and skew-symmetric 
parts, respectively, of 𝐺𝑖𝑗: 

Δ𝜀𝑖𝑗 =
1
2 (𝐺𝑖𝑗 + 𝐺𝑗𝑖),

Δ𝜔𝑖𝑗 =
1
2 (𝐺𝑖𝑗 − 𝐺𝑗𝑖).

(7.21)

 
 The incremental spin tensor Δ𝜔𝑖𝑗 is used as an approximation to the rotational 
contribution of the Jaumann rate of the stress tensor; in an implicit implementation 
[Hallquist 1981b] the more accurate Hughes-Winget [1980] transformation matrix is 
used, Equation (7.15), with the incremental spin tensor for the rotational update.  Here 
the Jaumann rate update is approximated as 

𝜎 𝑖𝑗 = 𝜎𝑖𝑗
𝑛 + 𝜎𝑖𝑝

𝑛 Δ𝜔𝑝𝑗 + 𝜎𝑗𝑝
𝑛 Δ𝜔𝑝𝑖, (7.22)

where the superscripts on the stress tensor refer to the updated (𝑛 + 1) and reference 
(𝑛) configurations.  This update of the stress tensor is applied before the constitutive 
evaluation, and the stress and strain are stored in the global coordinate system. 
 

7.3.2  Stress Update 

 To evaluate the constitutive relation, the stresses and strain increments are 
rotated from the global to the local coordinate system using the transformation defined 
previously in Equation (7.19), viz. 

𝜎𝑖𝑗
𝑙𝑛 = 𝑞𝑖𝑘𝜎 𝑘𝑛𝑞𝑗𝑛,

Δ𝜀𝑖𝑗
 𝑙 = 𝑞𝑖𝑘Δ𝜀𝑘𝑛𝑞𝑗𝑛,

(7.23)

where the superscript 𝑙 indicates components in the local coordinate system.  The stress 
is updated incrementally: 

𝜎𝑖𝑗
𝑙𝑛+1

= 𝜎𝑖𝑗
𝑙𝑛 + Δ𝜎𝑖𝑗

𝑙𝑛+1
2, (7.24)

and rotated back to the global system: 

𝜎𝑖𝑗
𝑛+1 = 𝑞𝑘𝑖𝜎𝑘𝑛

𝑙𝑛+1
𝑞𝑛𝑗, (7.25)
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before computing the internal force vector. 
 

7.3.3  Incremental Strain-Displacement Relations 

 After the constitutive evaluation is completed, the fully updated stresses are 
rotated back to the global coordinate system.  These global stresses are then used to 
update the internal force vector 

𝐟𝑎int = ∫ 𝐁𝑎T𝛔𝑑𝜐, (7.26)

where 𝐟𝑎int are the internal forces at node 𝑎 and 𝐁𝑎 is the strain-displacement matrix in 
the global coordinate system associated with the displacements at node 𝑎.  The 𝐁 matrix 
relates six global strain components to eighteen incremental displacements [three 
translational displacements per node and the six incremental fiber tip displacements of 
Equation (7.14)].  It is convenient to partition the 𝐁 matrix: 

𝐁 = [𝐁1, 𝐁2]. (7.27)
Each 𝐵𝑎 sub matrix is further partitioned into a portion due to strain and spin with the 
following sub matrix definitions: 

𝐁𝑎 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎡

𝐵1 0 0 𝐵4 0 0 𝐵7 0 0
0 𝐵2 0 0 𝐵5 0 0 𝐵8 0
0 0 𝐵3 0 0 𝐵6 0 0 𝐵9
𝐵2 𝐵1 0 𝐵5 𝐵4 0 𝐵8 𝐵7 0
0 𝐵3 𝐵2 0 𝐵6 𝐵5 0 𝐵9 𝐵8
𝐵3 0 𝐵1 𝐵6 0 𝐵4 𝐵9 0 𝐵7⎦

⎥⎥
⎥⎥
⎥⎥
⎤

, (7.28)

where, 

𝐵𝑖 =

⎩{
{{
{{
⎨
{{
{{
{⎧ 𝑁𝑎,𝑖 =

𝜕𝑁𝑎
𝜕𝑦𝑖

(𝑁𝑎𝑧𝜂𝑎),𝑖−3
=

𝜕(𝑁𝑎𝑧𝜂𝑎)
𝜕𝑦𝑖−3

(𝑁𝑎𝑧𝜁𝑎),𝑖−6
=

𝜕(𝑁𝑎𝑧𝜁𝑎)
𝜕𝑦𝑖−6

𝑖 = 1,2,3

𝑖 = 4,5,6

𝑖 = 7,8,9

. (7.29)

With respect to the strain-displacement relations, note that: 

• The derivative of the shape functions are taken with respect to the global 
coordinates; 

• The 𝐁 matrix is computed on the cross-section located at the mid-point of the 
axis; 

• The resulting 𝐁 matrix is a 6  18 matrix.  

The internal force, 𝑓 , given by 

𝐟′ = 𝐓T𝐟𝑎int (7.30)
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is assembled into the global right hand side internal force vector.  𝐓 is defined as (also 
see Equation (7.12): 

𝐓 =
⎣
⎢
⎡

𝐈 𝟎
𝟎 𝐡𝜂
𝟎 𝐡𝜁⎦

⎥
⎤, (7.31)

where 𝐈 the 3  3 identity matrix. 

7.3.4  Spatial Integration 

 The integration of Equation (7.26) for the beam element is performed with one- 
point integration along the axis and multiple points in the cross section.  For rectangular 
cross sections, a variety of choices are available as is shown in Figure 7.3.  The beam has 
no zero energy or locking modes. 

1
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Figure 7.3.  Integration possibilities for rectangular cross sections in the
Hughes-Liu beam element. 
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 For the user defined rule, it is necessary to specify the number of integration 
points and the relative area for the total cross section: 

𝐴𝑟 =
𝐴

𝐬𝑡 ⋅ 𝐭𝑡
 

where 𝑠𝑡 and 𝑡𝑡 are the beam thickness specified on either the cross section or beam 
element cards.  The rectangular cross-section which contains 𝑠𝑡 and 𝑡𝑡 should completely 
contain the cross-sectional geometry.  Figure 7.4 illustrates this for a typical cross-
section.   In Figure 5.5, the area is broken into twelve integration points.  For each 
integration point, it is necessary to define the 𝑠 and 𝑡 parametric coordinates, (𝑠𝑖,𝑡𝑖), of 
the centroid of the ith integration point and the relative area associated with the point 

𝐴𝑟𝑖 =
𝐴𝑖
𝐴  

t

s

tt

st

A

Figure 7.4.  Specification of the nodal thickness, 𝑠𝑡 and 𝑡𝑡, for a beam with an
arbitrary cross-section. 
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where 𝐴𝑖 is the ratio of the area of the integration point and the actual area of the cross-
section, 𝐴.

A1 A2
A3 A4 A5

A6

A7

A8

A9A10A11A12

s

t

s6
t6

Figure 7.5.  A breakdown of the cross section geometry in Figure 7.4 into
twelve integration points. 
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8    
Warped Beam Elements 

8.1  Resultant Warped Beam 

8.1.1  Green-Lagrange Strains in Terms of Deformational Displacements 

 All quantities in this section are referred to the local element coordinate system 
𝐞𝑖, 𝑖 = 1, 2, 3.  The origin of the local system is taken at node 1, with 𝐞1 directed along the 
line of centroids, while 𝐞2, and 𝐞3 are directed along the principal axes of the cross-
section. 
 
 With respect to the local system, the Green-Lagrange strain tensor can be written 
as: 

𝜀𝑖𝑗 = 𝑒𝑖𝑗 + 𝜂𝑖𝑗, (8.1)

where, 

𝑒𝑖𝑗 = 0.5(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),
𝜂𝑖𝑗 = 0.5𝑢𝑘,𝑖𝑢𝑘,𝑗.

(8.2)

 
 The geometric assumption of infinite in-plane rigidity implies 𝜀22 = 𝜀33 = 𝛾23 =
0.  Then the non-zero strain components which contribute to the strain energy are: 

𝜀11 = 𝑢1,1 +
1
2 (𝑢1,1

2 + 𝑢2,1
2 + 𝑢3,1

2 ),
2𝜀12 = 𝑢1,2 + 𝑢2,1 + 𝑢1,1,𝑢1,2 + 𝑢2,1𝑢2,2 + 𝑢3,1𝑢3,2, 
2𝜀13 = 𝑢1,3 + 𝑢3,1 + 𝑢1,1𝑢1,3 + 𝑢2,1𝑢2,3 + 𝑢3,1𝑢3,3.

(8.3)

8.1.2  Deformational Displacements After Large Rotations 

 The position vectors of an arbitrary point P in the initial and current local 
configurations are: 
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𝐱𝑃0 = 𝐱𝐶0 + [𝐞1 𝐞2 𝐞3]
⎣
⎢⎡

0
𝑥2
𝑥3⎦

⎥⎤, (8.4)

𝐱𝑃 = 𝐱𝐶 + [𝐞′1 𝐞′2 𝐞′3]
⎣
⎢⎡
𝜛𝜙
𝑥2
𝑥3 ⎦

⎥⎤, (8.5)

respectively, with 

[𝐞′1 𝐞′2 𝐞′3] = [𝐈 + 𝛉 +
1
2 𝛉

2] [𝐞1 𝐞2 𝐞3], (8.6)

where 

𝛉 =
⎣
⎢⎡

0 −𝜃3 𝜃2
𝜃3 0 −𝜃1

−𝜃2 𝜃1 0 ⎦
⎥⎤, (8.7)

and 𝜛 is the Saint-Venant warping function about the centroid C.  By the transfer 
theorem, the following relation holds: 

𝜛 = 𝜔 + 𝑐2𝑥3 − 𝑐3𝑥2, (8.8)
where 𝜔 refers to the shear center S, and 𝑐2 and 𝑐3 are the coordinates of S. 
 
 Subtracting Equation (8.4) from Equation (8.5) and neglecting third-order terms, 
the displacements vector of point P can be computed: 

𝑢1 = 𝑢1̅ − 𝑥2𝜃3 + 𝑥3𝜃2 +
1
2 𝑥2𝜃1𝜃2 +

1
2 𝑥3𝜃1𝜃3 + 𝜛𝜙,

𝑢2 = 𝑢2̅ − 𝑥3𝜃1 −
1
2 𝑥2(𝜃1

2 + 𝜃3
2) +

1
2 𝑥3𝜃2θ3 + 𝜛θ3𝜙, 

u3 = u̅̅̅̅3 + x2θ1 −
1
2 x3(θ1

2 + θ2
2) +

1
2 x2θ2θ3 − 𝜛θ2𝜙,

(8.9)

where 𝑢1̅, 𝑢2̅, and 𝑢3̅ are the displacements of the centroid C.   

8.1.3  Green-Lagrange Strains in terms of Centroidal Displacements and Angular 
Rotations 

 From Equations (8.3) and (8.9), a second-order approximation of the Green-
Lagrange strains can be evaluated.  Neglecting term 1

2 𝑢1,1
2  and the nonlinear strain 

components generated by warping, the strain components are simplified as 

𝜀11 = 𝜀0 + 𝑥2𝜅2 + 𝑥3𝜅3 +
1
2 (𝑥2

2 + 𝑥3
2)𝜃1,1

2 + 𝜔𝜙,1,
2𝜀12 = 𝛾12 + 𝜛,2𝜙 − 𝑥3𝜅1, 
2𝜀13 = 𝛾13 + 𝜛,3𝜙 + 𝑥2𝜅1,

(8.10)

with 
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𝜀0 = 𝑢1̅,1 +
1
2 (𝑢2̅,1

2 + 𝑢3̅,1
2 ), 

𝜅1 = 𝜃1,1 +
1
2 (𝜃2,1𝜃3 − 𝜃3,1𝜃2), 

𝜅2 = −𝜃3,1 +
1
2 (𝜃1𝜃2,1 + 𝜃1,1𝜃2) + 𝑢3̅,1𝜃1,1 − 𝑐3𝜙,1, 

𝜅3 = 𝜃2,1 +
1
2 (𝜃1𝜃3,1 + 𝜃1,1𝜃3) − 𝑢2̅,1𝜃1,1 + 𝑐2𝜙,1, 

𝛾12 = 𝑢2̅,1 − 𝜃3 +
1
2 𝜃1𝜃2 + 𝑢3̅,1𝜃1 − 𝑢1̅,1𝜃3, 

𝛾13 = 𝑢3̅,1 + 𝜃2 +
1
2 𝜃1𝜃3 − 𝑢2̅,1𝜃1 + 𝑢1̅,1𝜃2. 

(8.11)

Numerical testing has shown that neglecting the nonlinear terms in the curvatures 𝜅1, 
𝜅2, 𝜅3 and bending shear strains 𝛾12, 𝛾13 has little effect on the accuracy of the results.  
Therefore, Equation (8.11) can be simplified to  

𝜅1 = 𝜃1,1, 𝜅2 = −𝜃3,1 − 𝑐3𝜙,1, 𝜅3 = 𝜃2,1 + 𝑐2𝜙,1,

𝜀0 = 𝑢1̅,1 +
1
2 (𝑢2̅,1

2 + 𝑢3̅,1
2 ), 𝛾12 = 𝑢2̅,1 − 𝜃3, 𝛾13 = 𝑢3̅,1 + 𝜃2.

 (8.12)

Adopting Bernoulli’s assumption (𝛾12 = 𝛾13 = 0) and Vlasov’s assumption (𝜙 = θ1,1), 
Equation (8.10) can be rewritten as: 

𝜀11 = 𝜀0 + 𝑥2𝜅2 + 𝑥3𝜅3 +
1
2 𝑟

2𝜅1
2 + 𝜔𝜃1,11,

2𝜀12 = (𝜛,2 − 𝑥3)𝜅1, 
2𝜀13 = (𝜛,3 − 𝑥2)𝜅1,

(8.13)

where 

𝑟2 = 𝑥2
2 + 𝑥3

2, 𝜅1 = 𝜃1,1, 𝜅2 = −𝑢2̅,11 − 𝑐3𝜃1,11, 𝜅3 = −𝑢3̅,11 + 𝑐2𝜃1,11. (8.14)

 
 To avoid membrane locking, ε11 in Equation (8.13) is reformulated as 

𝜀11 = 𝜀𝑎 + 𝑥2𝜅2 + 𝑥3𝜅3 +
1
2 (𝑟2 −

𝐼𝑜
𝐴) 𝜅1

2 + 𝜔𝜃1,11, (8.15)

where 

𝜀𝑎 =
1
𝑙 ∫ [𝑢1̅,1 +

1
2 (𝑢2̅,1

2 + 𝑢3̅,1
2 +

𝐼𝑜
𝐴 𝜅1

2)] 𝑑𝑥1
1

0
. (8.16)

8.1.4  Strain Energy 

 Assuming material is linear elastic, the strain energy can be evaluated from: 
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𝑈 = ∫ (
1
2 𝐸 ∫ 𝜀11

2 𝑑𝐴 +
1
2𝐺∫ [(2𝜀12)2 + (2𝜀13)2]𝑑𝐴

𝐴𝐴
)

𝐿

0
𝑑𝑥1. (8.17)

 
 The following relations are used in integrating the previous equations:   
(1) Since the reference frame is located at centroid C with e2 and e3 directed along the 
principal axes, 

∫ 𝑥2𝑑𝐴 = 0
𝐴

, ∫ 𝑥3𝑑𝐴 = 0
𝐴

, ∫ 𝑥2𝑥3𝑑𝐴 = 0
𝐴

. (8.18)

(2) Since sectorial area ω refers to shear center S, 

∫ 𝜔𝑑𝐴 = 0
𝐴

, ∫ 𝑥2𝜔𝑑𝐴 = 0
𝐴

, ∫ 𝑥3𝜔𝑑𝐴 = 0
𝐴

. (8.19)

Integration through the cross-section gives: 

∫ 𝜀11
2 𝑑𝐴

𝐴
+ 𝐴𝜀𝑎2 + 𝐼22𝜅2

2 + 𝐼33𝜅3
2 + 𝐼𝜔𝜃1,11

2 + 𝐼2𝑟𝜅2𝜅1
2 + 𝐼3𝑟𝜅3𝜅1

2 + 𝐼𝜔𝑟𝜃1,11𝜅1
2

+
1
4 (𝐼𝑟𝑟 −

𝐼𝑜2

𝐴) 𝜅1
4 

(8.20)

∫ [(2ε12)2 + (2ε13)2]
A

dA = 𝐽κ1
2 (8.21)

with 

𝐼22 = ∫ 𝑥2
2𝑑𝐴

𝐴
, 𝐼33 = ∫ 𝑥3

2𝑑𝐴
𝐴

, 𝐼𝑂 = 𝐼22 + 𝐼33

𝐼2𝑟 = ∫ 𝑥2𝑟2𝑑𝐴,
𝐴

𝐼3𝑟 = ∫ 𝑥3𝑟2𝑑𝐴,
𝐴

𝐼𝑟𝑟 = ∫ 𝑟4𝑑𝐴
𝐴

𝐼𝜔 = ∫ 𝜔2𝑑𝐴
𝐴

, 𝐼𝜔𝑟 = ∫ 𝜔𝑟2𝑑𝐴
𝐴

, 𝐽 = ∫ [(𝜔̅̅̅̅,3 + 𝑥2)2 + (𝜔̅̅̅̅,2 − 𝑥3)2]
𝐴

𝑑𝐴

 (8.22)

 
6.1.5  Displacement Field 
 Linear interpolation is used for axial displacement 𝐮̅̅̅̅, whereas Hermitian 
interpolations are used for 𝑢2, 𝑢3, and 𝜃1, considering the following relations used in 
deriving the final expression of strain energy: 

𝜃2 = −𝑢3,1 𝜃3 = 𝑢2,1 𝜙 = 𝜃1,1. (8.23)

 
 The nodal displacement field is constructed by 

𝑢1̅ = 𝐍1𝐝, (8.24)



LS-DYNA Theory Manual Warped Beam Elements 

LS-DYNA DEV 06/21/18 (r:10113) 7-5 (Warped Beam Elements) 

⎩{
⎨
{⎧𝑢2̅
𝑢3̅
𝜃1 ⎭}

⎬
}⎫ = 𝐍2𝐝, (8.25)

where 

𝐝T = [0 0 0 0 𝜃2𝐼 𝜃3𝐼 𝜙𝐼 𝑢1̅𝐽𝐼 0 0 𝜃1𝐽𝐼 𝜃2𝐽 𝜃3𝐽 𝜙𝐽]T, (8.26)

𝐍1 = [1 − 𝜉 ⋅⋅⋅⋅⋅⋅|    𝜉 ⋅          ⋅  ⋅ ⋅ ⋅ ⋅ ],

𝐍2 =
⎣
⎢
⎡⋅ 𝑓         ⋅  ⋅   ⋅    𝑔   ⋅
⋅⋅         𝑓   ⋅     −𝑔    ⋅   ⋅
⋅⋅         ⋅   𝑓       ⋅      ⋅  𝑔∣

∣∣
∣
∣       ⋅   1 − 𝑓          ⋅            ⋅   ⋅    ℎ   ⋅
      ⋅  ⋅     1 − 𝑓          ⋅     −ℎ     ⋅       ⋅
⋅ ⋅ ⋅ 1 − 𝑓 ⋅   ⋅           ℎ⎦

⎥
⎤, (8.27)

with 

𝑓 = 1 − 3𝜉 2 + 2𝜉 3𝑔 = 𝑙(𝜉 − 2𝜉 2 + 𝜉 3)ℎ = 𝑙(𝜉 3 − 𝜉 2). (8.28)

 
 Equations (8.25) and (8.27) also imply 

𝜃1,1 = 𝐍3𝐝, (8.29)

where 

𝐍3 = [⋅⋅ 𝑓,1 ⋅⋅ 𝑔,1∣ ⋅⋅⋅ −𝑓,1 ⋅⋅ ℎ,1]. (8.30)

 
6.1.6  Strain Energy in Matrix Form 
 The strain energy due to the average strain εa defined in Equation (8.16) can be 
expressed in matrix form as  

𝑈1 =
1
2 𝐸𝐴𝑙 [∫ (𝐍1,1𝐝)𝑑𝜉 +

1
2𝐝

T [∫ (𝐍2,1
T 𝐃𝐍2,1)𝑑𝜉

1

0
] 𝐝

1

0
]

2
, (8.31)

where 

𝐃 = diag (1,1,
𝐼𝑜
𝐴). (8.32)

 
 The strain energy due to the second through fourth terms is 

𝑈2 =
1
2 𝐸𝑙𝐝T [∫ 𝐍2,11

T 𝐇𝐍2,11𝑑𝜉
1

0
] 𝐝, (8.33)

where 

𝐇 =
⎣
⎢⎡

𝐼22   𝐼22𝑐3
𝐼33 −𝐼33𝑐2

𝐼22𝑐3 −𝐼33𝑐2 𝐼′𝜔 ⎦
⎥⎤ , 𝐼′𝜔 = 𝐼𝜔 + 𝐼22𝑐3

2 + 𝐼33𝑐2
2. (8.34)

 
The strain energy due to the fifth through seventh terms is 
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𝑈3 =
1
2 𝐸𝑙 [∫ (𝐍3𝐝)21

0
𝛖𝐍2,11𝑑𝜉] 𝐝, (8.35)

where 
𝛖 = (−𝐼2𝑟       − 𝐼3𝑟 𝐼′𝜔𝑟), 𝐼′𝜔𝑟 = 𝐼𝜔𝑟 − 𝑐3𝐼2𝑟 + 𝑐2𝐼3𝑟. (8.36)

 
 The strain energy due to the eighth and ninth terms is 

𝑈4 =
1
8 𝐸𝑙 (𝐼𝑟𝑟 −

𝐼𝑜2

𝐴) ∫ (𝐍3𝐝)4𝑑𝜉 +
1
2𝐺𝐽𝑙 ∫ (𝐍3𝐝)2𝑑𝜉

1

0

1

0
 (8.37)

 
6.1.7  Internal Nodal Force Vector 
 The internal force can be evaluated from 

𝐟e = 𝐸𝐴𝑙 (
𝐮̅̅̅̅1𝐽𝐿

l +
1
2𝐝

T𝐐) (𝐏 + 𝐐) + 𝐸 (𝐑 +
1
2 𝐒 + 𝐓 +

1
2 𝐕) + G𝐖, (8.38)

where 

𝐏 = ∫ 𝐍1,1
T 𝑑𝜉

1

0
,        𝐐 = [∫ 𝐍2,1

T1

0
𝐃𝐍2,1𝑑𝜉] 𝐝, 𝐑 = l [∫ 𝐍2,11

T 𝐇𝐍2,11𝑑𝜉
1

0
] 𝐝,

𝐒 = l [∫ (𝐍3𝐝)21

0
𝐍2,11

T 𝑑𝜉  ] 𝛖T,    𝐓 = 𝑙 ∫ (𝐍3𝐝)(𝛖𝐍2,11𝐝)
1

0
𝐍3

T𝑑𝜉 ,

𝐕 = (𝐼𝑟𝑟 −
𝐼𝑜2

𝐴) l ∫ (𝐍3𝐝)3𝐍3
T𝑑𝜉

1

0
, 𝐖 = 𝐽𝑙 ∫ (𝐍3𝐝)𝐍3

T𝑑𝜉
1

0
, 𝜆 =

𝑢1̅𝐽𝐼

l +
1
2 𝐝

T𝐐.

 (8.39)

 
 With respect to the local coordinate system, there are totally eight independent 
components in the nodal force vector, in correspondence to the eight nodal 
displacement components.   
 
 Other forces can be calculated by: 

𝐅1 = −𝐅8,      𝐅2 =
𝐅6 + 𝐅13
l , 𝐅3 = −

𝐅5 + 𝐅12
l ,

 𝐅4 = −𝐅11,      𝐅9 = −𝐅2, 𝐅10 = −𝐅3.
(8.40)

 
6.2  Integrated Warped Beam 
 
6.2.1  Kinematics 
 We introduce three coordinate systems that are mutually interrelated.  The first 
coordinate system is the orthogonal Cartesian coordinate system (𝑥, 𝑦, 𝑧), for which the 
y and zaxes lie in the plane of the cross-section and the 𝑥-axis parallel to the 
longitudinal axis of the beam.  The second coordinate system is the local plate 
coordinate system (𝑥, 𝑠, 𝑛) as shown in Figure 6.1, wherein the n-axis is normal to the 
middle surface of a plate element, the s-axis is tangent to the middle surface and is 
directed along the contour line of the cross-section.  The (𝑥, 𝑠, 𝑛) and (𝑥, 𝑦, 𝑧) coordinate 
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systems are related through an angle of orientation 𝜃 as defined in Figure 40.1. The 
third coordinate set is the contour coordinate s along the profile of the section with its 
origin at some point O on the profile section.  Point P is called the pole through which 
the axis parallel to the x-axis is called the pole axis.  To derive the analytical model for a 
thin-walled beam, the following two assumptions are made: 
1.  The contour of the thin wall does not deform in its own plane. 
2.  The shear strain γsx of the middle surface is zero. 
 
 According to assumption 1, the midsurface displacement components 𝑣 and 𝑤 
with respect to the (𝑥, 𝑠, 𝑛) coordinate system at a point A can be expressed in terms of 
displacements 𝐕 and 𝐖 of the pole P in the (𝑥, 𝑦, 𝑧) coordinate system and the rotation 
angle 𝜙𝑥 about the pole axis 

𝐯(𝑥, 𝑠) = 𝐕(𝑥)cos𝜃(𝑠) +𝐖(𝑥)sin𝜃(𝑠) − 𝐫(𝑠)ϕ𝑥(𝑥),
𝐰(𝑥, 𝑠) = −𝐕(𝑥)sin𝜃(𝑠) +𝐖(𝑥)cos𝜃(𝑠) − 𝐪(𝑠)ϕ𝑥(𝑥). (8.41)

 
 These equations apply to the whole contour.  The out-of-plane displacement u 
can now be found from assumption 2. On the middle surface 

∂𝐮
∂𝑠 +

∂𝐯
∂𝑥 = 𝟎, (8.42)

which can be written 
∂𝐮
∂s = −

∂𝐯
∂𝑥 = −𝐕′(𝑥)cos𝜃(𝑠) −𝐖′(𝑥)sin𝜃(𝑠) + 𝐫(𝑠)ϕ′𝑥(𝑥). (8.43)

 
 Integrating this relation from point O to an arbitrary point on the contour yields 
(using t as a dummy for s) 

P

n

z

y

O

q(s)
s

A

r(s) θ(s)

 Figure 8.1.  Definition of coordinates in thin-walled open section 
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∫
∂𝐮
∂𝑡 𝑑𝑡

s

0
= −𝐕′(𝑥) ∫ cos𝜃(𝑡)𝑑𝑡

s

0
−𝐖′(𝑥) ∫ sin𝜃(𝑡)𝑑𝑡

s

0
+ ϕ′𝑥(𝑥) ∫ 𝐫(𝑡)𝑑𝑡

s

0
. (8.44)

Noting that 
𝑑𝑦 = cos𝜃(𝑡)𝑑𝑡,
𝑑𝑧 = sin𝜃(𝑡)𝑑𝑡. (8.45)

we end up with 
𝑢(𝑥, 𝑠) = 𝑢(𝑥, 0) + V′(𝑥)𝑦(0) +W′(𝑥)𝑧(0) + ϕ′𝑥(𝑥)ϖ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:𝐔(𝑥)
              − 𝑉′(𝑥)⏟

=:𝜙𝑧(𝑥)
𝑦(𝑠) − W′(𝑥)⏟

=:−𝜙𝑦(𝑥)
z(𝑠) + ϕ′𝑥(𝑥)(ω(𝑠) − ϖ)

             = 𝑈(𝑥) − 𝜙𝑧(𝑥)𝑦 + 𝜙𝑦(𝑥)𝑧 + 𝜙′𝑥(𝑥)(𝜔(𝑠) − ϖ).

 (8.46)

where 𝑈 denotes the average out-of-plane displacement over the section, 𝜙𝑦 and 𝜙𝑧 
denote the rotation angle about the y and z axis1, respectively, ω is the sectorial area 
defined as 

𝜔(𝑠) = ∫ 𝑟(𝑡)𝑑𝑡
𝑠

0
, (8.47)

and ϖ is the average of the sectorial area over the section. 
 
 The expression for the displacements in the (x, y, z) coordinate system is 

𝑢(𝑥, 𝑦, 𝑧) = 𝑈(𝑥) − 𝜙𝑧(𝑥)𝑦 + 𝜙𝑦(𝑥)𝑧 + 𝜗(𝑥)𝜔(𝑦, 𝑧),
𝑣(𝑥, 𝑦, 𝑧) = 𝑉(𝑥) − 𝜙𝑥(𝑥)𝑧, 
𝑤(𝑥, 𝑦, 𝑧) = 𝑊(𝑥) + 𝜙𝑥(𝑥)𝑦,

(8.48)

where we have introduced ϑ to represent the twist constrained by the condition 
𝜗(𝑥) = 𝜙𝑥(𝑥). (8.49)

and 𝜔 denotes the sectorial coordinate that is adjusted for zero average over the section. 
 
6.2.2  Kinetics 
 The kinetic energy of the beam can be written 

𝑇 =
1
2 ∫ 𝜌{𝑢2̇ + 𝑣̇2 + 𝑤̇2}
𝑉

𝑑𝑉. (8.50)

 
 Taking the variation of this expression leads to  

                                                 
1 The substitution of ܸ′(ݔ) for ߶௭(ݔ) and ܹ′(ݔ) for −߶௬(ݔ) can be seen as a conversion from an Euler-
Bernoulli kinematic assumption to that of Timoschenko.  
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δT = ∫ρ{u̇δu̇ + v̇δv̇ + ẇδẇ}
V

dV

       = ∫ρ{U̇ − 𝜙ży + 𝜙ẏz + 𝜗̇ω}{δU̇ − δ𝜙ży + δ𝜙ẏz + δ𝜗̇ω}dV
V

+

           ∫ ρ{V̇ − 𝜙ẋz}{δV̇ − δ𝜙ẋz}dV
V

+ ∫ρ{Ẇ + 𝜙ẋy}{δẆ + δ𝜙ẋy}dV
V

       = ∫ρ{U̇δU̇ + y2𝜙żδ𝜙ż − yω𝜙żδ𝜗̇ + z2𝜙ẏδ𝜙ẏ}dV
V

+

           ∫ ρ{zω𝜙ẏδ𝜗̇ − yω𝜗̇δ𝜙ż + zω𝜗̇δ𝜙ẏ + ω2𝜗̇δ𝜗̇}dV
V

+

           ∫ ρ{V̇δV̇ + z2𝜙ẋδ𝜙ẋ + ẆδẆ + y2𝜙ẋδ𝜙ẋ}dV
V

       = ρA∫{U̇δU̇ + V̇δV̇ + ẆδẆ}dV
l

+ ρIzz ∫{𝜙żδ𝜙ż + 𝜙ẋδ𝜙ẋ}dV
l

+

            ρIýy ∫{𝜙ẏδ𝜙ẏ + 𝜙ẋδ𝜙ẋ}dV
l

+ ρIyω ∫{𝜙ẏδ𝜗̇ + 𝜗̇δ𝜙ẏ}dV
l

−

           ρIzω ∫{𝜗̇δ𝜙ż + 𝜙żδ𝜗̇}dV + ρIωω ∫𝜗̇δ𝜗̇dV
ll

,

 (8.51)

from which the consistent mass matrix can be read out.  Here A is the cross sectional 
area, Izz and Iyy are the second moments of area with respect to the z and y axes, 
respectively, Iωω is the sectorial second moment and Izω and Iyω are the sectorial 
product moments.  An approximation of this mass matrix can be made by neglecting 
the off diagonal components.  The diagonal components are 

𝑚TRNS =
𝜌𝐴𝑙

3 , 

𝑚RT𝑥 =
𝜌(𝐼𝑦𝑦 + 𝐼𝑧𝑧)𝑙

3 , 

𝑚RT𝑦 =
𝜌𝐼𝑦𝑦𝑙

3 , 

𝑚RT𝑧 =
𝜌𝐼𝑧𝑧𝑙

3 , 

𝑚TWST =
𝜌𝐼𝜔𝜔𝑙

3 . 

(8.52)

 
 With 𝐸 as Young’s modulus and 𝐺 as the shear modulus, the strain energy can be 
written 
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𝛱 =
1
2 (𝐸𝜀𝑥𝑥

2 + 𝐺𝛾𝑥𝑦
2 + 𝐺𝛾𝑥𝑧

2 ), (8.53)

where the infinitesimal strain components are (neglecting the derivatives of sectorial 
area) 

𝜀𝑥𝑥 = 𝑈′ + 𝜙𝑦
′ 𝑧 − 𝜙𝑧

′ 𝑦 + 𝜗′𝜔,
𝛾𝑥𝑦 = 𝑉′ − 𝜙𝑥

′ 𝑧 − 𝜙𝑧, 
𝛾𝑥𝑧 = 𝑊′ + 𝜙𝑥

′ 𝑦 + 𝜙𝑦.
(8.54)

and the variation of the same can be written 

𝛿𝜀𝑥𝑥 = 𝛿𝑈′ + 𝛿𝜙𝑦
′ 𝑧 − 𝛿𝜙𝑧

′ 𝑦 + 𝛿𝜗′𝜔,
𝛿𝛾𝑥𝑦 = 𝛿𝑉′ − 𝛿𝜙𝑥

′ 𝑧 − 𝛿𝜙𝑧, 
𝛿𝛾𝑥𝑧 = 𝛿𝑊′ + 𝛿𝜙𝑥

′ 𝑦 + 𝛿𝜙𝑦.
(8.55)

 
 The variation of the strain energy is 

𝛿𝛱 = ∫{𝐸𝜀𝑥𝑥𝛿𝜀𝑥𝑥 + 𝐺𝛾𝑥𝑦𝛿𝛾𝑥𝑦 + 𝐺𝛾𝑥𝑧𝛿𝛾𝑥𝑧}𝑑𝑉
𝑉

       = 𝐸𝐴∫𝑈′𝛿𝑈′𝑑𝑙
𝑙

+ 𝐺𝐴∫ 𝑉′𝛿𝑉′𝑑𝑙
𝑙

+  𝐺𝐴∫𝑊′𝛿𝑊′𝑑𝑙
𝑙

+ 𝐺(𝐼𝑦𝑦 + 𝐼𝑧𝑧) ∫ 𝜙𝑥
′ 𝛿𝜙𝑥

′ 𝑑𝑙
𝑙

+

           𝐸𝐼𝑦𝑦 ∫ 𝜙𝑦
′ 𝛿𝜙𝑦

′ 𝑑𝑙
𝑙

+ 𝐺𝐴∫ 𝜙𝑦𝛿𝜙𝑦𝑑𝑙
𝑙

+ 𝐸𝐼𝑧𝑧 ∫ 𝜙𝑧
′ 𝛿𝜙𝑧

′ 𝑑𝑙
𝑙

+ 𝐺𝐴∫ 𝜙𝑧𝛿𝜙𝑧𝑑𝑙
𝑙

+

           𝐸𝐼𝜔𝜔 ∫𝜗′𝛿𝜗′𝑑𝑙
𝑙

− 𝐺𝐴∫(𝑉′𝛿𝜙𝑧 + 𝜙𝑧𝛿𝑉′)𝑑𝑙
𝑙

+ 𝐺𝐴∫(𝑊′𝛿𝜙𝑦 + 𝜙𝑦𝛿𝑊′)𝑑𝑙
𝑙

+
             
            𝐸𝐼𝑦𝜔 ∫(𝜙𝑦

′ 𝛿𝜗′ + 𝜗′𝛿𝜙𝑦
′ )𝑑𝑙

𝑙

−  𝐸𝐼𝑧𝜔 ∫(𝜙𝑧
′ 𝛿𝜗′ + 𝜗′𝛿𝜙𝑧

′ )𝑑𝑙
𝑙

,

 (8.56)

where the stiffness matrix can be read.  Again the diagonal components are 
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𝑘TRNS =
𝐸𝐴

𝑙 , 

𝑘SHR =
𝐺𝐴

𝑙 , 

𝑘RTx =
𝐺(𝐼𝑦𝑦 + 𝐼𝑧𝑧)

𝑙 , 

𝑘RTy =
𝐸𝐼𝑦𝑦

𝑙 +
𝐺𝐴𝑙

3 , 

𝑘RTz =
𝐸𝐼𝑧𝑧

𝑙 +
𝐺𝐴𝑙

3 , 

𝑘TWST =
𝐸𝐼𝜔𝜔

𝑙 . 

(8.57)

 
 From the expressions of the mass and stiffness matrix, the frequencies of the 
most common modes can be estimated.  These are 

1.  The tensile and twisting modes with frequency 𝜔 = √3
𝑙 √

𝐸
𝜌. 

2.  The transverse shear and torsional mode with frequency 𝜔 = √3
𝑙 √

𝐺
𝜌 . 

3.  The bending modes with frequencies 𝜔 = √3𝐸
𝜌𝑙2 + 𝐺𝐴

𝜌𝐼𝑦𝑦
 and 𝜔 = √3𝐸

𝜌𝑙2 + 𝐺𝐴
𝜌𝐼𝑧𝑧

. 
 
 Which one of these four that is the highest depends on the geometry of the beam 
element.  In LS-DYNA the first of these frequencies is used for calculating a stable time 
step.  We have found no reason for changing approach regarding this element. 
 
6.2.3  Penalty on Twist 
 The twist is constrained using a penalty that is introduced in the strain energy as 

𝛱P =
𝑃𝐸A

2 ∫(𝜙𝑥
′ − 𝜗)2𝑑𝑙

𝑙

, (8.58)

and the corresponding variation is 

𝛿𝛱 = 𝑃𝐸𝐴∫(𝜙𝑥
′ − 𝜗)(𝛿𝜙𝑥

′ − 𝛿𝜗)𝑑𝑙
𝑙

. (8.59)

 
 The diagonal of the stiffness matrix is modified as follows 
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𝑘RTx =
𝐺(𝐼𝑦𝑦 + 𝐼𝑧𝑧)

𝑙 +
𝑃𝐸𝐴

𝑙 , 

𝑘TWST =
𝐸𝐼𝜔𝜔

𝑙 +
𝑃𝐸𝐴𝑙

3 . 
(8.60)

 
 This increases the twist mode frequency to √3𝐸

𝜌𝑙2 + 𝑃𝐸𝐴
𝜌𝐼𝜔𝜔

 and the torsional mode to  

√3
𝑙
√
𝐺(𝐼𝑦𝑦 + 𝐼𝑧𝑧) + 𝑃𝐸𝐴

𝜌 . (8.61)

 
 Even though this gives an indication of a frequency increase we have made no 
modifications on the computation of the critical time step in an explicit analysis.  We 
have used 𝑃 = 1 in the implementation.  This decision may have to be reconsidered 
depending on the choice of the parameter 𝜇, in the end it will come down to trial and 
error from numerical simulations. 
 
6.3  Generalization to Large Displacements 
 A generalization of the small displacement theory to nonlinear theory is quite 
straightforward.  We have used a corotational formulation where the small strains in 
the linear theory are used directly as strain rates in the element system.  We emphasize 
that the nonlinear beam formulation is obtained by simply replacing displacements for 
velocities and strains with strain rates in the previous section.  
 
 The nodal velocities for a beam element in the local system is written  

𝐯 = (𝑣𝑥
1 𝑣𝑦

1 𝑣𝑧
1 𝜔𝑥

1 𝜔𝑦
1 𝜔𝑧

1 𝜗̇1 𝑣𝑥
2 𝑣𝑦

2 𝑣𝑧
2 𝜔𝑥

2 𝜔𝑦
2 𝜔𝑧

2 𝜗̇2)T, (8.62)

where the superscript refers to the local node number.  These are obtained by 
transforming the translational velocities and rotational velocities using the local to 
global transformation matrix qij. The strain rate – velocity matrix in the local system can 
be written 

𝐁0 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑙0−1 0 0 0 −𝑙0−1𝑧 𝑙0−1𝑦 −𝑙0−1𝜔 𝑙0−1 0 0 0 𝑙0−1𝑧 −𝑙0−1𝑦 𝑙0−1𝜔

0 −𝑙0−1 0 𝑙0−1𝑧 0 −
1
2 0 0 𝑙0−1 0 −𝑙0−1𝑧 0 −

1
2 0

0 0 −𝑙0−1 −𝑙0−1𝑦
1
2 0 0 0 0 𝑙0−1 𝑙0−1𝑦

1
2 0 0

0 0 0 −𝑙0−1 0 0 −
1
2 0 0 0 𝑙0−1 0 0 −

1
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,(8.63)

where 𝑙0 is the beam length in the reference configuration, i.e., beginning of the time 
step.  A corresponding matrix w.r.t. the current configuration is 
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𝐁 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑙−1 0 0 0 −𝑙−1𝑧 −𝑙−1𝑦 −𝑙−1𝜔 𝑙−1 0 0 0 𝑙−1𝑧 −𝑙−1𝑦 𝑙−1𝜔

0 −𝑙−1 0 𝑙−1𝑧 0 −
1
2 0 0 𝑙−1 0 −𝑙−1𝑧 0 −

1
2 0

0 0 −𝑙−1 −𝑙−1𝑦
1
2 0 0 0 0 𝑙−1 𝑙−1𝑦

1
2 0 0

0 0 0 −𝑙−1 0 0 −
1
2 0 0 0 𝑙−1 0 0 −

1
2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,(8.64)

where we use the current length of the beam.  These matrices are evaluated in each 
integration point (𝑥, 𝑦) of the cross section.  To compute the strain rate in the local 
system we simply apply 

𝛆̇ = 𝐁0𝐯, (8.65)
which is then used to update the local stresses 𝛔. The internal force vector is then 
assembled as 

𝐟 = 𝐁T𝛔. (8.66)

 
 Finally the internal force is transformed to the global system using the 
transformation matrix.  
 
 To compute the stiffness matrix for implicit we neglect the geometric 
contribution and just apply  

𝐊 = 𝐁T𝐂𝐁, (8.67)

where 𝐂 is the material tangent modulus.  Again the matrix must be transformed to the 
global system before used in the implicit solver.
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9    
Belytschko-Lin-Tsay Shell 

 The Belytschko-Lin-Tsay shell element ([Belytschko and Tsay 1981], [Belytschko 
et al., 1984a]) was implemented in LS-DYNA as a computationally efficient alternative 
to the Hughes-Liu shell element.  For a shell element with five through thickness 
integration points, the Belytschko-Lin-Tsay shell elements requires 725 mathematical 
operations compared to 4050 operations for the under integrated Hughes-Liu element.  
The selectively reduced integration formulation of the explicit Hughes-Liu element 
requires 35,350 mathematical operations.  Because of its computational efficiency, the 
Belytschko-Lin-Tsay shell element is usually the shell element formulation of choice.  
For this reason, it has become the default shell element formulation for explicit 
calculations. 
 
 The Belytschko-Lin-Tsay shell element is based on a combined co-rotational and 
velocity-strain formulation.  The efficiency of the element is obtained from the 
mathematical simplifications that result from these two kinematical assumptions.  The 
co-rotational portion of the formulation avoids the complexities of nonlinear mechanics 
by embedding a coordinate system in the element.  The choice of velocity-strain or rate-
of-deformation in the formulation facilitates the constitutive evaluation, since the 
conjugate stress is the physical Cauchy stress.  We closely follow the notation of 
Belytschko, Lin, and Tsay in the following development. 
 

9.1  Co-rotational Coordinates 

 The midsurface of the quadrilateral shell element, or reference surface, is defined 
by the location of the element’s four corner nodes.  An embedded element coordinate 
system (see Figure 7.1) that deforms with the element is defined in terms of these nodal 
coordinates.  Then the procedure for constructing the co-rotational coordinate system 
begins by calculating a unit vector normal to the main diagonal of the element: 
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𝐞3̂ =
𝐬3

∥𝐬3∥, (9.1)

∥𝐬3∥ = √[𝐬3]1
2 + [𝐬3]2

2 + [𝐬3]3
2, (9.2)

𝐬3 = 𝐫31 × 𝐫42, (9.3)
where the superscript caret (⋅)̂ is used to indicate the local (element) coordinate system. 
 
 It is desired to establish the local 𝑥 axis 𝑥 ̂approximately along the element edge 
between nodes 1 and 2.  This definition is convenient for interpreting the element 
stresses, which are defined in the local 𝑥̂ − 𝑦 ̂ coordinate system.  The procedure for 
constructing this unit vector is to define a vector 𝐬1 that is nearly parallel to the vector 
𝐫21, viz. 

𝐬1 = 𝐫21 − (𝐫21 ⋅ 𝐞3̂)𝐞3̂, (9.4)

𝐞1̂ =
𝐬1
‖𝐬1‖

. (9.5)

 
 

 The remaining unit vector is obtained from the vector cross product 
𝐞2̂ = 𝐞3̂ × 𝐞1̂. (9.6)

 
 If the four nodes of the element are coplanar, then the unit vectors 𝐞1̂ and 𝐞2̂ are 
tangent to the midplane of the shell and 𝐞3̂ is in the fiber direction.  As the element 
deforms, an angle may develop between the actual fiber direction and the unit normal 
𝐞3̂.  The magnitude of this angle may be characterized as 

∣𝐞3̂ ⋅ 𝐟 − 1∣ < 𝛿, (9.7)

3
4

2

1

e
^

2

e
^

1

r21

x̂

ŷ

e
^

3

s3

r31

s1

r42

 Figure 9.1.  Construction of element coordinate system is shown. 
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where 𝐟 is the unit vector in the fiber direction and the magnitude of 𝛿 depends on the 
magnitude of the strains.  According to Belytschko et al., for most engineering 
applications, acceptable values of 𝛿 are on the order of 10-2 and if the condition 
presented in Equation (9.7) is met, then the difference between the rotation of the co-
rotational coordinates 𝑒 ̂and the material rotation should be small. 
 
 The global components of this co-rotational triad define a transformation matrix 
between the global and local element coordinate systems.  This transformation operates 
on vectors with global components 𝐀 = (𝐴𝑥 𝐴𝑦 𝐴𝑧) and element coordinate 
components 𝐀̂ = (𝐴𝑥̂ 𝐴𝑦̂ 𝐴𝑧̂), and is defined as:  

𝐀 =
⎩{
⎨
{⎧𝐴𝑥
𝐴𝑦
𝐴𝑧⎭}

⎬
}⎫

=
⎣
⎢⎡

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥
𝑒1𝑦 𝑒2𝑦 𝑒3𝑦
𝑒1𝑧 𝑒2𝑧 𝑒3𝑧⎦

⎥⎤

⎩{
{⎨
{{
⎧𝐴𝑥̂
𝐴𝑦̂

𝐴𝑧̂⎭}
}⎬
}}
⎫

= 𝛍𝐀̂ = 𝐪T𝐀̂, (9.8)

where 𝑒𝑖𝑥, 𝑒𝑖𝑦, 𝑒𝑖𝑧  are the global components of the element coordinate unit vectors.  The 
inverse transformation is defined by the matrix transpose, i.e., 

𝐀̂ = 𝛍T𝐀. (9.9)

 

9.2  Velocity-Strain Displacement Relations 

 The above small rotation condition, Equation (9.7), does not restrict the 
magnitude of the element’s rigid body rotations.  Rather, the restriction is placed on the 
out-of-plane deformations, and, thus, on the element strain.  Consistent with this 
restriction on the magnitude of the strains, the velocity-strain displacement relations 
used in the Belytschko-Lin-Tsay shell are also restricted to small strains. 
 
 As in the Hughes-Liu shell element, the displacement of any point in the shell is 
partitioned into a midsurface displacement (nodal translations) and a displacement 
associated with rotations of the element’s fibers (nodal rotations).  The Belytschko-Lin-
Tsay shell element uses the Mindlin [1951] theory of plates and shells to partition the 
velocity of any point in the shell as: 

𝐯 = 𝐯 𝑚 − 𝑧̂ 𝐞3 × 𝛉, (9.10)
where 𝐯 𝑚 is the velocity of the mid-surface, 𝛉 is the angular velocity vector, and 𝑧 ̂is the 
distance along the fiber direction (thickness) of the shell element.  The corresponding 
co-rotational components of the velocity strain (rate of deformation) are given by 

𝑑𝑖̂𝑗 =
1
2 (

∂𝜐𝑖̂
∂𝑥𝑗̂

+
∂𝜐𝑗̂

∂𝑥𝑖̂
). (9.11)

Substitution of Equation (9.10) into the above yields the following velocity-strain 
relations: 
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𝑑𝑥̂ =
∂𝑣𝑥̂

𝑚

∂𝑥̂ + 𝑧̂
∂ 𝜃𝑦̂

∂𝑥̂ ,
(9.12)

𝑑𝑦̂ =
∂𝜐𝑦̂

𝑚

∂𝑦̂ − 𝑧̂
∂ 𝜃𝑥̂
∂𝑦̂ ,

(9.13)

2𝑑𝑥̂𝑦 =
∂𝜐𝑥̂

𝑚

∂𝑦̂ +
∂𝜐𝑦̂

𝑚

∂𝑥̂ + 𝑧̂
⎝
⎜⎛

∂ 𝜃𝑦̂

∂𝑦̂ −
∂ 𝜃𝑥̂
∂𝑥̂ ⎠

⎟⎞, (9.14)

2𝑑𝑦̂𝑧 =
∂𝜐𝑧̂

𝑚

∂𝑦̂ − 𝜃𝑥̂, (9.15)

2𝑑𝑥̂𝑧 =
∂𝜐𝑧̂

𝑚

∂𝑥̂ + 𝜃𝑦̂. (9.16)

 
 The above velocity-strain relations need to be evaluated at the quadrature points 
within the shell.  Standard bilinear nodal interpolation is used to define the mid-surface 
velocity, angular velocity, and the element’s coordinates (isoparametric representation).  
These interpolations relations are given by 

𝐯𝑚 = 𝑁𝐼(𝜉 , 𝜂)𝐯𝐼,
𝛉𝑚 = 𝑁𝐼(𝜉 , 𝜂)𝛉𝐼, 
𝐱𝑚 = 𝑁𝐼(𝜉 , 𝜂)𝐱𝐼.

(9.17)

where the subscript 𝐼 is summed over all the nodes of the element and the nodal 
velocities are obtained by differentiating the nodal coordinates with respect to time, i.e., 
𝜐𝐼 = 𝑥𝐼̇.  The bilinear shape functions are 

𝑁1 =
1
4 (1 − 𝜉)(1 − 𝜂), (9.18)

𝑁2 =
1
4 (1 + 𝜉)(1 − 𝜂), (9.19)

𝑁3 =
1
4 (1 + 𝜉)(1 + 𝜂), (9.20)

𝑁4 =
1
4 (1 − 𝜉)(1 + 𝜂). (9.21)

 
 The velocity-strains at the center of the element, i.e., at 𝜉 = 0, and 𝜂 = 0, are 
obtained by substitution of the above relations into the previously defined velocity-
strain displacement relations, Equations (9.12) and (9.16).  After some algebra, this 
yields 

𝑑𝑥̂ = 𝐵1𝐼𝜐𝑥̂𝐼 + 𝑧𝐵̂1𝐼𝜃𝑦̂𝐼, (9.22a)
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𝑑𝑦̂ = 𝐵2𝐼𝜐𝑦̂𝐼 − 𝑧𝐵̂2𝐼𝜃𝑥̂𝐼, (9.22b)

2𝑑𝑥̂𝑦 = 𝐵2𝐼 𝜐𝑥̂𝐼 + 𝐵1𝐼𝜐𝑦̂𝐼 + 𝑧̂ (𝐵2𝐼𝜃𝑦̂𝐼 − 𝐵1𝐼𝜃𝑥̂𝐼), (9.22c)

2𝑑𝑥̂𝑧 = 𝐵1𝐼𝜐𝑧̂𝐼 + 𝑁𝐼𝜃𝑦̂𝐼, (9.22d)

2 𝑑𝑦̂𝑧 = 𝐵2𝐼 𝜐𝑧̂𝐼 − 𝑁𝐼 𝜃𝑥̂𝐼, (9.22e)

𝐵1𝐼 =
∂𝑁𝐼
∂𝑥̂ ,

(9.22f)

𝐵2𝐼 =
∂𝑁𝐼
∂𝑦̂ . (9.22g)

The shape function derivatives 𝐵𝑎𝐼 are also evaluated at the center of the element, i.e., at 
𝜉 = 0, and 𝜂 = 0. 

9.3  Stress Resultants and Nodal Forces 

 After suitable constitutive evaluations using the above velocity-strains, the 
resulting stresses are integrated through the thickness of the shell to obtain local 
resultant forces and moments.  The integration formula for the resultants are 

𝑓𝛼̂𝛽𝑅 = ∫ 𝜎̂𝛼𝛽𝑑𝑧,̂ (9.23)

𝑚̂𝛼𝛽
𝑅 = − ∫ 𝑧𝜎̂̂𝛼𝛽𝑑𝑧,̂ (9.24)

where the superscript, 𝑅, indicates a resultant force or moment, and the Greek 
subscripts emphasize the limited range of the indices for plane stress plasticity. 
 
 The above element-centered force and moment resultants are related to the local 
nodal forces and moments by invoking the principle of virtual power and integrating 
with a one-point quadrature.  The relations obtained in this manner are 

𝑓𝑥̂𝐼 = 𝐴(𝐵1𝐼𝑓𝑥̂𝑥
𝑅 + 𝐵2𝐼𝑓𝑥̂𝑦

𝑅 ), (9.25)

𝑓𝑦̂𝐼 = 𝐴(𝐵2𝐼𝑓𝑦̂𝑦
𝑅 + 𝐵1𝐼𝑓𝑥̂𝑦

𝑅 ), (9.26)

𝑓𝑧̂𝐼 = 𝐴𝜅(𝐵1𝐼𝑓𝑥̂𝑧
𝑅 + 𝐵2𝐼𝑓𝑦̂𝑧

𝑅), (9.27)

𝑚̂𝑥𝐼 = 𝐴(𝐵2𝐼𝑚̂𝑦𝑦
𝑅 + 𝐵1𝐼𝑚̂𝑥𝑦

𝑅 −
𝜅
4 𝑓𝑦̂𝑧
𝑅), (9.28)

𝑚̂𝑦𝐼 = −𝐴(𝐵1𝐼𝑚̂𝑥𝑥
𝑅 + 𝐵2𝐼𝑚̂𝑥𝑦

𝑅 −
𝜅
4 𝑓𝑥̂𝑧
𝑅), (9.29)
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𝑚̂𝑧𝐼 = 0, (9.30)
where 𝐴 is the area of the element, and 𝜅 is the shear factor from the Mindlin theory.  In 
the Belytschko-Lin-Tsay formulation, 𝜅 is used as a penalty parameter to enforce the 
Kirchhoff normality condition as the shell becomes thin. 
 
 The above local nodal forces and moments are then transformed to the global 
coordinate system using the transformation relations given previously as Equation (9.8).  
The global nodal forces and moments are then appropriately summed over all the 
nodes and the global equations of motion are solved for the next increment in nodal 
accelerations. 
 

9.4  Hourglass Control (Belytschko-Lin-Tsay) 

 In part, the computational efficiency of the Belytschko-Lin-Tsay and the under 
integrated Hughes-Liu shell elements are derived from their use of one-point 
quadrature in the plane of the element.  To suppress the hourglass deformation modes 
that accompany one-point quadrature, hourglass viscosity stresses are added to the 
physical stresses at the local element level.  The discussion of the hourglass control that 
follows pertains to the Hughes-Liu and the membrane elements as well. 
 
 The hourglass control used by Belytschko et al., extends an earlier derivation by 
Flanagan and Belytschko [1981], (see also Kosloff and Frazier [1978], Belytschko and 
Tsay [1983]).  The hourglass shape vector, 𝛕𝐼, is defined as 

𝛕𝐼 = 𝐡𝐼 − (𝐡𝐽𝐱𝑎̂𝐽)𝐁𝑎𝐼, (9.31)

where 

𝐡 =
⎣
⎢⎢
⎡

+1
−1
+1
−1⎦

⎥⎥
⎤

, (9.32)

is the basis vector that generates the deformation mode that is neglected by one-point 
quadrature.  In Equation (9.31) and the reminder of this subsection, the Greek subscripts 
have a range of 2, e.g., 𝐱𝑎̂𝐼 = (𝑥1̂𝐼, 𝑥2̂𝐼) = (𝑥𝐼̂, 𝑦𝐼̂). 
 
 The hourglass shape vector then operates on the generalized displacements, in a 
manner similar to Equations (7.11a - e), to produce the generalized hourglass strain 
rates 

𝐪𝛼̇
𝐵 = 𝛕𝐼𝜃𝛼̂𝐼, (9.33)

𝐪3̇
𝐵 = 𝝉𝐼𝜐𝑧̂𝐼, (9.34)
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𝐪𝛼̇
𝑀 = 𝛕𝐼𝜐𝛼̂𝐼, (9.35)

where the superscripts 𝐁 and 𝐌 denote bending and membrane modes, respectively.  
The corresponding hourglass stress rates are then given by 

𝑄̇𝛼
𝐵 =

𝑟𝜃𝐸𝑡3𝐴
192 𝐵𝛽𝐼𝐵𝛽𝐼𝑞𝛼̇

𝐵, (9.36)

𝑄̇3
𝐵 =

𝑟𝑤𝜅𝐺𝑡3𝐴
12 𝐵𝛽𝐼𝐵𝛽𝐼𝑞3̇

𝐵, (9.37)

𝑄̇𝛼
𝑀 =

𝑟𝑚𝐸𝑡𝐴
8 𝐵𝛽𝐼𝐵𝛽𝐼𝑞𝛼̇

𝑀, (9.38)

where 𝑡 is the shell thickness and the parameters, 𝑟𝜃, 𝑟𝑤, and 𝑟𝑚 are generally assigned 
values between 0.01 and 0.05. 
 
 Finally, the hourglass stresses, which are updated from the stress rates in the 
usual way, i.e.,  

𝐐𝑛+1 = 𝐐𝑛 + Δ𝑡𝐐̇, (9.39)

and the hourglass resultant forces are then 

𝑚̂𝛼𝐼
𝐻 = 𝜏𝐼𝑄𝛼

𝐵, (9.40)

𝑓3̂𝐼
𝐻 = 𝜏𝐼𝑄3

𝐵, (9.41)

𝑓𝛼̂𝐼
𝐻 = 𝜏𝐼𝑄𝛼

𝑀, (9.42)

where the superscript 𝐻 emphasizes that these are internal force contributions from the 
hourglass deformations.  These hourglass forces are added directly to the previously 
determined local internal forces due to deformations Equations (7.14a - f).  These force 
vectors are orthogonalized with respect to rigid body motion. 
 

9.5  Hourglass Control (Englemann and Whirley) 

 Englemann and Whirley [1991] developed an alternative hourglass control, 
which they implemented in the framework of the Belytschko, Lin, and Tsay shell 
element.  We will briefly highlight their procedure here that has proven to be cost 
effective-only twenty percent more expensive than the default control. 
 
 In the hourglass procedure, the in-plane strain field (subscript p) is decomposed 
into the one point strain field plus the stabilization strain field: 

𝛆̅ṗ = 𝛆̅ṗ0 + 𝛆̅ṗ𝑠 , (9.43)
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𝛆̅ṗ𝑠 = 𝐖𝑚𝐪𝑚̇ + 𝑧𝐖𝑏𝐪𝑏̇. (9.44)

Here, 𝐖𝑚 and 𝐖𝑏 play the role of stabilization strain velocity operators for membrane 
and bending: 

𝐖𝑚 =
⎣
⎢⎢
⎡𝑓1

𝑝(𝜉 , 𝜂) 𝑓4
𝑝(𝜉 , 𝜂)

𝑓2
𝑝(𝜉 , 𝜂) 𝑓5

𝑝(𝜉 , 𝜂)
𝑓3

𝑝(𝜉 , 𝜂) 𝑓6
𝑝(𝜉 , 𝜂)⎦

⎥⎥
⎤

, (9.45)

𝐖𝑏 =
⎣
⎢⎢
⎡−𝑓4

𝑝(𝜉 , 𝜂) 𝑓1
𝑝(𝜉 , 𝜂)

−𝑓5
𝑝(𝜉 , 𝜂) 𝑓2

𝑝(𝜉 , 𝜂)
−𝑓6

𝑝(𝜉 , 𝜂) 𝑓3
𝑝(𝜉 , 𝜂)⎦

⎥⎥
⎤

, (9.46)

where the terms 𝑓𝑖
𝑝(𝜉 , 𝜂) 𝑖 = 1, 2, . . . , 6, are rather complicated and the reader is referred 

to the reference [Englemann and Whirley, 1991]. 
 
 To obtain the transverse shear assumed strain field, the procedure given in 
[Bathe and Dvorkin, 1984] is used.  The transverse shear strain field can again be 
decomposed into the one point strain field plus the stabilization field: 

𝛆̅ṡ = 𝛆̅ṡ0 + 𝛆̅ṡ𝑠, (9.47)

that is related to the hourglass velocities by 

𝛆̅ṡ𝑠 = 𝐖s𝐪𝑠̇, (9.48)

where the transverse shear stabilization strain-velocity operator 𝐖𝑠 is given by 

𝐖𝑠 = [𝑓1𝑠(𝜉 , 𝜂) −𝑔1
𝑠𝜉 𝑔2

𝑠𝜂 𝑔3
𝑠𝜉 𝑔3

𝑠𝜂
𝑓2𝑠(𝜉 , 𝜂) 𝑔4

𝑠𝜉 𝑔4
𝑠𝜂 −𝑔2

𝑠𝜉 𝑔1
𝑠𝜂]. (9.49)

Again, the coefficients 𝑓1𝑠(𝜉 , 𝜂) and 𝑔1
𝑠  are defined in the reference. 

 
 In their formulation, the hourglass forces are related to the hourglass velocity 
field through an incremental hourglass constitutive equation derived from an additive 
decomposition of the stress into a “one-point stress,” plus a “stabilization stress.”  The 
integration of the stabilization stress gives a resultant constitutive equation relating 
hourglass forces to hourglass velocities.  The in-plane and transverse stabilization 
stresses are updated according to: 

𝛕s𝑠,𝑛+1 = 𝛕s𝑠,𝑛 + Δ𝑡𝑐𝑠𝐂𝑠𝛆̅𝑠̇𝑠, (9.50)

𝛕s𝑠,𝑛+1 = 𝛕s𝑠,𝑛 + Δ𝑡𝑐s𝐂s𝛆̅ṡ𝑠, (9.51)

where the tangent matrix is the product of a matrix 𝐂, which is constant within the shell 
domain, and a scalar 𝑐 that is constant in the plane but may vary through the thickness. 
 
 The stabilization stresses can now be used to obtain the hourglass forces: 
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𝐐𝑚 = ∫ ∫ 𝐖𝑚
T𝛕𝑝

𝑠 𝑑𝐴
𝐴

𝑑𝑧
ℎ
2

−ℎ
2

, (9.52)

𝐐𝑏 = ∫ ∫ 𝐖𝑏
T𝛕𝑝

𝑠 𝑑𝐴
𝐴

𝑑𝑧
ℎ
2

−ℎ
2

, (9.53)

𝐐𝑠 = ∫ ∫ 𝐖𝑠
T𝛕𝑠

𝑠𝑑𝐴
𝐴

𝑑𝑧
ℎ
2

−ℎ
2

. (9.54)

 

9.6  Belytschko-Wong-Chiang Improvements 

 Since the Belytschko-Tsay element is based on a perfectly flat geometry, warpage 
is not considered.  Although this generally poses no major difficulties and provides for 
an efficient element, incorrect results in the twisted beam problem, See Figure 7.2, are 
obtained where the nodal points of the elements used in the discretization are not 
coplanar.  The Hughes-Liu shell element considers non-planar geometry and gives 
good results on the twisted beam, but is relatively expensive.  The effect of neglecting 
warpage in typical a application cannot be predicted beforehand and may lead to less 
than accurate results, but the latter is only speculation and is difficult to verify in 
practice.  Obviously, it would be better to use shells that consider warpage if the added 
costs are reasonable and if this unknown effect is eliminated.  In this section we briefly 
describe the simple and computationally inexpensive modifications necessary in the 
Belytschko-Tsay shell to include the warping stiffness.  The improved transverse shear 
treatment is also described which is necessary for the element to pass the Kirchhoff 

Figure 9.2.  The twisted beam problem fails with the Belytschko-Tsay shell
element. 
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patch test.  Readers are directed to the references [Belytschko, Wong, and Chang 1989, 
1992] for an in depth theoretical background. 
 
 In order to include warpage in the formulation it is convenient to define nodal 
fiber vectors as shown in Figure 7.3.  The geometry is interpolated over the surface of 
the shell from: 

𝑥 = 𝑥𝑚 + 𝜁𝑝̅ = (𝑥𝐼 + 𝜁 𝑝̅𝐼)𝑁𝐼(𝜉 , 𝜂), (9.55)

where 

𝜁 ̅ =
𝜁ℎ
2 . (9.56)

 
 The in plane strain components are given by: 

𝑑𝑥𝑥 = 𝑏𝑥𝐼𝑣̂𝑥𝐼 + 𝜁 (̅𝑏𝑥𝐼
𝑐 𝑣̂𝑥𝐼 + 𝑏𝑥𝐼𝑝𝑥̇𝐼), (9.57)

𝑑𝑦𝑦 = 𝑏𝑦𝐼𝑣̂𝑦𝐼 + 𝜁 (̅𝑏𝑦𝐼
𝑐 𝑣̂𝑦𝐼 + 𝑏𝑦𝐼𝑝𝑦̇𝐼), (9.58)

𝑑𝑥𝑦 =
1
2 𝑏𝑥𝐼𝑣̂𝑦𝐼 + 𝑏𝑦𝐼𝑣̂𝑥𝐼 + 𝜁 (̅𝑏𝑥𝐼

𝑐 𝑣̂𝑦𝐼 + 𝑏𝑥𝐼𝑝𝑦̇𝐼 + 𝑏𝑦𝐼
𝑐 𝑣̂𝑥𝐼 + 𝑏𝑦𝐼𝑝𝑥̇𝐼). (9.59)

The coupling terms are come in through 𝑏𝑖𝐼
𝑐 : which is defined in terms of the 

components of the fiber vectors as: 

{
𝑏𝑥𝐼
𝑐

𝑏𝑦𝐼
𝑐 } = [

𝑝𝑦2̂ − 𝑝𝑦4̂ 𝑝𝑦3̂ − 𝑝𝑦1̂
𝑝𝑥2̂ − 𝑝𝑥4̂ 𝑝𝑥3̂ − 𝑝𝑥1̂

𝑝𝑦4̂ − 𝑝𝑦2̂ 𝑝𝑦1̂ − 𝑝𝑦3̂
𝑝𝑥4̂ − 𝑝𝑥2̂ 𝑝𝑥1̂ − 𝑝𝑥3̂

], (9.60)

 
 For a flat geometry the normal vectors are identical and no coupling can occur.  
Two methods are used by Belytschko for computing 𝑏𝑖𝐼

𝑐  and the reader is referred to his 
papers for the details.  Both methods have been tested in LS-DYNA and comparable 
results were obtained. 
The transverse shear strain components are given as 

P1 P2

P3

h

 Figure 9.3.  Nodal fiber vectors 𝐩1, 𝐩2, and 𝐩3, where ℎ is the thickness. 
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𝛾̂𝑥𝑧 = −𝑁𝐼(𝜉 , 𝜂)𝜃𝑦̅𝐼̂, (9.61)

𝛾̂𝑦𝑧 = −𝑁𝐼(𝜉 , 𝜂)𝜃𝑥̅𝐼̂, (9.62)

where the nodal rotational components are defined as: 

𝜃𝑥̅𝐼̂ = (𝐞𝑛
𝐼 ⋅ 𝐞𝑥̂)𝜃𝑛̅

𝐼 + (𝐞𝑛
𝐾 ⋅ 𝐞𝑥̂)𝜃𝑛̅

𝐾, (9.63)

𝜃𝑦̅𝐼̂ = (𝐞𝑛
𝐼 ⋅ 𝐞𝑦̂)𝜃𝑛̅

𝐼 + (𝐞𝑛
𝐾 ⋅ 𝐞𝑦̂)𝜃𝑛̅

𝐾, (9.64)

𝜃𝑛̅
𝐼 =

1
2 (𝜃𝑛𝐼

𝐼 + 𝜃𝑛𝐽
𝐼 ) +

1
𝐿𝐼𝐽 (𝜐𝑧̂𝐽 − 𝜐𝑧̂𝐽), (9.65)

where the subscript n refers to the normal component of side 𝐼 as seen in Figure 7.3 and 
𝐿𝐼𝐽 is the length of side 𝐼𝐽.

ex̂
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eŷLk
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Figure 9.4.  Vector and edge definitions for computing the transverse shear
strain components. 
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10    
Triangular Shells 

10.1  C0 Triangular Shell 

 The 𝐶0 shell element due to Kennedy, Belytschko, and Lin [1986] has been 
implemented as a computationally efficient triangular element complement to the 
Belytschko-Lin-Tsay quadrilateral shell element ([Belytschko and Tsay 1981], 
[Belytschko et al., 1984a]).  For a shell element with five through-the-thickness 
integration points, the element requires 649 mathematical operations (the Belytschko-
Lin-Tsay quadrilateral shell element requires 725 mathematical operations) compared to 
1417 operations for the Marchertas-Belytschko triangular shell [Marchertas and 
Belytschko 1974] (referred to as the BCIZ [Bazeley, Cheung, Irons, and Zienkiewicz 
1965] triangular shell element in the DYNA3D user’s manual). 
 
 Triangular shell elements are offered as optional elements primarily for 
compatibility with local user grid generation and refinement software.  Many computer 
aided design (CAD) and computer aided manufacturing (CAM) packages include finite 
element mesh generators, and most of these mesh generators use triangular elements in 
the discretization.  Similarly, automatic mesh refinement algorithms are typically based 
on triangular element discretization.  Also, triangular shell element formulations are not 
subject to zero energy modes inherent in quadrilateral element formulations. 
 
 The triangular shell element’s origins are based on the work of Belytschko et al., 
[Belytschko, Stolarski, and Carpenter 1984b] where the linear performance of the shell 
was demonstrated.  Because the triangular shell element formulations parallels closely 
the formulation of the Belytschko-Lin-Tsay quadrilateral shell element presented in the 
previous section (Section 7), the following discussion is limited to items related 
specifically to the triangular shell element. 

10.1.1  Co-rotational Coordinates 

 The mid-surface of the triangular shell element, or reference surface, is defined 
by the location of the element’s three nodes.  An embedded element coordinate system 
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(see Figure 10.1) that deforms with the element is defined in terms of these nodal 
coordinates.  The procedure for constructing the co-rotational coordinate system is 
simpler than the corresponding procedure for the quadrilateral, because the three nodes 
of the triangular element are guaranteed coplanar. 
 
 The local x-axis 𝑥 ̂ is directed from node 1 to 2.  The element’s normal axis 𝑧 ̂ is 
defined by the vector cross product of a vector along 𝑥 ̂with a vector constructed from 
node 1 to node 3.  The local y-axis 𝑦 ̂is defined by a unit vector cross product of  𝐞3̂ with 
𝐞1̂, which are the unit vectors in the 𝑧 ̂ directions, respectively.  As in the case of the 
quadrilateral element, this triad of co-rotational unit vectors defines a transformation 
between the global and local element coordinate systems.  See Equations (7.5 a, b). 

10.1.2  Velocity-Strain Relations 

 As in the Belytschko-Lin-Tsay quadrilateral shell element, the displacement of 
any point in the shell is partitioned into a mid-surface displacement (nodal translations) 
and a displacement associated with rotations of the element’s fibers (nodal rotations).  
The Kennedy-Belytschko-Lin triangular shell element also uses the Mindlin [Mindlin 
1951] theory of plates and shells to partition the velocity of any point in the shell (recall 
Equation (7.6)): 

𝐯 = 𝐯m − 𝑧̂ 𝐞3 × 𝛉, (10.1)
where 𝐯m is the velocity of the mid-surface, 𝛉 is the angular velocity vector, and 𝑧 ̂is the 
distance along the fiber direction (thickness) of the shell element.  The corresponding 
co-rotational components of the velocity strain (rate of deformation) were given 
previously in Equation (7.11 a - e). 
 
 Standard linear nodal interpolation is used to define the midsurface velocity, 
angular velocity, and the element’s coordinates (isoparametric representation).  These 
interpolation functions are the area coordinates used in triangular element 
formulations.  Substitution of the nodally interpolated velocity fields into the velocity-
strain relations (see Belytschko et al., for details), leads to strain rate-velocity relations of 
the form 

𝐝̂ = 𝐁 𝐯̂. (10.2)

3
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 Figure 10.1.  Local element coordinate system for C0 shell element. 
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 It is convenient to partition the velocity strains and the 𝐁 matrix into membrane 
and bending contributions.  The membrane relations are given by 

⎩{
{⎨
{{
⎧ 𝑑𝑥̂

𝑑𝑦̂

2𝑑𝑥̂𝑦⎭}
}⎬
}}
⎫M

=
1

𝑥2̂𝑦3̂ ⎣
⎢⎡

𝑦3̂ 0 𝑦3̂ 0 0 0
0 𝑥3̂ − 𝑥2̂ 0 −𝑥3̂ 0 𝑥2̂

𝑥3̂ − 𝑥2̂ −𝑦3̂ −𝑥3̂ 𝑦3̂ 𝑥2̂ 0 ⎦
⎥⎤ 

⎩{
{{
{{
⎨
{{
{{
{⎧𝜐𝑥̂1

𝜐𝑦̂1
𝜐𝑥̂2
𝜐𝑦̂2
𝜐𝑥̂3
𝜐𝑦̂3⎭}

}}
}}
⎬
}}
}}
}⎫

, (10.3)

𝐝̂M = 𝐁M 𝐯̂, (10.4)

⎩{
⎨
{⎧ 𝜅𝑥̂

𝜅𝑦̂
2𝜅𝑥̂𝑦⎭}

⎬
}⎫

=
−1

𝑥2̂𝑦3̂ ⎣
⎢⎡

0 −𝑦3̂ 0 𝑦3̂ 0 0
𝑥3̂ − 𝑥2̂ 0 𝑥3̂ 0 −𝑥2̂ 0

𝑦3̂ 𝑥3̂ − 𝑥2̂ −𝑦3̂ −𝑥3̂ 0 𝑥2̂⎦
⎥⎤ 

⎩{
{{
{{
{⎨
{{
{{
{{
⎧𝜃𝑥̂1
𝜃𝑦̂1

𝜃𝑥̂2
𝜃𝑦̂2

𝜃𝑥̂3
𝜃𝑦̂3⎭}

}}
}}
}⎬
}}
}}
}}
⎫

, (10.5)

or 

𝛋̂M = 𝐁M𝛉̂ def. (10.6)

 
 The local element velocity strains are then obtained by combining the above two 
relations: 

⎩{
{⎨
{{
⎧ 𝑑𝑥̂

𝑑𝑦̂

2𝑑𝑥̂𝑦⎭}
}⎬
}}
⎫

=

⎩{
{⎨
{{
⎧ 𝑑𝑥̂

𝑑𝑦̂

2𝑑𝑥̂𝑦⎭}
}⎬
}}
⎫M

− 𝑧̂ 
⎩{
⎨
{⎧ 𝜅𝑥̂

𝜅𝑦̂
2𝜅𝑥̂𝑦⎭}

⎬
}⎫

= 𝐝̂M − 𝑧𝛋̂̂. (10.7)

 
 The remaining two transverse shear strain rates are given by 

{
2𝑑𝑥̂𝑧
2𝑑𝑦̂𝑧

} =
1

6 𝑥2̂ 𝑦3̂
 

[−𝑦3̂
2 𝑦3̂ (2 𝑥2̂ + 𝑥3̂) 𝑦3̂

2 𝑦3̂(3 𝑥2̂ − 𝑥3̂) 0 𝑥2̂𝑦3̂
𝑦3̂( 𝑥2̂ − 2𝑥2̂) 𝑥2̂

2 − 𝑥3̂
2 −𝑦3̂

2( 𝑥2̂ + 𝑥3̂) 𝑥3̂( 𝑥3̂ − 2𝑥2̂) −3𝑥2̂𝑦3̂ 𝑥2̂( 2𝑥3̂ − 𝑥2̂)
]

(10.8)
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⎩{
{{
{{
{⎨
{{
{{
{{
⎧𝜃𝑥̂1
𝜃𝑦̂1

𝜃𝑥̂2
𝜃𝑦̂2

𝜃𝑥̂3
𝜃𝑦̂3⎭}

}}
}}
}⎬
}}
}}
}}
⎫def

, 

𝐝̂S = 𝐁S𝛉̂ def. (10.9) 

All of the above velocity-strain relations have been simplified by using one-point 
quadrature. 
 
 In the above relations, the angular velocities 𝛉̂def are the deformation component 
of the angular velocity 𝛉̂ obtained by subtracting the portion of the angular velocity due 
to rigid body rotation, i.e., 

𝛉̂def = 𝛉̂ − 𝛉̂rig, (10.10)

The two components of the rigid body angular velocity are given by 

𝜃𝑦̂
rig =

𝜐𝑧̂1 − 𝜐𝑧̂2
𝑥2̂

, (10.11)

𝜃𝑥̂
rig =

(𝜐𝑧̂3 − 𝜐𝑧̂1)𝑥2̂ − (𝜐𝑧̂2 − 𝜐𝑧̂1)𝑥3̂
𝑥2̂𝑦3̂

. (10.12)

The first of the above two relations is obtained by considering the angular velocity of 
the local x-axis about the local y-axis.  Referring to Figure 10.1, by construction nodes 1 
and 2 lie on the local x-axis and the distance between the nodes is 𝑥2̂ i.e., the 𝑥 ̂distance 
from node 2 to the local coordinate origin at node 1.  Thus the difference in the nodal 𝑧 ̂
velocities divided by the distance between the nodes is an average measure of the rigid 
body rotation rate about the local y-axis. 
 
 The second relation is conceptually identical, but is implemented in a slightly 
different manner due to the arbitrary location of node 3 in the local coordinate system.  
Consider the two local element configurations shown in Figure 10.2.  For the leftmost 
configuration, where node 3 is the local y-axis, the rigid body rotation rate about the 
local x-axis is given by 

𝜃𝑥̂−left
rig =

𝜐𝑧̂3 − 𝜐𝑧̂1
𝑦3̂

, (10.13)

and for the rightmost configuration the same rotation rate is given by 

𝜃𝑥̂−right
rig =

𝜐𝑧̂3 − 𝜐𝑧̂2
𝑦3̂

. (10.14)
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Although both of these relations yield the average rigid body rotation rate, the selection 
of the correct relation depends on the configuration of the element, i.e., on the location 
of node 3.  Since every element in the mesh could have a configuration that is different 
in general from either of the two configurations shown in Figure 10.2, a more robust 
relation is needed to determine the average rigid body rotation rate about the local x-
axis.  In most typical grids, node 3 will be located somewhere between the two 
configurations shown in Figure 10.2.  Thus a linear interpolation between these two 
rigid body rotation rates was devised using the distance 𝑥3̂ as the interpolant: 

𝜃𝑥̂
rig = 𝜃𝑥̂−left

rig (1 −
𝑥3̂
𝑥2̂

) + 𝜃𝑥̂−right
rig (

𝑥3̂
𝑥2̂

). (10.15)

Substitution of Equations (10.13) and (10.14) into (10.15) and simplifying produces the 
relations given previously as Equation (10.12). 
 
 
 

ẑ
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Figure 10.2.  Element configurations with node 3 aligned with node 1 (left)
and node 3 aligned with node 2 (right). 
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10.1.3  Stress Resultants and Nodal Forces 

 After suitable constitutive evaluation using the above velocity strains, the 
resulting local stresses are integrated through the thickness of the shell to obtain local 
resultant forces and moments.  The integration formulae for the resultants are 

𝑓𝛼̂𝛽𝑅 = ∫ 𝜎̂𝛼𝛽𝑑𝑧,̂ (10.16)

𝑚̂𝛼𝛽
𝑅 = − ∫ 𝑧̂ 𝜎̂𝛼𝛽𝑑𝑧,̂ (10.17)

where the superscript 𝑅 indicates a resultant force or moment and the Greek subscripts 
emphasize the limited range of the indices for plane stress plasticity. 
 
 The above element-centered force and moment resultant are related to the local 
nodal forces and moments by invoking the principle of virtual power and performing a 
one-point quadrature.  The relations obtained in this manner are 

⎩{
{{
{{
{⎨
{{
{{
{{
⎧𝑓𝑥̂1

𝑓𝑦̂1

𝑓𝑥̂2
𝑓𝑦̂2

𝑓𝑥̂3
𝑓𝑦̂3⎭}

}}
}}
}⎬
}}
}}
}}
⎫

= 𝐴𝐁MT

⎩{
{⎨
{{
⎧𝑓𝑥̂𝑥
𝑅

𝑓𝑦̂𝑦
𝑅

𝑓𝑥̂𝑦
𝑅⎭}

}⎬
}}
⎫

, (10.18)

⎩{
{{
{{
⎨
{{
{{
{⎧𝑚̂𝑥1

𝑚̂𝑦1
𝑚̂𝑥2
𝑚̂𝑦2
𝑚̂𝑥3
𝑚̂𝑦3⎭}

}}
}}
⎬
}}
}}
}⎫

= 𝐴𝐁MT

⎩{
{⎨
{{
⎧𝑚̂𝑥𝑥

𝑅

𝑚̂𝑦𝑦
𝑅

𝑚̂𝑥𝑦
𝑅 ⎭}

}⎬
}}
⎫

+ 𝐴𝐁ST  {
𝑓𝑥̂𝑧

 𝑅

𝑓𝑦̂𝑧
 𝑅}, (10.19)

where 𝐴 is the area of the element (2𝐴 = 𝑥2̂𝑦3̂). 
 
 The remaining nodal forces, the 𝑧 ̂ component of the force (𝑓𝑧̂3 , 𝑓𝑧̂2 , 𝑓𝑧̂1), are 
determined by successively solving the following equilibration equations 

𝑚̂𝑥1 + 𝑚̂𝑥2 + 𝑚̂𝑥3 + 𝑦3̂𝑓𝑧̂3 = 0, (10.20)

𝑚̂𝑦1 + 𝑚̂𝑦2 + 𝑚̂𝑦3 − 𝑥3̂𝑓𝑧̂3 − 𝑥2̂𝑓𝑧̂2 = 0, (10.21)

𝑓𝑧̂1 + 𝑓𝑧̂2 + 𝑓𝑧̂3 = 0, (10.22)

which represent moment equilibrium about the local x-axis, moment equilibrium about 
the local y-axis, and force equilibrium in the local z-direction, respectively. 
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10.2  Marchertas-Belytschko Triangular Shell 

 The Marchertas-Belytschko [1974] triangular shell element, or the BCIZ 
triangular shell element as it is referred to in the LS-DYNA user’s manual, was 
developed in the same time period as the Belytschko beam element [Belytschko, 
Schwer, and Klein, 1977], see Section 4, forming the first generation of co-rotational 
structural elements developed by Belytschko and co-workers.  This triangular shell 
element became the first triangular shell implemented in DYNA3D.  Although the 
Marchertas-Belytschko shell element is relatively expensive, i.e., the 𝐶0 triangular shell 
element with five through-the-thickness integration points requires 649 mathematical 
operations compared to 1,417 operations for the Marchertas-Belytschko triangular shell, 
it is maintained in LS-DYNA for compatibility with earlier user models.  However, as 
the LS-DYNA user community moves to application of the more efficient shell element 
formulations, the use of the Marchertas-Belytschko triangular shell element will 
decrease. 
 
 As mentioned above, the Marchertas-Belytschko triangular shell has a common 
co-rotational formulation origin with the Belytschko beam element.  The interested 
reader is referred to the beam element description, see Section 4, for details on the co-
rotational formulation.  In the next subsection a discussion of how the local element 
coordinate system is identical for the triangular shell and beam elements.  The 
remaining subsections discuss the triangular element’s displacement interpolants, the 
strain displacement relations, and calculations of the element nodal forces.  In the report 
[1974], much greater detail is provided. 

10.2.1  Element Coordinates 

 Figure 10.3(a) shows the element coordinate system, (𝐱,̂ 𝐲̂, 𝐳)̂ originating at Node 
1, for the Marchertas-Belytschko triangular shell.  The element coordinate system is 
associated with a triad of unit vectors (𝐞1, 𝐞2, 𝐞3) the components of which form a 
transformation matrix between the global and local coordinate systems for vector 
quantities.  The nodal or body coordinate system unit vectors (𝐛1, 𝐛2, 𝐛3) are defined 
at each node and are used to define the rotational deformations in the element, see 
Section 8.4.4. 
 
 The unit normal to the shell element 𝐞3 is formed from the vector cross product 

𝐞3 = 𝐥21 × 𝐥31, (10.23)
where 𝐥21 and 𝐥31 are unit vectors originating at Node 1 and pointing towards Nodes 2 
and 3 respectively, see Figure 10.3(b). 
 
 Next a unit vector g, see Figure 10.3(b), is assumed to be in the plane of the 
triangular element with its origin at Node 1 and forming an angle 𝛽 with the element 
side between Nodes 1 and 2, i.e., the vector 𝑙21.  The direction cosines of this unit vector 
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are represented by the symbols (𝑔𝑥, 𝑔𝑦, 𝑔𝑧).  Since g is the unit vector, its direction 
cosines will satisfy the equation 

𝑔𝑥
2 + 𝑔𝑦

2 + 𝑔𝑧
2 = 1. (10.24)

 
 Also, since 𝐠 and 𝐞3 are orthogonal unit vectors, their vector dot product must 
satisfy the equation 

𝑒3𝑥𝑔𝑥 + 𝑒3𝑦𝑔𝑦 + 𝑒3𝑧𝑔𝑧 = 0. (10.25)

In addition, the vector dot product of the co-planar unit vectors 𝐠 and 𝐥21 satisfies the 
equation 

𝐼21𝑥𝑔𝑥 + 𝐼21𝑦𝑔𝑦𝑔𝑦 + 𝐼21𝑧𝑔𝑧 = cos𝛽, (10.26)

where (𝑙21𝑥, 𝑙21𝑦, 𝑙21𝑧)are the direction cosines of 𝐥21. 
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 Solving this system of three simultaneous equation, i.e., Equation (10.24), (10.25), 
and (10.26), for the direction cosines of the unit vector g yields 

𝑔𝑥 = 𝑙21𝑥cos𝛽 + (𝑒3𝑦𝑙21𝑧 − 𝑒3𝑧𝑙21𝑦)sin𝛽, (10.27)

𝑔𝑦 = 𝑙21𝑦cos𝛽 + (𝑒3𝑧𝑙21𝑥 − 𝑒3𝑥𝑙21𝑧)sin𝛽, (10.28)

y
^

z
^

x
^

2

1

3

b1

b2

b3

e1

e2

e3

y
^

z
^

x
^

2

1

3

b1

b2

b3

e2

e3

I31

I21

α

α/2
β

(a) Element and body coordinates 
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 Figure 10.3.  Construction of local element coordinate system. 
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𝑔𝑧 = 𝑙21𝑧cos𝛽 + (𝑒3𝑥𝑙21𝑦 − 𝑒3𝑦𝑙21𝑥)sin𝛽. (10.29)

These equations provide the direction cosines for any vector in the plane of the 
triangular element that is oriented at an angle 𝛽 from the element side between Nodes 1 
and 2.  Thus the unit vector components of 𝐞1 and 𝐞2 are obtained by setting 𝛽 = 𝛼/2 
and 𝛽 = (𝜋 + 𝛼)/2 in Equation (8.22), respectively.  The angle 𝛼 is obtained from the 
vector dot product of the unit vectors 𝐥21 and 𝐥31, 

cos𝛼 = 𝐥21 ⋅ 𝐥31. (10.30)

10.2.2  Displacement Interpolation 

 As with the other large displacement and small deformation co-rotational 
element formulations, the nodal displacements are separated into rigid body and 
deformation displacements, 

𝐮 = 𝐮rigid + 𝐮def, (10.31)

where the rigid body displacements are defined by the motion of the local element 
coordinate system, i.e., the co-rotational coordinates, and the deformation displacement 
are defined with respect to the co-rotational coordinates.  The deformation 
displacement are defined by 

⎩{
{⎨
{{
⎧ 𝑢𝑥̂
𝑢𝑦̂

− − −
𝑢𝑧̂ ⎭}

}⎬
}}
⎫def

=

⎣
⎢⎢
⎢
⎡ 𝜙𝑥

𝑚

𝜙𝑦
𝑚

− − −
𝜙𝑧
𝑓 ⎦

⎥⎥
⎥
⎤

  
⎩{⎨
{⎧ 𝛿

− − −
𝜃 ̂ ⎭}⎬

}⎫, (10.32)

𝛅T = {𝛿12 𝛿23 𝛿31}, (10.33)

are the edge elongations and 

𝛉̂ = {𝜃1̂𝑥 𝜃1̂𝑦 𝜃2̂𝑥 𝜃2̂𝑦 𝜃3̂𝑥 𝜃3̂𝑦}, (10.34)

are the local nodal rotation with respect to the co-rotational coordinates. 
 
 The matrices 𝜙𝑥

𝑚, 𝜙𝑦
𝑚 and 𝜙𝑧

𝑓  are the membrane and flexural interpolation 
functions, respectively.  The element’s membrane deformation is defined in terms of the 
edge elongations.  Marchertas and Belytschko adapted this idea from Argyris et al., 
[1964], where incremental displacements are used, by modifying the relations for total 
displacements, 

𝛿𝑖𝑗 =
2(𝑥𝑗𝑖𝑢𝑗𝑖𝑥 + 𝑦𝑗𝑖𝑢𝑗𝑖𝑦 + 𝑧𝑗𝑖𝑢𝑗𝑖𝑧) + 𝑢𝑗𝑖𝑥

2 + 𝑢𝑗𝑖𝑦
2 + 𝑢𝑗𝑖𝑧

2

𝑙 𝑖𝑗
0 + 𝑙𝑖𝑗

, (10.35)

where 𝑥𝑗𝑖 = 𝑥𝑗 − 𝑥𝑖, etc. 
 
 The non-conforming shape functions used for interpolating the flexural 
deformations, 𝜙𝑧

𝑓  were originally derived by Bazeley, Cheung, Irons, and Zienkiewicz 



LS-DYNA Theory Manual Triangular Shells 

LS-DYNA DEV 06/21/18 (r:10113) 9-11 (Triangular Shells) 

[1965]; hence the LS-DYNA reference to the BCIZ element.  Explicit expressions for 𝜙𝑧
𝑓  

are quite tedious and are not given here.  The interested reader is referred to Appendix 
G in the original work of Marchertas and Belytschko [1974]. 
 
 The local nodal rotations, which are interpolated by these flexural shape 
functions, are defined in a manner similar to those used in the Belytschko beam 
element.  The current components of the original element normal are obtained from the 
relation 

𝐞3
0 = 𝛍T𝛌𝐞̅ 30, (10.36)

where 𝛍 and 𝛌 are the current transformations between the global coordinate system 
and the element (local) and body coordinate system, respectively.  The vector 𝐞 ̅3

 0 is the 
original element unit normal expressed in the body coordinate system.  The vector cross 
product between this current-original unit normal and the current unit normal, 

𝐞3 × 𝐞3
0 = 𝜃𝑥̂𝐞1 + 𝜃𝑦̂𝐞2, (10.37)

define the local nodal rotations as 

𝛉̂𝑥 = − 𝐞3̂𝑦
0 , (10.38)

𝛉̂𝑦 = 𝐞3̂𝑥
0 . (10.39)

Note that at each node the corresponding 𝛌 transformation matrix is used in Equation 
(10.36). 

10.2.3  Strain-Displacement Relations 

 Marchertas-Belytschko impose the usual Kirchhoff assumptions that normals to 
the midplane of the element remain straight and normal, to obtain 

𝑒𝑥𝑥 =
∂𝑢𝑥
∂𝑥 − 𝑧

∂2𝑢𝑧
∂𝑥2 , (10.40)

𝑒𝑦𝑦 =
∂𝑢𝑦

∂𝑦 − 𝑧
∂2𝑢𝑧
∂𝑦2 , (10.41)

2𝑒𝑥𝑦 =
∂𝑢𝑥
∂𝑦 +

∂𝑢𝑦

∂𝑥 − 2𝑧
∂2𝑢𝑧

∂𝑥 ∂𝑦 , (10.42)

where it is understood that all quantities refer to the local element coordinate system. 
 
 Substitution of Equations (10.32) into the above strain-displacement relations 
yields 

𝛆 = 𝐄m𝜹 − 𝑧𝐄f𝛉̂, (10.43)

where 

𝛆   T = {𝜀𝑥𝑥 𝜀𝑦𝑦 2𝜀𝑥𝑦}, (10.44)
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with 

𝐄m =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∂𝜙𝑥𝑖

𝑚

∂𝑥
∂𝜙𝑦𝑖

𝑚

∂𝑦
∂𝜙𝑥𝑖

𝑚

∂𝑦 +
∂𝜙𝑦𝑖

𝑚

∂𝑥 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (10.45)

and 

𝐄f =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∂2𝜙𝑧𝑖

𝑓

∂𝑥2

∂2𝜙𝑧𝑖
𝑓

∂𝑦2

2
∂2𝜙𝑧𝑖

𝑓

∂𝑥 ∂𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (10.46)

Again, the interested reader is referred to Appendices F and G in the original work of 
Marchertas and Belytschko [1974] for explicit expressions of the above two matrices. 

10.2.4  Nodal Force Calculations 

 The local element forces and moments are found by integrating the local element 
stresses through the thickness of the element.  The local nodal forces are given by 

𝐟 ̂ = ∫𝐄mT𝛔̂ 𝑑𝑉, (10.47)

𝐟T̂ = {𝑓12, 𝑓23, 𝑓31}, (10.48)

𝛔̂T = {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦}, (10.49)

where the side forces and stresses are understood to all be in the local convected 
coordinate system. 
 
 Similarly, the local moments are given by 

𝐦̂ = − ∫ 𝑧𝐄f
T

𝛔̂ 𝑑𝑉, (10.50)

 𝐦̂T = {𝑚̂1𝑥 𝑚̂1𝑦 𝑚̂2𝑥 𝑚̂2𝑦 𝑚̂3𝑥 𝑚̂3𝑦}. (10.51)

The through-the-thickness integration portions of the above local force and moment 
integrals are usually performed with a 3- or 5-point trapezoidal integration.  A three-
point inplane integration is also used; it is inpart this three-point inplane integration 
that increases the operation count for this element over the 𝐶0 shell, which used one-
point inplane integration with hourglass stabilization. 
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 The remaining transverse nodal forces are obtained from element equilibrium 
considerations.  Moment equilibrium requires 

{𝑓2̂𝑧

𝑓3̂𝑧
} =

1
2𝐴[ −𝑥3̂ 𝑦3̂

 𝑥2̂ − 𝑦2̂
] {

𝑚̂1𝑥 + 𝑚̂2𝑥 + 𝑚̂3𝑥
𝑚̂1𝑦 + 𝑚̂2𝑦 + 𝑚̂3𝑦

}, (10.52)

where 𝐴 is the area of the element.  Next transverse force equilibrium provides 

𝑓1̂𝑧 = −𝑓2̂𝑧 − 𝑓3̂𝑧. (10.53)

 
 The corresponding global components of the nodal forces are obtained from the 
following transformation 

⎩{
⎨
{⎧𝑓𝑖𝑥

𝑓𝑖𝑦
𝑓𝑖𝑧⎭}

⎬
}⎫

=
𝑓𝑖𝑗
𝑙𝑖𝑗

  
⎩{
⎨
{⎧

𝑥𝑖𝑗 + 𝑢𝑖𝑗𝑥
𝑦𝑖𝑗 + 𝑢𝑖𝑗𝑦
𝑧𝑖𝑗 + 𝑢𝑖𝑗𝑧 ⎭}

⎬
}⎫

+
𝑓𝑖𝑘
𝑙𝑖𝑘

  
⎩{
⎨
{⎧𝑥𝑖𝑘 + 𝑢𝑖𝑘𝑥

𝑦𝑖𝑘 + 𝑢𝑖𝑘𝑦
𝑧𝑖𝑘 + 𝑢𝑖𝑘𝑧 ⎭}

⎬
}⎫ + 𝑓 ̂𝑖𝑧

⎩{⎨
{⎧𝑒3𝑥

𝑒3𝑦
𝑒3𝑧⎭}⎬

}⎫. (10.54)

Finally, the local moments are transformed to the body coordinates using the relation 

⎩{
⎨
{⎧𝑚̅̅̅̅̅𝑖𝑥

𝑚̅̅̅̅̅𝑖𝑦
𝑚̅̅̅̅̅𝑖𝑧⎭}

⎬
}⎫ = 𝛌T𝛍

⎩{
⎨
{⎧𝑚̂𝑖𝑥

𝑚̂𝑖𝑦
𝑚̂𝑖𝑧⎭}

⎬
}⎫

. (10.55)
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11    
Fully Integrated Shell (Type 16) 

11.1  Introduction 

 Shell type 16 in LS-DYNA is a fully integrated shell with assumed strain 
interpolants used to alleviate locking and enhance in-plane bending behavior, see 
Engelmann, Whirley, and Goudreau [1989]; Simo and Hughes [1986]; Pian and 
Sumihara [1985].  It uses a local element coordinate system that rotates with the 
material to account for rigid body motion and automatically satisfies frame invariance 
of the constitutive relations.  The local element coordinate system is similar to the one 
used for the Belytschko-Tsay element, where the the first two basis vectors are tangent 
to the shell midsurface at the center of the element, and the third basis vector is in the 
normal direction of this surface and initially coincident with the fiber vectors.  

11.2  Hu-Washizu Three Field Principle 

 The element is derived starting from the Hu-Washizu three-field principle stated 
as 

0 = 𝛿Π(𝐯, 𝐃̅̅̅̅̅, 𝛔̅̅̅̅̅) = ∫ 𝛿𝐃̅̅̅̅̅: 𝛔(𝐃̅̅̅̅̅)𝑑Ω
Ω

+ ∫ 𝛿[𝛔̅̅̅̅̅: (𝐃(𝐯) − 𝐃̅̅̅̅̅)]𝑑Ω
Ω

− 𝛿𝑃ext + 𝛿𝑃kin, (11.1)

where 𝐯 is the velocity, 𝐃̅̅̅̅̅ is the assumed strain rate, 𝛔̅̅̅̅̅ is the assumed stress, 𝛔 denotes 
the constitutive update as a function of the assumed strain rate, and 𝐃 is the strain rate 
computed from the velocity field. 𝛿𝑃kin and 𝛿𝑃ext are the virtual power contributions 
from the inertial and external forces, respectively, and Ω denotes the domain of the 
shell element.  The contribution from the internal forces can be decomposed in the in-
plane and transverse shear parts as 

0 = 𝛿𝑃int
𝑝 + 𝛿𝑃int

𝑠 + 𝐻𝑝 + 𝐻𝑠 − 𝛿𝑃ext + 𝛿𝑃kin, (11.2)

where 
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𝛿𝑃int
p = ∫ 𝛿𝐃̅̅̅̅̅p: 𝛔p(𝐃̅̅̅̅̅)𝑑Ω

Ω
, (11.3)

𝛿𝑃int
s = 𝜅 ∫ 𝛿𝐃̅̅̅̅̅s: 𝛔s(𝐃̅̅̅̅̅)𝑑Ω

Ω
, (11.4)

𝐻p = ∫ 𝛿[𝛔̅̅̅̅̅p: (𝐃p(𝐯) − 𝐃̅̅̅̅̅p)]𝑑Ω
Ω

, (11.5)

𝐻s = 𝜅 ∫ 𝛿[𝛔̅̅̅̅̅s: (𝐃s(𝐯) − 𝐃̅̅̅̅̅s)]𝑑Ω
Ω

. (11.6)

Here κ is the shear correction factor and the superscripts mean that only the in-plane 
components (p) or transverse shear (s) components are treated. 

11.3  In-plane Assumed Strain Field 

 Using the standard isoparametric interpolation for the four-node quadrilateral 
element, the in-plane strain rate can be written 

𝐃p = [𝐁m 𝑧𝐁b] [𝐯
p

𝛉̇p], (11.7)

where 𝐁m and 𝐁b are strain-displacement matrices for membrane and bending modes, 
respectively, 𝑧 is the through thickness coordinate and 𝐯p and 𝛉̇p are the nodal (in-
plane) translational and rotational velocities, respectively. 
 
 To derive the in-plane assumed strain field, the interpolants for the assumed 
stress and strain rates are chosen as 

𝛔̅̅̅̅̅p = [𝐒p 𝐒p][𝐬m
𝐬b ], (11.8)

𝐃̅̅̅̅̅p = 𝐂−1[𝐒p 𝐒p][𝐞m
𝐞b ], (11.9)

where 

𝐒p =
⎣
⎢⎢
⎡1 0 0 𝑎1

2𝜂̂ 𝑏1
2𝜉 ̂

0 1 0 𝑎2
2𝜂̂ 𝑏2

2𝜉 ̂
0 0 1 𝑎1𝑎2𝜂̂ 𝑏1𝑏2𝜉 ⎦̂

⎥⎥
⎤

, (11.10)

and 

𝜉 ̂ = 𝜉 −
1

|Ω| ∫ 𝜉𝑑Ω
Ω

, (11.11)
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𝜂̂ = 𝜂 −
1

|Ω| ∫ 𝜂𝑑Ω
Ω

. (11.12)

Furthermore, 𝐂 is the plane stress constitutive matrix and 𝜉  and 𝜂 are the isoparametric 
coordinates.  The coefficients 𝑎𝑖 and 𝑏𝑖 are defined through 

𝐉0 =
1
4 [𝑎1 𝑏1

𝑎2 𝑏2
], (11.13)

where 𝐉0 is the area jacobian matrix from the isoparametric to physical domain 
computed at the element center.  
 
 Inserting the expressions for the strain rate and assumed stress and strain rate 
into the expression for 𝐻p and requiring 𝐻p = 0 for arbitrary 𝐬m, 𝐬b, 𝐞m and 𝐞b, yields 
the following expression for the assumed strain rate in terms of the nodal velocities 

𝐃̅̅̅̅̅p = [𝐁̅̅̅̅̅m 𝑧𝐁̅̅̅̅̅b] [𝐯
p

𝛉̇p], (11.14)

where 

𝐁̅̅̅̅̅m = 𝐂−1𝐒p𝐄̂𝐁̂m, (11.15)

𝐁̅̅̅̅̅b = 𝐂−1𝐒p𝐄̂𝐁̂b, (11.16)

and 

𝐄̂ = ∫ 𝐒pT𝐂−1𝐒p𝑑Ω
𝛺

, (11.17)

𝐁̂m = ∫ 𝐒pT𝐁m𝑑Ω
𝛺

, (11.18)

𝐁̂b = ∫ 𝐒pT𝐁b𝑑Ω
𝛺

. (11.19)

11.4  Transverse Shear Assumed Strain Field 

 The transverse shear strain is the Bathe-Dvorkin [1984] assumed natural strain 
field and is derived as follows.  Using the standard isoparametric interpolation for the 
four-node quadrilateral element, the transverse shear strain rate can be written 

𝐃s = 𝐁𝑡[
𝐯𝑧
𝛉̇𝑝], (11.20)

where 𝐁𝑡 is the corresponding strain-displacement matrix and 𝐯𝑧 and 𝛉̇𝑝 are the nodal 
out-of-plane translational and in-plane rotational velocities, respectively. 
 
 The assumed strain rate is defined as  
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𝐃̅̅̅̅̅s = 𝐁̅̅̅̅̅𝑡[
𝐯𝑧
𝛉̇p], (11.21)

where 

𝐁̅̅̅̅̅𝑡 = 𝐉−T𝐄 ∫ 𝐒𝑠T𝐉T𝐁𝑡𝑑Ω
Ω

, (11.22)

Here 𝐉 is the area jacobian matrix from the isoparametric domain to the physical 
domain,  

𝐄 =
1
2 [1 − 𝜉 1 + 𝜉 0 0

0 0 1 − 𝜂 1 + 𝜂], (11.23)

𝐒s = [δ(η)δ(1 + ξ) δ(η)δ(1 − ξ) 0 0
0 0 δ(ξ)δ(1 + η) δ(ξ)δ(1 − η)], (11.24)

and 𝛿 is the Dirac delta function.  Defining the assumed stress as 
𝛔̅̅̅̅̅p = 𝐉𝐒s𝐬, (11.25)

yields 𝐻s = 0 regardless of the choice of 𝐬 and thus a B-bar expression for the assumed 
transverse strain rates is obtained as given above.  The result is equivalent to defining 
the isoparametric assumed shear strain rates by interpolating the corresponding strain 
rates from the mid-side points A, B, C and D shown in Figure 11.1. 
 

  

Figure 11.1.  Midside locations of isoparametric strain rates 

A

B

C

D

ξ
η
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11.5  Rigid Body Motion 

 For the in-plane assumed strain field, a rigid body motion may induce a nonzero 
strain rate.  The expression for the in-plane strain rate for a rigid body motion is 

𝐃̅̅̅̅̅r = 𝐁̅̅̅̅̅r𝛉̇, (11.26)

where 

𝐁̅̅̅̅̅r = 𝑤𝐁̅̅̅̅̅m𝐑. (11.27)
 

11.6  Belytschko-Leviathan Projection 

 For warped configurations and since the geometry of the current shell element is 
flat, extremely flexible behavior can be expected for some modes of deformation.  
Following [Belytschko and Leviathan 1994], a 7-mode projection matrix 𝐏 (3 rigid body 
rotation modes and 4 nodal drill rotation modes) is constructed used for projecting out 
these zero energy modes.  The explicit formula for the projection matrix is given by  

𝐏 = 𝐈 − 𝐑(𝐑T𝐑)−1𝐑T, (11.28)

where 𝐑 is a matrix where each column corresponds to the nodal velocity of a zero 
energy mode.  This projection matrix operates on the nodal velocities prior to 
computing the strain rates, and also on the resulting internal force vector to maintain 
invariance of the internal power.
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12    
Shells with Thickness Stretch 

12.1  Introduction 

Thickness stretch is of considerable importance in problems involving finite thickness 
strains, contact and surface loads in nonlinear shell applications.  As an example, in 
sheet metal forming applications, the presence of normal stresses in thickness direction 
improves the accuracy of the solution and also its response on the double sided contact 
zone between dies and sheet.  It has also been shown that a kinematical representation 
of a continuous thickness field improves the instability characteristics when compared 
to experimental results, see Figure Figure 1210-2 and Björklund [2014]. 
There have been several attempts to account for the through-thickness deformation in 
the literature, this implementation is inspired by the 7P-CYSE shell introduced in 
Cardoso and Yoon [2005].  However, the formulation in this paper is rather complicated 
and involves for instance assumed shear strains (ANS) to alleviate shear locking and 
complicated setup of internal forces and stiffness matrices by combined analytical and 
numerical integration to restore rank deficiencies.  A direct implementation of this shell 
following the theory was ruled out for efficiency reasons, and another approach was 
taken in order to presumably get a useful shell. 
The Belytschko-Tsay shell element is one of the fastest elements for thin shell 
simulations.  This, together with its robustness, is the reason why it is popular in finite 
element codes.  The implementation of shell type 25, the reduced integrated shell with 
thickness stretch, is based on the formulation of the Belytschko-Tsay shell with a 
relaxation of the thickness variable.  This ensures that it will be efficient and hopefully 
also possess properties useful for applications where through thickness deformation is 
important.  As a fully integrated alternative, shell type 26 is available as an analogue 
extension of shell type 16 (fully integrated Belytschko-Tsay), and a triangular shell with 
thickness stretch is available as type 27 mainly to allow for hybrid meshes (quadrilat-
erals combined with triangles) in this context. 
The theory that follows is very similar to that of the Belytschko-Tsay (type 2), Fully 
Integrated Shell (type 16) and C0-shell (type 4), and here we emphasize on the parts 
involving the amendments to those shell formulations. 
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12.2  Shell Type 25 

12.2.1  Formulation 

The kinematics, i.e., position 𝒙 and velocity 𝒗, of a material point in the shell with 
through thickness stretch can be written in the shell element local coordinate system as 
(sum over nodal indices 𝐼) 

𝒙 = (𝒙𝐼 + 𝑠𝐼𝒏)𝑁𝐼(𝜉 , 𝜂)
𝒗 = (𝒗𝐼 + 𝑠𝐼𝝎𝐼 × 𝒏 + 𝑠𝐼̇𝒏)𝑁𝐼(𝜉 , 𝜂)

(12.29)
  

 

where we have set 

𝑠𝐼 =
𝜍
2 𝑡𝐼 + (1 − 𝜍2)𝑞𝐼.

(12.30)
  

 

The kinematics is based on the Belytschko-Tsay shell with the additional feature that 
the thickness is variable, whence the last term in the second of (12.29). The thickness 
variable is represented by 𝑡𝐼 and an additional strain variable 𝑞𝐼 to allow for a linear 
strain through the thickness.  The latter represents the location of the mid-surface and is 
important to avoid “Poisson locking” in bending modes of deformation, so the shell has 
two additional degrees of freedom compared to the Belytschko-Tsay shell.  The other 
variables and parameters are the nodal coordinates 𝒙𝐼, nodal velocities 𝒗𝐼, nodal 
rotational velocities 𝝎𝐼, shell normal 𝒏 = (0 0 1)𝑇 and bilinear isoparametric shape 
functions 𝑁𝐼. From this we can determine the local velocity gradient as  

𝜕𝒗
𝜕𝒙 = (𝒗𝐼 + 𝑠𝐼𝝎𝐼 × 𝒏 + 𝑠𝐼̇𝒏)

𝜕𝑁𝐼
𝜕𝒙 + (𝝎𝐼 × 𝒏

𝜕𝑠𝐼
𝜕𝒙 + 𝒏

𝜕𝑠𝐼̇
𝜕𝒙) 𝑁𝐼. 

(12.31)
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Shell 16, no transverse shear 
stress and discontinuous 
thickness field

Shell 26, transverse shear stress 
and continuous thickness field 



Shells with Thickness Stretch  LS-DYNA Theory Manual 

9.8 

In the local system one can assume a vanishing third component of both 𝝎𝐼 × 𝒏 and 𝜕𝑁𝐼𝜕𝒙 , 
and the thickness strain rate is given by 

𝜀𝑡̇ =
𝜕𝑠 ̇

𝜕𝑥3
=

𝑡 ̇− 4𝜍𝑞 ̇
𝑡 − 4𝜍𝑞

(12.32)
  

 

where we used the notation 𝑠 = 𝑠𝐼𝑁𝐼, 𝑡 = 𝑡𝐼𝑁𝐼 and 𝑞 = 𝑞𝐼𝑁𝐼, sum over 𝐼. For small 
strains 𝑞 = 0, and this shows that the thickness strain rate is at most linear. 
For evaluating internal forces we define the strain-displacement tensor through 
(assuming Voigt notation and sum over 𝐼) 

𝜕𝒗
𝜕𝒙 = 𝑩𝐼𝒖𝐼 ,

(12.33)
  

 

and the nodal vector 𝒖𝐼 is given by 

𝒖𝐼 = (𝒗𝐼
𝑇 𝝎𝐼

𝑇 𝑡𝐼̇ 𝑞𝐼̇)𝑇 , (12.34)
  

indicating the 8 degrees of freedom per node in these elements.  The principle of virtual 
work results in an internal force vector 

𝒇𝐼 = ∫𝑩𝐼
𝑇𝝈 , (12.35)

  
 

where 𝝈 is the Cauchy stress and the integral is over the current element configuration. 

12.2.2  Hourglass modes 

Shell type 25 is a reduced integration element and in addition to the six hourglass 
modes present in the original Belytschko-Tsay shell, two more are added by the 
introduction of the thickness variables.  Fortunately these are orthogonal to any rigid 
body motion and/or any other hourglass mode, and are given by 

𝑡𝐼 = ℎ𝐼

𝑞𝐼 = ℎ𝐼

(12.36)
  
  

 

where 

ℎ𝐼 = (−1)𝐼/4
(12.37)
  
  

and all other displacement components are zero.  To restrain these modes we have 
included generalized strains and stresses according to the following (sum over 𝐼) 

𝜀𝑡̇ℎ =
ℎ𝐼𝑡𝐼̇

𝑡

𝜀𝑞̇
ℎ = −

4ℎ𝐼𝑞𝐼̇
𝑡

(12.38)
  
  
  

 

The corresponding generalized stresses are obtained through 

𝜎̇𝑡 = 𝐸𝐻𝜀𝑡̇ℎ
(12.39)
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𝜎̇𝑞 =
𝐸𝐻
3 𝜀𝑞̇

ℎ   
 

and the forces are then given by 

𝑓𝐼𝑡 = 𝐴ℎ𝐼𝜎𝑡
𝑓𝐼

𝑞 = −4𝐴ℎ𝐼𝜎𝑞

(12.40)
  
  
  

where 𝐴 is the area of the element and the value of 𝐸𝐻 is taken as 𝐸𝐻 = 0.05𝐸, i.e., 5% of 
the Young’s modulus. 

12.3  Shell Type 26 

12.3.1  Modifying shell type 16 

When using full integration, care must be taken in order to avoid the well-known shear 
locking phenomenon.  Common techniques developed for this are the ANS (Assumed 
Natural Strain) and various types of EAS (Enhanced Assumed Strain) techniques.  In 
Cardoso and Yoon [2004] the ANS technique is used in which the transverse shear 
strains are interpolated from the mid points of the shell element edges.  It is reported 
that this is a successful technique, but when consulting Bischoff and Ramm [1997] it is 
reported that it is not well suited to avoid membrane locking and reduce mesh 
distortion sensitivity.  They are proposing a combination of ANS and EAS to get a 
decent shell element formulation.  However, elements that use an EAS in general 
require a nonlinear solution for the assumed strain variables which can be computa-
tionally rather expensive.  The approach taken here is to suitably modifying an existing 
LS-DYNA standard assumed strain element, i.e., element type 16, which is a fully 
integrated extension of the Belytschko-Tsay element.  Due to the rather complex setup 
of assumed strain components, we use the following in order to extend the element to 
variable thickness stretch without having to bother about all the details of the 
kinematics. 
In the beginning of a time step, the thickness components are reset to the corresponding 
value in the center of the shell element.  That is 

𝑠 ̃ =
𝑠1 + 𝑠2 + 𝑠3 + 𝑠4

4
(12.41)
  

 

is used for evaluating the strain increments.  However, the rates of the thickness 
variables are unchanged, so this can be seen as an assumed strain approach in the 
thickness direction.  Using this, the velocity gradient expression is an augmentation of 
that of element 16 

𝜕𝒗
𝜕𝒙 =

𝜕𝒗
𝜕𝒙∣16

+ 𝑠𝐼̇𝒏
𝜕𝑁𝐼
𝜕𝒙 + 𝒏

𝜕𝑠𝐼̇
𝜕𝒙 𝑁𝐼.

(12.42)
  

 

This should be interpreted that the velocity gradient used in shell element type 16 as a 
function of the current thickness coordinate 𝑠 ̃ (and its isoparametric derivative) is 
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augmented by thickness component rates.  Furthermore, to avoid locking phenomena 
and still maintaining a non-singular element we use single point integration of the 
thickness strain component and an ANS approach for the transverse shear strain 
components emanating from the rates of thickness components.  This approach is 
inspired by the methodology used for the Belytschko-Tsay shell in which the nodal 
fiber vectors are reset in the beginning of each time step, and in an analogous way we 
reset the thickness components in the beginning of each time step in this shell element 
formulation.  

12.4  Shell Type 27 

12.4.1  Modifying shell type 4 

A triangular element with thickness stretch was added to allow consistent sorting of 
triangular shell elements, and not necessarily intended to be used for other purposes.  
The approach taken is very similar to that of shell type 26, the existing LS-DYNA 
standard C0 triangular element was modified according to the same principles as 
described in the previous section.  In this case the velocity gradient expression is 
modified according to 

𝜕𝒗
𝜕𝒙 =

𝜕𝒗
𝜕𝒙∣4

+ 𝒏
𝜕𝑠 ̃̇
𝜕𝒙

(12.43)
  

 

where again the subindex 4 indicates that it’s the velocity gradient of element type 4 
evaluated with respect to the average thickness value 𝑠 ̃and its isoparametric derivative.  
For the triangular element type 27 the thickness is always constant in the element, a 
decision that was taken for the sake of simplicity.  More on thickness distribution in the 
next section. 

12.5  Related Features 

12.5.1  Continuous vs decoupled thickness field 

A drawback with having a continuous thickness field is that complicated geometries 
tend to lock the structure.  This approach assumes that the geometry is relatively flat 
and may be suitable in metal forming but not in other situations.  To remedy this we 
added the option to decouple the thickness field so that the thickness is discontinuous 
between elements, which makes the element suitable for crash analysis.  To activate this 
option the user should put the variable IDOF on *SECTION_SHELL equal to 2, which 
actually is the default.  For shell element type 25, this option will make the thickness 
variable constant in the element, and the implementation follows the one described 
above with the restriction 𝑡𝐼 = 𝑡 (constant) and 𝑞𝐼 = 𝑞 (constant).  No additional zero 
energy modes are present with this approach. 
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Using the same approach for element type 26 turns out to be a poor choice since it leads 
to locking phenomenon due to full integration.  Instead we use the approach where the 
thickness is bilinear within but discontinuous between elements, which turns out to be 
successful.  That means that the same code can be executed regardless of the choice of 
IDOF for this element. 

12.5.2  Nodal masses 

For dynamic analysis some mass quantity must be associated with the extra degrees of 
freedom, and although a consistent finite element approach is applicable the mass is 
here empirically estimated from elaborating with the kinetic energy for compressive in-
plane and out-of-plane modes.  That is, the kinetic energy of an in-plane uniaxial strain 
mode should have the same kinetic energy as the equivalent out-of-plane ditto.  This 
assumption leads to a mass of the scalar nodes given by 𝑚 = 𝑚𝑇/4 where 𝑚𝑇 is the 
translational mass.  A problem with this approach is that it leads to instabilities due to 
high eigenfrequencies of the shell.  For this reason we have set  

𝑚 = max(1,
3𝐴
2𝑡2)𝑚𝑇

(12.44)
  

 

where 𝐴 is the element area and 𝑡 is the thickness. 

 

12.5.3  Transfer of contact forces 

The new degrees of freedom allows for a different treatment of how contact forces are 
transferred from master to slave, for this discussion we refer to Figure Figure 1210-3. 
The nodal forces in local system acting on the slave from contact on the upper and 
lower surface can roughly be written 

𝒇  

−𝒇

𝑡 

Figure 1210-3 Contact influence on thickness stretch shells.

𝒏
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𝒇𝐼
𝑢/𝑙 = (±

𝒇𝑇

4
𝑡
2 (𝒏 ×

𝒇
4)
𝑇 𝒏 ∙ 𝒇

8 0)
𝑇 (12.45)

  
 

where we used the same order of the degrees of freedom as in (12.34). Summing these 
two force contributions give nodal contact forces acting on the slave given by 

𝒇𝐼𝑐 = (𝟎𝑇 𝑡 (𝒏 ×
𝒇
4)
𝑇 𝒏 ∙ 𝒇

4 0)
𝑇 (12.46)

  
 

 
We can see that the total force include nodal moments caused by the frictional forces 
acting at an offset from the midsurface of the shell, but also a pressure acting on the 
thickness degree of freedom.  In conclusion, the relaxation of the thickness in the 
Belytschko-Tsay shell allows for double sided contact zones, i.e., the shell is affected by 
contact pressure from both sides even though they are of equal magnitude.  This is not 
possible in traditional shell with zero normal stress, unless a modified option is used. 

12.6  Contact Pressure Treatment in Shells 2, 4 and 16 

By specifying IDOF = 3 on *SECTION_SHELL for the Belytschko-Tsay (type 2), C0-
element (type 4) and Fully Integrated (type 16) shell, the contact pressure influences the 
stress and can induce thickness changes.  This is a short explanation of the theory 
behind. 
The z-stress in a shell element is usually restricted to be zero, but in this case we intend 
to solve the constitutive update using the constraint 

𝜎𝑧𝑧 = 𝛼𝜎𝑐(𝑧) (12.47)
  

where  

𝜎𝑐(𝑧) = −
𝜎𝑐𝑏 − 𝜎𝑐𝑡

4 (𝑧3 − 3𝑧) −
𝜎𝑐𝑏 + 𝜎𝑐𝑡

2  
(12.48)

  
 

and 
 𝜎𝑐𝑏= contact pressure at bottom surface of shell 
 𝜎𝑐𝑡= contact pressure at top surface of shell 
 𝑧= isoparametric coordinate through the thickness between -1 and 1 
 𝛼= scaling parameter 
The scaling parameter can be set as the 8th parameter on card 3 on 
*CONTROL_CONTACT. 
The constitutive update for en elastic-plastic material can be written 

𝛔𝑛+1 = 𝛔𝑛 + 𝐾∆𝜀𝑣𝑜𝑙𝐈 + ∆𝐬(𝐬𝑛, ∆𝛆𝑑𝑒𝑣) 
(12.49)

  

𝜎𝑧𝑧
𝑛+1 = 𝜎𝑐𝑛+1 

(12.50)
  

where 
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 𝛔𝑛+1 = stress in step n+1 
 𝛔𝑛 = stress in step n 
 𝐾= bulk modulus 
 ∆𝛆 = strain increment 
 ∆𝜀𝑣𝑜𝑙 = ∆𝛆: 𝐈 = volumetric strain increment 
 𝐈 = unit tensor 
 ∆𝐬= deviatoric stress increment 
 𝐬𝑛 = 𝛔𝑛 − 𝛔𝑛:𝐈 

3 𝐈 = deviatoric stress in step n 
 ∆𝛆𝑑𝑒𝑣 = ∆𝛆 − ∆𝛆: 𝐈

3  𝐈 = deviatoric strain increment 
The independent variables in (12.49) and (12.50) are 𝜎𝑥𝑥

𝑛+1, 𝜎𝑦𝑦
𝑛+1, 𝜎𝑥𝑦

𝑛+1, 𝜎𝑦𝑧
𝑛+1, 𝜎𝑥𝑧

𝑛+1 and 
∆𝜀𝑧𝑧. 
Here we assume that the stress response can be decoupled into a volumetric and 
deviatoric part and the deviatoric stress increment depends only on the deviatoric part 
of the stress and strain increment as indicated in the formula.  We can rewrite (12.49) 
and (12.50) as 

𝛔̃𝑛+1 = 𝛔̃𝑛 + 𝐾∆𝜀𝑣̃𝑜𝑙𝐈 + ∆𝐬(𝐬𝑛̃, ∆𝛆𝑑̃𝑒𝑣) (12.51)
 

𝜎̃𝑧𝑧
𝑛+1 = 0 

(12.52)
  

by substituting 
𝛔̃𝑛 = 𝛔𝑛 − 𝜎𝑐𝑛𝐈 (12.53)

𝛔̃𝑛+1 = 𝛔𝑛+1 − 𝜎𝑐𝑛+1𝐈 
(12.54)

  
and 

∆𝛆̃ = ∆𝛆 −
𝜎𝑐𝑛+1 − 𝜎𝑐𝑛

3𝐾 𝐈.
(12.55)

  
 

Since the deviatoric stress and strain increment is not changed, i.e., 
𝐬𝑛 = 𝐬𝑛̃ (12.56)

∆𝛆𝑑𝑒𝑣 = ∆𝛆𝑑̃𝑒𝑣 (12.57)
  

with this substitution it follows that the existing material routines can be used for 
solving (12.51) and (12.52) in terms of 𝜎̃𝑥𝑥

𝑛+1, 𝜎̃𝑦𝑦
𝑛+1, 𝜎̃𝑥𝑦

𝑛+1, 𝜎̃𝑦𝑧
𝑛+1, 𝜎̃𝑥𝑧

𝑛+1 and ∆𝜀𝑧̃𝑧 and then use 
the inverse of (12.54) and (12.55) to establish the stress and through thickness strain 
increment.  Thus, the algorithm is as follows 

1.Given 𝛔𝑛, ∆𝛆, 𝜎𝑐𝑛 and 𝜎𝑐𝑛+1  
2.Use (12.53) and (12.55) to compute  𝛔̃𝑛 and ∆𝛆.̃ 
3.Do a constitutive update, (12.51) and (12.52), to get  𝛔̃𝑛+1 and ∆𝜀𝑧̃𝑧. 
4.Use (12.54) and (12.55) to compute 𝛔𝑛+1  and ∆𝜀𝑧𝑧. 
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9.14 

Figure 1210-4 Compression of a shell sheet between two rigid 
plates using IDOF = 3 on shell 16. 
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13    
Hughes-Liu Shell 

 The Hughes-Liu shell element formulation ([Hughes and Liu 1981a, b], [Hughes 
et al., 1981], [Hallquist et al., 1985]) was the first shell element implemented in LS-
DYNA.  It was selected from among a substantial body of shell element literature 
because the element formulation has several desirable qualities: 

• it is incrementally objective (rigid body rotations do not generate strains), 
allowing for the treatment of finite strains that occur in many practical applica-
tions; 

• it is simple, which usually translates into computational efficiency and robust-
ness; 

• it is compatible with brick elements, because the element is based on a degener-
ated brick element formulation.  This compatibility allows many of the efficient 
and effective techniques developed for the DYNA3D brick elements to be used 
with this shell element; 

• it includes finite transverse shear strains; 

• a through-the-thickness thinning option (see [Hughes and Carnoy 1981]) is also 
available when needed in some shell element applications. 

 
 The remainder of this section reviews the Hughes-Liu shell element (referred to 
by Hughes and Liu as the U1 element) which is a four-node shell with uniformly 
reduced integration, and summarizes the modifications to their theory as it is 
implemented in LS-DYNA.  A detailed discussion of these modifications, as well as 
those associated with the implementation of the Hughes-Liu shell element in NIKE3D, 
are presented in an article by Hallquist and Benson [1986]. 
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13.1  Geometry 

 The Hughes-Liu shell element is based on a degeneration of the standard 8-node 
brick element formulation, an approach originated by Ahmad et al. [1970].  Recall from 
the discussion of the solid elements the isoparametric mapping of the biunit cube: 

𝐱(𝜉 , 𝜂, 𝜁) = 𝑁𝑎(𝜉 , 𝜂, 𝜁)𝐱𝑎, (13.1)

𝑁𝑎 (𝜉 , 𝜂, 𝜁) =
(1 + 𝜉𝑎𝜉)(1 + 𝜂𝑎𝜂)(1 + 𝜁𝑎𝜁)

8 , (13.2)

where 𝐱 is an arbitrary point in the element, (𝜉 , 𝜂, 𝜁) are the parametric coordinates, 𝐱𝑎 
are the global nodal coordinates of node 𝑎, and 𝑁𝑎 are the element shape functions 
evaluated at node 𝑎, i.e., (𝜉𝑎, 𝜂𝑎, 𝜁𝑎) are (𝜉 , 𝜂, 𝜁) evaluated at node 𝑎. 
 
 In the shell geometry, planes of constant 𝜁  will define the lamina or layers of the 
shell and fibers are defined by through-the-thickness lines when both 𝜉  and 𝜂 are 
constant (usually only defined at the nodes and thus referred to as ‘nodal fibers’).  To 
degenerate the 8-node brick geometry into the 4-node shell geometry, the nodal pairs in 
the 𝜁  direction (through the shell thickness) are combined into a single node, for the 
translation degrees of freedom, and an inextensible nodal fiber for the rotational 
degrees of freedom.  Figure 13.1 shows a schematic of the bi-unit cube and the shell 
element. 
 
 The mapping of the bi-unit cube into the shell element is separated into two parts 

𝐱(𝜉 , 𝜂, 𝜁) = 𝐱(̅𝜉 , 𝜂) + 𝐗(𝜉 , 𝜂, 𝜁), (13.3)
where 𝐱 ̅denotes a position vector to a point on the reference surface of the shell and X is 
a position vector, based at point 𝐱 ̅ on the reference, that defines the fiber direction 
through that point.  In particular, if we consider one of the four nodes which define the 
reference surface, then 

𝐱 ̅(𝜉 , 𝜂) = 𝑁𝑎 (𝜉 , 𝜂) 𝐱𝑎̅, (13.4)

𝐗(𝜉 , 𝜂, 𝜁) = 𝑁𝑎 (𝜉 , 𝜂)𝐗𝑎(𝜁). (13.5)
 
 With this description, arbitrary points on the reference surface 𝐱 ̅are interpolated 
by the two-dimensional shape function 𝑁(𝜉, 𝜂) operating on the global position of the 
four shell nodes that define the reference surfaces, i.e., 𝐱𝑎̅.  Points off the reference 
surface are further interpolated by using a one-dimensional shape function along the 
fiber direction, i.e., 𝐗𝑎(𝜁), where 

𝐗𝑎(𝜁) = 𝑧𝑎(𝜁) 𝐗̂𝑎, (13.6)

𝑧𝑎(𝜁) = 𝑁+(𝜁)𝑧𝑎+ + 𝑁−(𝜁)𝑧𝑎−, (13.7)
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𝑁+(𝜁) =
(1 + 𝜁)

2 , (13.8)

𝑁−(𝜁) =
(1 − 𝜁)

2
(13.9)

As shown in the lower portion of Figure 13.1, 𝐗̂𝑎 is a unit vector in the fiber direction 
and 𝑧(𝜁) is a thickness function.  (Thickness changes (see [Hughes and Carnoy 1981]) 
are accounted for by explicitly adjusting the fiber lengths at the completion of a time 
step based on the amount of straining in the fiber direction.  Updates of the fiber lengths 
always lag one time step behind other kinematical quantities.) 
 
 The reference surface may be located at the mid-surface of the shell or at either of 
the shell’s outer surfaces.  This capability is useful in several practical situations 
involving contact surfaces, connection of shell elements to solid elements, and offsetting 
elements such as stiffeners in stiffened shells.  The reference surface is located within 
the shell element by specifying the value of the parameter 𝜁  ̅(see lower portion of Figure 
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Figure 13.1.  Mapping of the biunit cube into the Hughes-Liu shell element
and nodal fiber nomenclature. 
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13.1). When 𝜁 ̅ = – 1, 0, +1, the reference surface is located at the bottom, middle, and 

top surface of the shell, respectively. 
 
 The Hughes-Liu formulation uses two position vectors, in addition to 𝜁 ,̅ to locate 
the reference surface and define the initial fiber direction.  The two position vectors 𝑥𝑎+ 
and 𝑥𝑎− are located on the top and bottom surfaces, respectively, at node 𝑎.  From these 
data the following are obtained: 

𝑥𝑎̅  =
1
2 (1 − 𝜁)̅𝑥𝑎− + (1 + 𝜁)̅𝑥𝑎+, (13.10)

𝑋̂𝑎 =
(𝑥𝑎+ − 𝑥𝑎−)

ℎ𝑎
, (13.11)

𝑧𝑎+ =
1
2 (1 − 𝜁)̅ℎ𝑎, (13.12)

𝑧𝑎− = −
1
2 (1 + 𝜁)̅ℎ𝑎, (13.13)

ℎ𝑎 = ∥𝑥𝑎+ − 𝑥𝑎−∥, (13.14)
where ‖ ⋅ ‖ is the Euclidean norm. 
 

13.2  Kinematics 

 The same parametric representation used to describe the geometry of the shell 
element, i.e., reference surface and fiber vector interpolation, are used to interpolate the 
shell element displacement, i.e., an isoparametric representation.  Again, the 
displacements are separated into the reference surface displacements and rotations 
associated with the fiber direction: 

𝐮(𝜉 , 𝜂, 𝜁) = 𝐮̅̅̅̅(𝜉 , 𝜂) + 𝐔(𝜉 , 𝜂, 𝜁), (13.15)

𝐮̅̅̅̅(𝜉 , 𝜂) = 𝑁𝑎(𝜉 , 𝜂)𝐮̅̅̅̅𝑎, (13.16)

𝐔(𝜉, 𝜂, 𝜁) = 𝑁𝑎(𝜉 , 𝜂)𝐔𝑎(𝜁), (13.17)

𝐔𝑎(𝜁) = 𝑧𝑎(𝜁)𝐔̂𝑎, (13.18)

where 𝐮 is the displacement of a generic point; 𝐮̅̅̅̅ is the displacement of a point on the 
reference surface, and 𝐔 is the ‘fiber displacement’ rotations; the motion of the fibers 
can be interpreted as either displacements or rotations as will be discussed. 
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 Hughes and Liu introduce the notation that follows, and the associated 
schematic shown in Figure 13.2, to describe the current deformed configuration with 
respect to the reference configuration: 

𝐲 = 𝐲̅̅̅̅ + 𝐘, (13.19)

𝐲̅̅̅̅ = 𝐱̅ + 𝐮̅̅̅̅, (13.20)

𝐲̅̅̅̅𝑎 = 𝐱𝑎̅ + 𝐮̅̅̅̅𝑎, (13.21)

𝐘 = 𝐗 +𝐔, (13.22)

𝐘𝑎 = 𝐗𝑎 + 𝐔𝑎, (13.23)

𝐘̂𝑎 = 𝐗̂𝑎 + 𝐔̂𝑎. (13.24)

In the above relations, and in Figure 13.2, the 𝐱 quantities refer to the reference 
configuration, the 𝐲 quantities refer to the updated (deformed) configuration and the 𝐮 
quantities are the displacements.  The notation consistently uses a superscript bar (⋅)̅ to 
indicate reference surface quantities, a superscript caret (⋅)̂ to indicate unit vector 
quantities, lower case letters for translational displacements, and upper case letters 
indicating fiber displacements.  To update to the deformed configuration, two vector 
quantities are needed:  the reference surface displacement 𝐮̅̅̅̅ and the associated nodal 
fiber displacement 𝐔.  The nodal fiber displacements are defined in the fiber coordinate 
system, described in the next subsection. 

13.2.1  Fiber Coordinate System 

 For a shell element with four nodes, the known quantities will be the 
displacements of the reference surface 𝐮̅̅̅̅ obtained from the translational equations of 
motion and some rotational quantities at each node obtained from the rotational 
equations of motion.  To complete the kinematics, we now need a relation between 
nodal rotations and fiber displacements 𝐔. 
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 At each node a unique local Cartesian coordinate system is constructed that is 
used as the reference frame for the rotation increments.  The relation presented by 
Hughes and Liu for the nodal fiber displacements (rotations) is an incremental relation, 
i.e., it relates the current configuration to the last state, not to the initial configuration.  
Figure 13.3 shows two triads of unit vectors: (𝐛1

𝑓 , 𝐛2
𝑓 , 𝐛3

𝑓 ) comprising the orthonormal 
fiber basis in the reference configuration (where the fiber unit vector is now 𝐘̂ = 𝐛3

𝑓 ) and 
(𝐛1, 𝐛2, 𝐛3) indicating the incrementally updated current configuration of the fiber 
vectors.  The reference triad is updated by applying the incremental rotations, Δ𝜃1 and 
Δ𝜃2, obtained from the rotational equations of motion, to the fiber vectors (𝐛 1

 𝑓 and  𝐛 2
 𝑓 ) 

as shown in Figure 13.3.  The linearized relationship between the components of Δ𝑈̂ in 
the fiber system viz, Δ𝑈̂1

𝑓 , Δ𝑈̂2
𝑓 ,  Δ𝑈̂3

𝑓 , and the incremental rotations is given by 

⎩{
{⎨
{{
⎧Δ𝑈̂1

𝑓

Δ𝑈̂2
𝑓

Δ𝑈̂3
𝑓 ⎭}
}⎬
}}
⎫

  =
⎣
⎢⎡

−1 0
0 −1
0 0 ⎦

⎥⎤  {Δ𝜃1
Δ𝜃2

}. (13.25)

 
 Although the above Hughes-Liu relation for updating the fiber vector enables a 
reduction in the number of nodal degrees of freedom from six to five, it is not 
implemented in LS-DYNA because it is not applicable to beam elements. 

Deformed Configuration

Reference Surface

reference axis in

undeformed 

geometry

(parallel construction)

x

X

x̄

Y

Uu

ū

Figure 13.2.  Schematic of deformed configuration displacements and position 
vectors. 
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 In LS-DYNA, three rotational increments are used, defined with reference to the 
global coordinate axes: 

⎩{{
⎨
{{⎧Δ𝑈̂1

Δ𝑈̂2
Δ𝑈̂3⎭}}

⎬
}}⎫

 =
⎣
⎢⎢
⎡ 0 𝑌̂3 −𝑌̂2

−𝑌̂3 0 𝑌̂1
𝑌̂2 −𝑌̂1 0 ⎦

⎥⎥
⎤

  
⎩{
⎨
{⎧Δ𝜃1

Δ𝜃2
Δ𝜃3⎭}

⎬
}⎫. (13.26)

 Equation (13.26) is adequate for updating the stiffness matrix, but for finite 
rotations the error is significant.  A more accurate second-order technique is used in LS-
DYNA for updating the unit fiber vectors: 

𝑌̂𝑖
𝑛+1 = 𝑅𝑖𝑗(Δ𝜃)𝑌̂𝑖

𝑛, (13.27)

𝑅𝑖𝑗(Δ𝜃) = 𝛿𝑖𝑗 +
1
2

(2𝛿𝑖𝑗 + Δ𝑆𝑖𝑘)Δ𝑆𝑖𝑘

𝐷 , (13.28)

ΔS𝑖𝑗 = e𝑖𝑘𝑗Δ𝜃𝑘, (13.29)

2𝐷 = 2 +
1
2 (Δ𝜃1

2 + Δ𝜃2
2 + Δ𝜃3

2). (13.30)

Here, 𝛿𝑖𝑗 is the Kronecker delta and 𝑒𝑖𝑗𝑘 is the permutation tensor.  This rotational update 
is often referred to as the Hughes-Winget formula [Hughes and Winget 1980].  An exact 
rotational update using Euler angles or Euler parameters could easily be substituted in 
Equation (13.27), but it is doubtful that the extra effort would be justified. 
 

13.2.2  Lamina Coordinate System 

 In addition to the above described fiber coordinate system, a local lamina 
coordinate system is needed to enforce the zero normal stress condition, i.e., plane 

b3

b3
f
=Y

^

b2
f

b2b1
f

b1

Δθ1

Δθ2

fiber

Figure 13.3.  Incremental update of fiber vectors using Hughes-Liu 
incremental rotations. 
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stress.  Lamina are layers through the thickness of the shell that correspond to the 
locations and associated thicknesses of the through-the-thickness shell integration 
points; the analogy is that of lamina in a fibrous composite material.  The orthonormal 
lamina basis (Figure 13.4), with one direction 𝑒3̂ normal to the lamina of the shell, is 
constructed at every integration point in the shell. 
 
 The lamina basis is constructed by forming two unit vectors locally tangent to the 
lamina: 

𝐞1̂ =
𝐲,𝜉
∥𝐲,𝜉 ∥

, (13.31)

𝐞′2 =
𝐲,𝜂
∥𝐲,𝜂 ∥

, (13.32)

where, as before, 𝐲 is the position vector in the current configuration.  The normal to the 
lamina at the integration point is constructed from the vector cross product of these 
local tangents: 

𝐞3̂ = 𝐞1̂ × 𝐞′2, (13.33)

𝐞2̂ = 𝐞3̂ × 𝐞1̂, (13.34)
is defined, because 𝐞2̂, although tangent to both the lamina and lines of constant 𝜉 , may 
not be normal to 𝐞1̂ and 𝐞3̂.  The lamina coordinate system rotates rigidly with the 
element. 
 
 The transformation of vectors from the global to lamina coordinate system can 
now be defined in terms of the lamina basis vectors as 

𝐀̂ =
⎩{
{⎨
{{
⎧𝐴𝑥̂
𝐴𝑦̂

𝐴𝑧̂⎭}
}⎬
}}
⎫

=
⎣
⎢⎡

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥
𝑒1𝑦    𝑒2𝑦    𝑒3𝑦
𝑒1𝑧 𝑒2𝑧 𝑒3𝑧 ⎦

⎥⎤
T

⎩{
⎨
{⎧𝐴𝑥
𝐴𝑦
𝐴𝑧⎭}

⎬
}⎫

= 𝐪𝐀, (13.35)
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 Figure 13.4.  Schematic of lamina coordinate unit vectors. 
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where 𝑒𝑖𝑥, 𝑒𝑖𝑦, 𝑒𝑖𝑧 are the global components of the lamina coordinate unit vectors; 𝐀̂ is a 
vector in the lamina coordinates, and 𝐴 is the same vector in the global coordinate 
system. 
 

13.3  Strains and Stress Update 

13.3.1  Incremental Strain and Spin Tensors 

 The strain and spin increments are calculated from the incremental displacement 
gradient 

𝐺𝑖𝑗 =
∂Δ𝑢𝑖
∂𝑦𝑗

, (13.36)

where Δ𝑢𝑖 are the incremental displacements and 𝑦𝑗 are the deformed coordinates.  The 
incremental strain and spin tensors are defined as the symmetric and skew-symmetric 
parts, respectively, of 𝐺𝑖𝑗: 

Δ𝜀𝑖𝑗 =
1
2 (𝐺𝑖𝑗 + 𝐺𝑗𝑖), (13.37)

Δ𝜔𝑖𝑗 =
1
2 (𝐺𝑖𝑗 − 𝐺𝑗𝑖). (13.38)

 
 The incremental spin tensor Δ𝜔𝑖𝑗 is used as an approximation to the rotational 
contribution of the Jaumann rate of the stress tensor; LS-DYNA implicit uses the more 
accurate Hughes-Winget transformation matrix (Equation (13.27)) with the incremental 
spin tensor for the rotational update.  The Jaumann rate update is approximated as: 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛 + 𝜎𝑖𝑝
𝑛 Δ𝜔𝑝𝑗 + 𝜎𝑗𝑝

𝑛 Δ𝜔𝑝𝑖, (13.39)

where the superscripts on the stress refer to the updated (𝑛 + 1) and reference (𝑛) 
configurations.  The Jaumann rate update of the stress tensor is applied in the global 
configuration before the constitutive evaluation is performed.  In the Hughes-Liu shell 
the stresses and history variables are stored in the global coordinate system. 

13.3.2  Stress Update 

 To evaluate the constitutive relation, the stresses and strain increments are 
rotated from the global to the lamina coordinate system using the transformation 
defined previously in Equation (13.35), viz. 

𝜎𝑖𝑗
𝑙𝑛+1

= 𝑞𝑖𝑘𝜎𝑘𝑛
𝑛+1𝑞𝑗𝑛, (13.40)

Δ𝜀𝑖𝑗
 𝑙𝑛+1

2⁄ = 𝑞𝑖𝑘Δ𝜀𝑘𝑛
𝑛+1

2⁄ 𝑞𝑗𝑛, (13.41)
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where the superscript 𝑙 indicates components in the lamina (local) coordinate system. 
 
 The stress is updated incrementally: 

𝜎𝑖𝑗
𝑙𝑛+1

= 𝜎𝑖𝑗
𝑙𝑛+1

+ Δ𝜎𝑖𝑗
𝑙𝑛+1

2⁄ , (13.42)

and rotated back to the global system: 

𝜎𝑖𝑗
𝑛+1 = 𝑞𝑘𝑖𝜎𝑘𝑛

𝑙𝑛+1
𝑞𝑛𝑗, (13.43)

before computing the internal force vector. 
 

13.3.3  Incremental Strain-Displacement Relations 

 The global stresses are now used to update the internal force vector 

𝐟𝑎int = ∫𝐓𝑎T𝐁𝑎T𝛔𝑑𝜐, (13.44)

where 𝐟𝑎int are the internal forces at node 𝑎, 𝐁𝑎 is the strain-displacement matrix in the 
lamina coordinate system associated with the displacements at node 𝑎, and 𝐓𝑎 is the 
transformation matrix relating the global and lamina components of the strain-
displacement matrix.  Because the B matrix relates six strain components to twenty-four 
displacements (six degrees of freedom at four nodes), it is convenient to partition the B 
matrix into four groups of six: 

𝐁 = [𝐁1 𝐁2 𝐁3 𝐁4], (13.45)
Each 𝐁𝑎 submatrix is further partitioned into a portion due to strain and spin: 

𝐁𝑎 = [𝐁𝑎𝜀
𝐁𝑎𝜔

], (13.46)

𝐁𝑎𝜀 =

⎣
⎢⎢
⎢⎢
⎢
⎡

𝐵1 0 0 𝐵4 0 0
0 𝐵2 0 0 𝐵5 0
𝐵̅̅̅̅2 𝐵̅̅̅̅1 0 𝐵̅̅̅̅5 𝐵̅̅̅̅4 0
0 𝐵̅̅̅̅3 𝐵̅̅̅̅2 0 𝐵̅̅̅̅6 𝐵̅̅̅̅5
𝐵̅̅̅̅3 0 𝐵̅̅̅̅1 𝐵̅̅̅̅6 0 𝐵̅̅̅̅4⎦

⎥⎥
⎥⎥
⎥
⎤

, (13.47)

𝐁𝑎𝜔 =
⎣
⎢⎢
⎡ 𝐵̅̅̅̅2 −𝐵̅̅̅̅1 0 𝐵̅̅̅̅5 −𝐵̅̅̅̅4 0

0 𝐵̅̅̅̅3 −𝐵̅̅̅̅2 0 𝐵̅̅̅̅6 −𝐵̅̅̅̅5
−𝐵̅̅̅̅3 0 𝐵̅̅̅̅1 −𝐵̅̅̅̅6 0 𝐵̅̅̅̅4 ⎦

⎥⎥
⎤

, (13.48)

where 

𝐵𝑖 =

⎩{
{{
⎨
{{
{⎧ 𝑁𝑎,𝑖 =

∂𝑁𝑎
∂𝑦𝑖

𝑙 for 𝑖 = 1, 2, 3

(𝑁𝑎𝑧𝑎),𝑖−3 =
∂(𝑁𝑎𝑧𝑎)

∂𝑦𝑖−3
𝑙 for 𝑖 = 4, 5, 6

. (13.49)

Notes on strain-displacement relations: 



LS-DYNA Theory Manual Hughes-Liu Shell 

LS-DYNA DEV 06/21/18 (r:10113) 11-11 (Hughes-Liu Shell) 

• The derivatives of the shape functions are taken with respect to the lamina 
coordinate system, e.g.,𝑦 = 𝑞𝑦. 

• The superscript bar indicates the 𝐵’s are evaluated at the center of the lamina (0,
0, 𝜁).  The strain-displacement matrix uses the ‘B-Bar’ (𝐵̅̅̅̅)approach advocated 
by Hughes [1980].  In the NIKE3D and DYNA3D implementations, this entails 
replacing certain rows of the B matrix and the strain increments with their coun-
terparts evaluated at the center of the element.  In particular, the strain-
displacement matrix is modified to produce constant shear and spin increments 
throughout the lamina. 

• The resulting B-matrix is a 8 × 24 matrix.  Although there are six strain and three 
rotations increments, the B matrix has been modified to account for the fact that 
𝜎33 will be zero in the integration of Equation (13.44). 

13.4  Element Mass Matrix  

 Hughes, Liu, and Levit [Hughes et al., 1981] describe the procedure used to form 
the shell element mass matrix in problems involving explicit transient dynamics.  Their 
procedure, which scales the rotary mass terms, is used for all shell elements in LS-
DYNA including those formulated by Belytschko and his co-workers.  This scaling 
permits large critical time step sizes without loss of stability. 
 
 The consistent mass matrix is defined by 

𝐌 = ∫ 𝜌𝐍T𝐍 𝑑𝜐𝑚𝜐𝑚
, (13.50)

but cannot be used effectively in explicit calculations where matrix inversions are not 
feasible.  In LS-DYNA only three and four-node shell elements are used with linear 
interpolation functions; consequently, we compute the translational masses from the 
consistent mass matrix by row summing, leading to the following mass at element node 
a: 

𝑀disp𝑎 = ∫ 𝜌𝜙𝑎 𝑑𝜐
𝑣

. (13.51)

The rotational masses are computed by scaling the translational mass at the node by the 
factor 𝛼: 

𝑀rot𝑎 = ∝ 𝑀disp𝑎, (13.52)

∝ = max{∝1,∝2}, (13.53)

∝1= ⟨𝑧𝑎⟩2 +
1
12 [𝑧𝑎]2, (13.54)

∝2=
𝑉
8ℎ, (13.55)
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⟨𝑧𝑎⟩ =
(𝑧𝑎+ + 𝑧𝑎−)

2 , (13.56)

[𝑧𝑎] = 𝑧𝑎+ − 𝑧𝑎−. (13.57)
 

13.5  Accounting for Thickness Changes 

 Hughes and Carnoy [1981] describe the procedure used to update the shell 
thickness due to large membrane stretching.  Their procedure with any necessary 
modifications is used across all shell element types in LS-DYNA.  One key to updating 
the thickness is an accurate calculation of the normal strain component Δ𝜀33.  This strain 
component is easily obtained for elastic materials but can require an iterative algorithm 
for nonlinear material behavior.  In LS-DYNA we therefore default to an iterative 
plasticity update to accurately determine Δ𝜀33. 
 
 Hughes and Carnoy integrate the strain tensor through the thickness of the shell 
in order to determine a mean value Δ𝜀𝑖̅𝑗: 

Δ𝜀𝑖̅𝑗 =
1
2 ∫ Δ𝜀𝑖𝑗

1

−1
𝑑𝜁 , (13.58)

and then project it to determine the straining in the fiber direction: 

𝛆̅ 𝑓 = 𝐘̂TΔ𝛆𝐘̂̅. (13.59)

Using the interpolation functions through the integration points the strains in the fiber 
directions are extrapolated to the nodal points if 2 × 2 selectively reduced integration is 
employed.  The nodal fiber lengths can now be updated: 

ℎ𝑎𝑛+1 = ℎ𝑎𝑛 (1 + 𝜀𝑎̅
𝑓 ). (13.60)

13.6  Fully Integrated Hughes-Liu Shells 

 It is well known that one-point integration results in zero energy modes that 
must be resisted.  The four-node under integrated shell with six degrees of freedom per 
node has nine zero energy modes, six rigid body modes, and four unconstrained 
drilling degrees of freedom.  Deformations in the zero energy modes are always 
troublesome but usually not a serious problem except in regions where boundary 
conditions such as point loads are active.  In areas where the zero energy modes are a 
problem, it is highly desirable to provide the option of using the original formulation of 
Hughes-Liu with selectively reduced integration. 
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 The major disadvantages of full integration are two-fold: 

1. nearly four times as much data must be stored; 

2. the operation count increases three- to fourfold.  The level 3 loop is added as 
shown in Figure 13.6 

However, these disadvantages can be more than offset by the increased reliability and 
accuracy. 
 
 We have implemented two version of the Hughes-Liu shell with selectively 
reduced integration.  The first closely follows the intent of the original paper, and 
therefore no assumptions are made to reduce costs, which are outlined in operation 
counts in Table 10.1.  These operation counts can be compared with those in Table 10.2 
for the Hughes-Liu shell with uniformly reduced integration.  The second formulation, 
which reduces the number of operation by more than a factor of two, is referred to as 
the co-rotational Hughes-Liu shell in the LS-DYNA user’s manual.  This shell is 
considerably cheaper due to the following simplifications: 

• Strains rates are not centered.  The strain displacement matrix is only computed 
at time 𝑛 + 1 and not at time 𝑛 + 1 ⁄ 2. 

• The stresses are stored in the local shell system following the Belytschko-Tsay 
shell.  The transformations of the stresses between the local and global coordi-
nate systems are thus avoided. 

• The Jaumann rate rotation is not performed, thereby avoiding even more 
computations.  This does not necessarily preclude the use of the shell in large 
deformations. 

• To study the effects of these simplifying assumptions, we can compare results 
with those obtained with the full Hughes-Liu shell.  Thus far, we have been able 
to get comparable results. 

ξ

η

Figure 13.5.  Selectively reduced integration rule results in four inplane points
being used. 
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 LEVEL L1 - Once per element 
  Midstep translation geometry, etc. 204 
  Midstep calculation of 𝑌̂ 318 
 LEVEL L2 - For each integration point through thickness (NT points) 
  Strain increment at (0, 0, 𝜁 ) 316 
  Hughes-Winget rotation matrix 33 
  Square root of Hughes-Winget matrix 47 
  Rotate strain increments into lamina coordinates 66 
  Calculate rows 3-8 of B matrix 919 
 LEVEL L3 - For each integration point in lamina 
  Rotate stress to n+1/2 configuration 75 
  Incremental displacement gradient matrix 370 
  Rotate stress to lamina system 75 
  Rotate strain increments to lamina system 55 
  Constitutive model model dependent 
  Rotate stress back to global system 69 
  Rotate stress to n+1 configuration 75 
  Calculate rows 1 and 2 of B matrix 358 
  Stresses in n+1 lamina system 75 
  Stress divergence 245 

LEVEL L1 - Do over each element group

                      gather data, midstep geometry calculation

LEVEL 2 - For each thickness integration point

                   center of element calculations for selective

                   reduced integration

LEVEL 3 - Do over 4 Gauss points

                   stress update and force

                   contributions

LEVEL 2 - Completion

LEVEL L1 - Completion

Figure 13.6.  An inner loop, LEVEL 3, is added for the Hughes-Liu shell with 
selectively reduced integration. 
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 TOTAL 522 +NT {1381 +4 * 1397} 
 

Table 10.1.  Operation counts for the Hughes-Liu shell with selectively reduced 
integration. 

 
 LEVEL L1 - Once per element 
  Calculate displacement increments 24 
  Element areas for time step 53 
  Calculate 𝑌̂ 238 
 LEVEL L2 and L3 - Integration point through thickness (NT points) 
  Incremental displacement gradient matrix 284 
  Jaumann rotation for stress 33 
  Rotate stress into lamina coordinates 75 
  Rotate stain increments into lamina coordinates 81 
  Constitutive model model dependent 
  Rotate stress to n+1 global coordinates 69 
  Stress divergence 125 
 LEVEL L1 - Cleanup 
  Finish stress divergence 60 
  Hourglass control 356 
      
 TOTAL   731 +NT * 667 
 

Table 10.2. Operation counts for the LS-DYNA implementation of the uniformly 
reduced 

  Hughes-Liu shell.
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14    
Transverse Shear Treatment For 
Layered Shell 

 The shell element formulations that include the transverse shear strain 
components are based on the first order shear deformation theory, which yield constant 
through thickness transverse shear strains.  This violates the condition of zero traction 
on the top and bottom surfaces of the shell.  Normally, this is corrected by the use of a 
shear correction factor.  The shear correction factor is 5/6 for isotropic materials; 
however, this value is incorrect for sandwich and laminated shells.  Not accounting for 
the correct transverse shear strain and stress could yield a very stiff behavior in 
sandwich and laminated shells.  This problem is addressed here by the use of the 
equilibrium equations without gradient in the y-direction as described by what follows.  
Consider the stresses in a layered shell: 

𝜎𝑥
(𝑖) = 𝐶11

(𝑖)(𝜀𝑥
∘ + 𝑧𝜒𝑥) + 𝐶12

(𝑖)(𝜀𝑦
∘ + 𝑧𝜒𝑦) = 𝐶11

(𝑖)𝜀𝑥
∘ + 𝐶12

(𝑖)𝜀𝑦
∘ + 𝑧(𝐶11

(𝑖)𝜒𝑥 + 𝐶12
(𝑖)𝜒𝑦), 

𝜎𝑦
(𝑖) = 𝐶12

(𝑖)𝜀𝑥
∘ + 𝐶22

(𝑖)𝜀𝑦
∘ + 𝑧(𝐶12

(𝑖)𝜒𝑥 + 𝐶22
(𝑖)𝜒𝑦, 

𝜏𝑥𝑦
(𝑖) = 𝐶44

(𝑖)(𝜀𝑥𝑦
∘ + 𝑧𝜒𝑥𝑦). 

(14.1)

Assume that the bending center 𝑧𝑥̅ is known.  Then 

𝜎𝑥
(𝑖) = (𝑧 − 𝑧𝑥̅)(𝐶11

(𝑖)𝜒𝜒 + 𝐶12
(𝑖)𝜒𝑦) + 𝐶11

(𝑖)𝜀𝑥(𝑧𝑥̅) + 𝐶12
(𝑖)𝜀𝑦(𝑧𝑥̅). (14.2)

The bending moment is given by the following equation: 

𝑀𝑥𝑥 = 𝜒𝑥
⎝
⎜⎛∑𝐶11

(𝑖) ∫ (𝑧 − 𝑧𝑥̅)2
𝑧𝑖

𝑧𝑖−1

𝑑𝑧
𝑁𝐿

𝑖=1 ⎠
⎟⎞ + 𝜒𝑦

⎝
⎜⎛∑𝐶12

(𝑖) ∫ (𝑧 − 𝑧𝑥̅)2
𝑧𝑖

𝑧𝑖−1

𝑑𝑧
𝑁𝐿

𝑖=1 ⎠
⎟⎞ (14.3)

or 

𝑀𝑥𝑥 =
1
3 [𝜒𝑥 ∑ 𝐶11

(𝑖)[(𝑧𝑖
3 − 𝑧𝑖−1

3 ) − (𝑧𝑖 − 𝑧𝑖−1)𝑧𝑥̅
2]

𝑁𝐿

𝑖=1
 

      + 𝜒𝑦 ∑ 𝐶12
(𝑖)[(𝑧𝑖

3 − 𝑧𝑖−1
3 ) − (𝑧𝑖 − 𝑧𝑖−1)𝑧𝑥̅

2]
𝑁𝐿

𝑖=1
] 

(14.4)
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where “𝑁𝐿” is the number of layers in the material. 
 
 Assume 𝜀𝑦 = 0 and 𝜎𝑥 = 𝐸𝜒𝜀𝜒, let 

(𝐸𝐼)𝑥 = ∑
𝑁𝐿

𝑖=1
𝐸𝑥

(𝑖)[(𝑧𝑖
3 − 𝑧𝑖−1

3 ) − (𝑧𝑖 − 𝑧𝑖−1)𝑧𝑥̅
2], (14.5)

then 

𝜀𝑥 =
𝑧 − 𝑧𝑥̅

𝜌 = (𝑧 − 𝑧𝑥̅)𝜒𝑥, (14.6)

and 

𝑀𝑥𝑥 =
1
3 (𝜒𝑥(𝐸𝐼)𝑥), (14.7)

𝜒𝑥 =
3𝑀𝑥𝑥

(𝐸𝐼)𝑥
. (14.8)

Therefore, the stress becomes 

𝜎𝑥
(𝑖) =

3𝑀𝑥𝑥𝐸𝑥
(𝑖)(𝑧 − 𝑧𝑥̅)

(𝐸𝐼)𝑥
. (14.9)

Now considering the first equilibrium equation, one can write the following: 

∂𝜏𝑥𝑧
∂𝑧 = −

∂𝜎𝑥
∂𝑥 = −

3𝑄𝑥𝑧𝐸𝑥
(𝑗)(𝑧 − 𝑧𝑥̅)

(𝐸𝐼)𝑥
, (14.10)

𝜏𝑥𝑧
(𝑗) = −

3𝑄𝑥𝑧𝐸𝑥
(𝑗) (𝑧2

2 − 𝑧𝑧𝑥̅)

(𝐸𝐼)𝑥
+ 𝐶𝑗, 

(14.11)

where 𝑄𝑥𝑧 is the shear force and 𝐶𝑗 is the constant of integration.  This constant is 
obtained from the transverse shear stress continuity requirement at the interface of each 
layer.  Let 
then 

𝐶𝑗 =
𝑄𝑥𝑧𝐸𝑥

(𝑖) (𝑧𝑖−1
2

2 − 𝑧𝑖−1𝑧𝑥̅)

(𝐸𝐼)𝑥
+ 𝜏𝑥𝑧

𝑖−1, (14.12)

and 

𝜏𝑥𝑧
(𝑖) = 𝜏𝑥𝑧

(𝑖−1) +
𝑄𝑥𝑧𝐸𝑥

(𝑖)

(𝐸𝐼)𝑥
[

𝑧𝑖−1
2

2 − 𝑧𝑖−1𝑧𝑥̅ −
𝑧2

2 + 𝑧𝑧𝑥̅]. (14.13)

For the first layer 
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𝜏𝑥𝑧 = −
3𝑄𝑥𝑧𝐶11

(1)

(𝐸𝐼)𝑥
[

𝑧2 − 𝑧𝑜2

2 − 𝑧𝑥̅(𝑧 − 𝑧𝑜)], (14.14)

for subsequent layers 

𝜏𝑥𝑧 = 𝜏𝑥𝑧
(𝑖−1) −

3𝑄𝑥𝑧𝐶11
(𝑖)

(𝐸𝐼)𝑥
[

𝑧2 − 𝑧𝑖−1
2

2 − 𝑧𝑥̅(𝑧 − 𝑧𝑖−1)] , 𝑧𝑖−1 ≤ 𝑧 ≤ 𝑧𝑖. (14.15)

Here 𝜏𝑥𝑧
(𝑖−1) is the stress in previous layer at the interface with the current layer.  The 

shear stress can also be expressed as follows: 

𝜏𝑥𝑧 = −
3𝑄𝑥𝑧𝐶11

(𝑖)

(𝐸𝐼)𝑥
[𝑓𝑥(𝑖) +

𝑧2 − 𝑧𝑖−1
2

2 − 𝑧𝑥̅(𝑧 − 𝑧𝑖−1)], (14.16)

where 

𝑓𝑥(𝑖) =
1
𝐶11

(𝑖) ∑𝐶11
(𝑗)ℎ𝑗 [

𝑧𝑗 + 𝑧𝑗+1

2 − 𝑧𝑥̅]
𝑖−1

𝑗=1
, (14.17)

and 
ℎ𝑗 = 𝑧𝑗 − 𝑧𝑗−1. (14.18)

 
 To find 𝑄𝑥𝑧, the shear force, assume that the strain energy expressed through 
average shear modules, 𝐶6̅6, is equal to the strain energy expressed through the derived 
expressions as follows: 

𝑈 =
1
2

𝑄𝑥𝑧

𝐶6̅6ℎ
=

1
2 ∫
𝜏𝑥𝑧

2

𝐶66
𝑑𝑧, (14.19)

1
𝐶6̅6

=
9ℎ

(𝐸𝐼)𝑥
2 ∫
𝐶11

2

𝐶66
[𝑓𝑥(𝑖) +

(𝑧2 − 𝑧𝑖−1
2 )

2 − 𝑧𝑥̅(𝑧 − 𝑧𝑖−1)]
2

𝑑𝑧 

=
9ℎ

(𝐸𝐼)𝑥
2 ∑
𝑁𝐿

𝑖=1

(𝐶11
(𝑖))2

𝐶66
(𝑖) ∫

𝑧𝑖

𝑧𝑖−1

[𝑓𝑥(𝑖) +
𝑧2 − 𝑧𝑖−1

2

2 − 𝑧𝑥̅(𝑧 − 𝑧𝑖−1)]
2

𝑑𝑧 

=
1
60

9ℎ

(𝐸𝐼)𝑥
2 ∑
𝑁𝐿

𝑖

(𝐶11
(𝑖))2ℎ
𝐶66

𝑖 {𝑓𝑥𝑖[60𝑓𝑥𝑖 + 20ℎ𝑖(𝑧𝑖 + 2𝑧𝑖−1 − 3𝑧𝑥̅)]

+ 𝑧𝑥̅ℎ𝑖[20𝑧𝑥̅ℎ𝑖 + 35𝑧𝑖−1
2 − 10𝑧𝑖−1(𝑧𝑖 + 𝑧𝑖−1) − 15𝑧𝑖

2] + 𝑧𝑖(𝑧𝑖 + 𝑧𝑖−1)(3𝑧𝑖
2

− 7𝑧𝑖−1
2 ) + 8𝑧𝑖−1

4 }, 

(14.20)

then 

𝑄𝑥𝑧 = 𝜏𝑥̅𝑧ℎ = 𝐶6̅6𝛾̅̅̅̅𝑥𝑧ℎ, (14.21)

to calculate 𝑧𝑥̅ use 𝜏𝑥𝑧 for last layer at surface 𝑧 = 0, 

∑𝐶11
(𝑖)

𝑁𝐿

𝑖=1
[(

𝑧𝑖
2 − 𝑧𝑖−1

2

2 ) − 𝑧𝑥̅(𝑧𝑖 − 𝑧𝑖−1)] = 0, (14.22)
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where 

𝑧𝑥̅ =
∑ 𝐶11

(𝑖)ℎ𝑖(𝑧𝑖 + 𝑧𝑖+1)𝑁𝐿
𝑖=1

2∑ 𝐶11
(𝑖)ℎ𝑖

𝑁𝐿
𝑖=1

. (14.23)

Algorithm: 

The following algorithm is used in the implementation of the transverse shear 
treatment. 

1. Calculate 𝑧𝑥̅ according to equation (14.23) 

2. Calculate 𝑓𝑥𝑖 according to equation (14.17) 

3. Calculate 13∑ 𝐶11
(𝑖)𝑁𝐿

𝑖=1 (𝑧𝑖
3 − 𝑧𝑖−1

3 ) 

4. Calculate ℎ[1
3∑ 𝐶11

(𝑖)𝑁𝐿
𝑖=1 (𝑧𝑖

3 − 𝑧𝑖−1
3 )]

2
 

5. Calculate 𝐶6̅6 according to equation (14.20) 

6. Calculate 𝑄𝑥𝑧 = 𝐶6̅6𝛾̅̅̅̅𝑥𝑧ℎ 

7. Calculate 𝜏𝑥𝑧 according to equation (14.16) 

  

 
Steps 1-5 are performed at the initialization stage.  Step 6 is performed in the shell 
formulation subroutine, and step 7 is performed in the stress calculation inside the 
constitutive subroutine.
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15    
Eight-Node Solid Shell Element 

 The isoparametric eight-node brick element discussed in Section 3 forms the 
basis for tshell formulation 1, a solid shell element with enhancements based on the 
Hughes-Liu and the Belytschko-Lin-Tsay shells.  Like the eight-node brick, the 
geometry is interpolated from the nodal point coordinates as: 

𝑥𝑖(𝑋𝛼, 𝑡) = 𝑥𝑖(𝑋𝛼(𝜉 , 𝜂, 𝜁), 𝑡) = ∑ 𝜙𝑗

8

𝑗=1
(𝜉 , 𝜂, 𝜁)𝑥𝑖

𝑗(𝑡), (15.1)

𝜙𝑗 =
1
8 (1 + 𝜉𝜉𝑗)(1 + 𝜂𝜂𝑗)(1 + 𝜁𝜁𝑗). (15.2)

As with solid elements, 𝐍 is the 3 × 24 rectangular interpolation matrix: 

𝐍(𝜉, 𝜂, 𝜁) =
⎣
⎢⎡
𝜑1 0 0 𝜑2 0 … 0 0
0 𝜑1 0 0 𝜑2 … 𝜑8 0
0 0 𝜑1 0 0 … 0 𝜑8⎦

⎥⎤, (15.3)

𝛔 is the stress vector: 

𝛔T = (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, 𝜎𝑦𝑧, 𝜎𝑧𝑥), (15.4)

and 𝐁 is the 6 × 24 strain-displacement matrix: 
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𝐁 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∂

∂𝑥 0 0

0
∂

∂𝑦 0

0 0
∂
∂𝑧

∂
∂𝑦

∂
∂𝑥 0

0
∂
∂𝑧

∂
∂𝑦

∂
∂𝑧 0

∂
∂𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐍, (15.5)

 
 Terms in the strain-displacement matrix are readily calculated.  Note that 

∂𝜑𝑖
∂𝜉 =

∂𝜑𝑖
∂𝑥

∂𝑥
∂𝜉 +

∂𝜑𝑖
∂𝑦

∂𝑦
∂𝜉 +

∂𝜑𝑖
∂𝑧

∂𝑧
∂𝜉 ,

∂𝜑𝑖
∂𝜂 =

∂𝜑𝑖
∂𝑥

∂𝑥
∂𝜂 +

∂𝜑𝑖
∂𝑦

∂𝑦
∂𝜂 +

∂𝜑𝑖
∂𝑧

∂𝑧
∂𝜂 , 

∂𝜑𝑖
∂𝜁 =

∂𝜑𝑖
∂𝑥

∂𝑥
∂𝜁 +

∂𝜑𝑖
∂𝑦

∂𝑦
∂𝜁 +

∂𝜑𝑖
∂𝑧

∂𝑧
∂𝜁 ,

(15.6)

which can be rewritten as 

1

2

3

4

5

6

7

8

-1

1

1

-1

-1

1

1

-1

-1

-1

1

1

-1

-1

1

1

-1

-1

-1

-1

1

1

1

1

Node ξ η ζ
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 Figure 15.1.  Eight node solid shell element 



LS-DYNA Theory Manual Eight-Node Solid Shell Element 

LS-DYNA DEV 06/21/18 (r:10113) 13-3 (Eight-Node Solid Shell Element) 

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡∂𝜑𝑖

∂𝜉
∂𝜑𝑖
∂𝜂
∂𝜑𝑖
∂𝜁 ⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡∂𝑥

∂𝜉
∂𝑦
∂𝜉

∂𝑧
∂𝜉

∂𝑥
∂𝜂

∂𝑦
∂𝜂

∂𝑧
∂𝜂

∂𝑥
∂𝜁

∂𝑦
∂𝜁

∂𝑧
∂𝜁⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∂𝜑𝑖

∂𝑥
∂𝜑𝑖
∂𝑦
∂𝜑𝑖
∂𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐉

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∂𝜑𝑖

∂𝑥
∂𝜑𝑖
∂𝑦
∂𝜑𝑖
∂𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (15.7)

Inverting the Jacobian matrix, 𝐉, we can solve for the desired terms 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∂𝜑𝑖

∂𝑥
∂𝜑𝑖
∂𝑦
∂𝜑𝑖
∂𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐉−1

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡∂𝜑𝑖

∂𝜉
∂𝜑𝑖
∂𝜂
∂𝜑𝑖
∂𝜁 ⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

. (15.8)

 
 To obtain shell-like behavior from the solid element, it is necessary to use 
multiple integration points through the shell thickness along the 𝜁  axis while employing 
a plane stress constitutive subroutine.  Consequently, it is necessary to construct a 
reference surface within the brick shell.  We locate the reference surface midway 
between the upper and lower surfaces and construct a local coordinate system exactly 
as was done for the Belytschko-Lin-Tsay shell element.  Following the procedure 
outlined in Section 7, Equations (7.1) – (7.3), the local coordinate system can be 
constructed as depicted in Figure 15.2.  Equation (7.5a) gives the transformation matrix 
in terms of the local basis: 

{𝐀} =
⎩{
⎨
{⎧𝐴𝑥
𝐴𝑦
𝐴𝑧⎭}

⎬
}⎫

=
⎣
⎢⎡

𝑒1𝑥   𝑒2𝑥 𝑒3𝑥
𝑒1𝑦    𝑒2𝑦    𝑒3𝑦
𝑒1𝑧   𝑒2𝑧 𝑒3𝑧 ⎦

⎥⎤

⎩{
{⎨
{{
⎧𝐴𝑥̂
𝐴𝑦̂

𝐴𝑧̂⎭}
}⎬
}}
⎫

= [𝛍]{𝐀̂} = [𝐪]T{𝐀̂}. (15.9)

 
 As with the Hughes-Liu shell, the next step is to perform the Jaumann rate 
update: 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛 + 𝜎𝑖𝑝
𝑛 Δ𝜔𝑝𝑗 + 𝜎𝑗𝑝

𝑛 Δ𝜔𝑝𝑖, (15.10)

to account for the material rotation between time steps 𝑛 and 𝑛 + 1.  The Jaumann rate 
update of the stress tensor is applied in the global configuration before the constitutive 
evaluation is performed.  In the solid shell, as in the Hughes-Liu shell, the stresses and 
history variables are stored in the global coordinate system.  To evaluate the 
constitutive relation, the stresses and the strain increments are rotated from the global 
to the lamina coordinate system using the transformation defined previously:  

𝜎𝑖𝑗
𝑙𝑛+1

= 𝑞𝑖𝑘𝜎𝑘𝑛
𝑛+1𝑞𝑗𝑛, (15.11)

Δ𝜀𝑖𝑗
 𝑙𝑛+1

2⁄ = 𝑞𝑖𝑘Δ𝜀𝑘𝑛
𝑛+1

2⁄ 𝑞𝑗𝑛, (15.12)
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where the superscript l indicates components in the lamina (local) coordinate system.  
The stress is updated incrementally: 

𝜎𝑖𝑗
𝑙𝑛+1

= 𝜎𝑖𝑗
𝑙𝑛+1

+ Δ𝜎𝑖𝑗
𝑙𝑛+1

2⁄ . (15.13)

 Independently from the constitutive evaluation  

𝜎33
𝑙 = 0, (15.14)

which ensures that the plane stress condition is satisfied, we update the normal stress 
which is used as a penalty to maintain the thickness of the shell: 

(𝜎33
penalty)

n+1
= (𝜎33

penalty)
n

+ 𝐸Δ𝜀33
𝑙 , (15.15)

where 𝐸 is the elastic Young’s modulus for the material.  The stress tensor of Equation 
(15.13) is rotated back to the global system: 

𝜎𝑖𝑗
𝑛+1 = 𝑞𝑘𝑖(𝜎𝑘𝑛

𝑙 )
𝑛+1

𝑞𝑛𝑗. (15.16)

A penalty stress tensor is then formed by transforming the normal penalty stress tensor 
(a null tensor except for the 33 term) back to the global system: 

(𝜎𝑖𝑗
penalty)

n+1
= 𝑞𝑘𝑖 [(𝜎𝑖𝑗

penalty)
𝑙
]

𝑛+1
𝑞𝑛𝑗, (15.17)
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A reference surface is constructed within

the solid shell element and the local reference

system is defined. 

 Figure 15.2.  Construction of the reference surface in the solid shell element. 



LS-DYNA Theory Manual Eight-Node Solid Shell Element 

LS-DYNA DEV 06/21/18 (r:10113) 13-5 (Eight-Node Solid Shell Element) 

before computing the internal force vector.  The internal force vector can now be 
computed: 

𝐟int = ∫(𝐁𝑛+1)T [𝝈𝑛+1 + (𝝈penalty)
𝑛+1

] 𝑑𝜐. (15.18)

The brick shell exhibits no discernible locking problems with this approach.   
 
 The treatment of the hourglass modes is identical to that described for the solid 
elements in Section 3.
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16    
Eight-Node Solid Element for Thick 
Shell Simulations 

16.1  Abstract 

 Tshell formulation 3 is an eight-node hexahedral  element incorporated into LS-
DYNA to simulate thick shell structures.  The element formulation is derived in a co-
rotational coordinate system and the strain operator is calculated with a Taylor series 
expansion about the center of the element.  Special treatments are made on the 
dilatational strain component and shear strain components to eliminate the volumetric 
and shear locking.  The use of consistent tangential stiffness and geometric stiffness 
greatly improves the convergence rate in implicit analysis. 
 

16.2  Introduction 

 Large-scale finite element analyses are extensively used in engineering designs 
and process controls.  For example, in automobile crashworthiness, hundreds of 
thousands of unknowns are involved in the computer simulation models, and in metal 
forming processing, tests in the design of new dies or new products are done by 
numerical computations instead of costly experiments.  The efficiency of the elements is 
of crucial importance to speed up the design processes and reduce the computational 
costs for these problems.  Over the past ten years, considerable progress has been 
achieved in developing fast and reliable elements.   
 
 In the simulation of shell structures, Belytschko-Lin-Tsay [Belytschko, 1984a] and 
Hughes-Liu [Hughes, 1981a and 1981b] shell elements are widely used.  However, in 
some cases thick shell elements are more suitable.  For example, in the sheet metal 
forming with large curvature, traditional thin shell elements cannot give satisfactory 
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results.  Also thin shell elements cannot give us detailed strain information though the 
thickness.  In LS-DYNA, the eight-node solid thick shell element is still based on the 
Hughes-Liu and Belytschko-Lin-Tsay shells [Hallquist, 1998].  A new eight-node solid 
element based on Liu, 1985, 1994 and 1998 is incorporated into LS-DYNA, intended for 
thick shell simulation.  The strain operator of this element is derived from a Taylor 
series expansion and special treatments on strain components are utilized to avoid 
volumetric and shear locking.   
 
 The organization of this paper is as follows.  The element formulations are 
described in the next section.  Several numerical problems are studied in the third 
section, followed by the conclusions. 
 

16.3  Element Formulations 

16.3.1  Strain Operator 

 The new element is based on the eight-node hexahedral element proposed and 
enhanced by Liu, 1985, 1994, 1998.  For an eight-node hexahedral element, the spatial 
coordinates, 𝑥𝑖, and the velocity components, 𝑣𝑖, in the element are approximated in 
terms of nodal values, x𝑖aand v𝑖a, by 

𝑥𝑖 = ∑ 𝑁𝑎
8

𝑎=1
(𝜉 , 𝜂, 𝜁)𝑥𝑖𝑎, (16.1)

𝑣𝑖 = ∑ 𝑁𝑎
8

𝑎 = 1
(𝜉 , 𝜂, 𝜁)𝑣𝑖𝑎, 𝑖 = 1, 2, 3, (16.2)

𝑁𝑎(𝜉, 𝜂, 𝜁) =
1
8 (1 + 𝜉𝑎𝜉)(1 + 𝜂𝑎𝜂)(1 + 𝜁𝑎𝜁), (16.3)

and the subscripts 𝑖 and a denote coordinate components ranging from one to three and 
the element nodal numbers ranging from one to eight, respectively.  The referential 
coordinates 𝜉 , 𝜂, and 𝜁  of node a are denoted by 𝜉𝑎, 𝜂𝑎, and 𝜁𝑎, respectively. 
 
 The strain rate (or rate of deformation), 𝛆,̇ is composed of six components, 

𝛆Ṫ = [𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑦 𝜀𝑦𝑧 𝜀𝑧𝑥], (16.4)

and is related to the nodal velocities by a strain operator, 𝐁̅̅̅̅̅, 

𝛆̇ = 𝐁̅̅̅̅̅(𝜉 , 𝜂, 𝜁)𝐯, (16.5)

where 

𝐯T  = [vx1 vy1 vz1 ⋯ vx8 vy8 vz8], (16.6)
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𝐁̅̅̅̅̅ =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡B̅̅̅̅̅𝑥𝑥

B̅̅̅̅̅𝑦𝑦

B̅̅̅̅̅𝑧𝑧
B̅̅̅̅̅𝑥𝑦

B̅̅̅̅̅𝑦𝑧

B̅̅̅̅̅𝑧𝑥⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎡

𝐵1(1) 0 0 ⋯ 𝐵1(8) 0 0
0 𝐵2(1) 0 ⋯ 0 𝐵2(8) 0
0 0 𝐵3(1) ⋯ 0 0 𝐵3(8)

𝐵2(1) 𝐵1(1) 0 ⋯ 𝐵2(8) 𝐵1(8) 0
0 𝐵3(1) 𝐵2(1) ⋯ 0 𝐵3(8) 𝐵2(8)

𝐵3(1) 0 𝐵1(1) ⋯ 𝐵3(8) 0 𝐵1(8)⎦
⎥⎥
⎥⎥
⎥⎥
⎤

, (16.7)

⎣
⎢⎡

B1
B2
B3⎦

⎥⎤ =
⎣
⎢⎢
⎡

𝑁,𝑥 (𝜉 , 𝜂, 𝜁)
𝑁,𝑦 (𝜉 , 𝜂, 𝜁)
𝑁,𝑧 (𝜉 , 𝜂, 𝜁)⎦

⎥⎥
⎤. (16.8)

 
 Unlike standard solid element where the strain operator is computed by 
differentiating the shape functions, the strain operator for this new element is expanded 
in a Taylor series about the element center up to bilinear terms as follows [Liu, 1994, 
1998], 

𝐁̅̅̅̅̅(𝜉 , 𝜂, 𝜁)  =  𝐁̅̅̅̅̅(0) + 𝐁̅̅̅̅̅,𝜉 (0)𝛏 + 𝐁̅̅̅̅̅,𝜂 (0)𝛈 + 𝐁̅̅̅̅̅,𝜁 (0)𝛇
    + 2[𝐁̅̅̅̅̅,𝜉𝜂 (0)𝛏𝛈 + 𝐁̅̅̅̅̅,𝜂𝜁 (0)𝛈𝛇 + 𝐁̅̅̅̅̅,𝜁𝜉 (0)𝛇𝛏] .

 (16.9)

Let 

𝐱1
T = 𝐱T = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8], (16.10)

𝐱2
T = 𝐲T = [𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8], (16.11)

𝐱3
T = 𝐳T = [𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8], (16.12)

𝛏T  =  [−1 1 1 −1 −1 1 1 −1], (16.13)

𝛈T  =  [−1 −1 1 1 −1 −1 1 1], (16.14)

𝛇T  =  [−1 −1 −1 −1 1 1 1 1], (16.15)

the Jacobian matrix at the center of the element can be evaluated as 

𝐉(0) = [J𝑖𝑗] =
1
8

⎣
⎢⎢
⎡𝛏T𝐱 𝛏T𝐲 𝛏T𝐳
𝛈T𝐱 𝛈T𝐲 𝛈T𝐳
𝛇T𝐱 𝛇T𝐲 𝛇T𝐳⎦

⎥⎥
⎤

; (16.16)

the determinant of the Jacobian matrix is denoted by j0 and the inverse matrix of 𝐉(0) is 
denoted by 𝐃 

𝐃 = [D𝑖𝑗] = 𝐉−1(0). (16.17)

 
 The gradient vectors and their derivatives with respect to the natural coordinates 
at the center of the element are given as follows, 
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𝐛1 = 𝐍,𝑥 (0) =
1
8 [𝐷11𝛏 + 𝐷12𝛈 + 𝐷13𝛇], (16.18)

𝐛2 = 𝐍,𝑦 (0) =
1
8 [𝐷21𝛏 + 𝐷22𝛈 + 𝐷23𝛇], (16.19)

𝐛3 = 𝐍,𝑧 (0) =
1
8 [𝐷31𝛏 + 𝐷32𝛈 + 𝐷33𝛇], (16.20)

𝐛1,𝜉 = 𝐍,𝑥𝜉 (0) =
1
8 [𝐷12𝜸1 + 𝐷13𝛄2], (16.21)

𝐛2,𝜉 = 𝐍,𝑦𝜉 (0) =
1
8 [𝐷22𝛄1 + 𝐷23𝛄2], (16.22)

𝐛3,𝜉 = 𝐍,𝑧𝜉 (0) =
1
8 [𝐷32𝛄1 + 𝐷33𝛄2], (16.23)

𝐛1,𝜂 = 𝐍,𝑥𝜂 (0) =
1
8 [𝐷11𝛄1 + 𝐷13𝛄3], (16.24)

𝐛2,𝜂 = 𝐍,𝑦𝜂 (0) =
1
8 [𝐷21𝛄1 + 𝐷23𝛄3], (16.25)

𝐛3,𝜂 = 𝐍,𝑧𝜂 (0) =
1
8 [𝐷31𝛄1 + 𝐷33𝛄3], (16.26)

𝐛1,𝜁 = 𝐍,𝑥𝜁 (0) =
1
8 [𝐷11𝛄2 + 𝐷12𝛄3], (16.27)

𝐛2,𝜁 = 𝐍,𝑦𝜁 (0) =
1
8 [𝐷21𝛄2 + 𝐷22𝛄3], (16.28)

𝐛3,𝜁 = 𝐍,𝑧𝜁 (0) =
1
8 [𝐷31𝛄2 + 𝐷32𝛄3], (16.29)

𝐛1,𝜉𝜂 = 𝐍,𝑥𝜉𝜂 (0) =
1
8 [𝐷13𝛄4 − (𝐩1

T𝐱𝑖)𝐛𝑖,𝜉 − (𝐫1T𝐱𝑖)𝐛𝑖,𝜂], (16.30)

𝐛2,𝜉𝜂 = 𝐍,𝑦𝜉𝜂 (0) =
1
8 [𝐷23𝛄4 − (𝐛2

T𝐱𝑖)𝐛𝑖,𝜉 − (𝐫2T𝐱𝑖)𝐛𝑖,𝜂], (16.31)

𝐛3,𝜉𝜂 = 𝐍,𝑧𝜉𝜂 (0) =
1
8 [𝐷33𝛄4 − (𝐩3

T𝐱𝑖)𝐛𝑖,𝜉 − (𝐫3T𝐱𝑖)𝐛𝑖,𝜂], (16.32)

𝐛1,𝜂𝜁 = 𝐍,𝑥𝜂𝜁 (0) =
1
8 [𝐷11𝛄4 − (𝐪1

T𝐱𝑖)𝐛𝑖,𝜂 − (𝐩1
T𝐱𝑖)𝐛𝑖,𝜁 ], (16.33)

𝐛2,𝜂𝜁 = 𝐍,𝑦𝜂𝜁 (0) =
1
8 [𝐷21𝛄4 − (𝐪2

T𝐱𝑖)𝐛𝑖,𝜂 − (𝐩2
T𝐱𝑖)𝐛𝑖,𝜁 ], (16.34)
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𝐛3,𝜂𝜁 = 𝐍,𝑧𝜂𝜁 (0) =
1
8 [𝐷31𝛄4 − (𝐪3

T𝐱𝑖)𝐛𝑖,𝜂 − (𝐩3
T𝐱𝑖)𝐛𝑖,𝜁 ], (16.35)

𝐛1,𝜁𝜉 = 𝐍,𝑥𝜁𝜉 (0) =
1
8 [𝐷12𝛄4 − (𝐫1T𝐱𝑖)𝐛𝑖,𝜁 − (𝐪1

T𝐱𝑖)𝐛𝑖,𝜉 ], (16.36)

𝐛2,𝜁𝜉 = 𝐍,𝑦𝜁𝜉 (0) =
1
8 [𝐷22𝛄4 − (𝐫2T𝐱𝑖)𝐛𝑖,𝜁 − (𝐪2

T𝐱𝑖)𝐛𝑖,𝜉 ], (16.37)

𝐛3,𝜁𝜉 = 𝐍,𝑧𝜁𝜉 (0) =
1
8 [𝐷32𝛄4 − (𝐫3T𝐱𝑖)𝐛𝑖,𝜁 − (𝐪3

T𝐱𝑖)𝐛𝑖,𝜉 ], (16.38)

where 
𝐩𝑖 = 𝐷𝑖1𝐡1 + 𝐷𝑖3𝐡3, (16.39)

𝐪𝑖 = 𝐷𝑖1𝐡2 + 𝐷𝑖2𝐡3, (16.40)

𝐫𝑖 = 𝐷𝑖2𝐡1 + 𝐷𝑖3𝐡2, (16.41)

𝜸𝛼 = 𝐡𝛼 − (𝐡𝛼
T𝐱𝑖)𝐛𝑖, (16.42)

and 

𝐡1
T = [1 −1 1 −1 1 −1 1 −1], (16.43)

𝐡2
T = [1 −1 −1 1 −1 1 1 −1], (16.44)

𝐡3
T = [1 1 −1 −1 −1 −1 1 1], (16.45)

𝐡4
T = [−1 1 −1 1 1 −1 1 −1]. (16.46)

 
 In the above equations 𝐡1 is the 𝜉𝜂-hourglass vector, 𝐡2 the 𝜂𝜁 -hourglass vector, 
𝐡3 the 𝜁𝜉 -hourglass vector and 𝐡4the 𝜉𝜂𝜁 -hourglass vector.  They are the zero energy-
deformation modes associated with the one-point-quadrature element which result in a 
non-constant strain field in the element [Flanagan, 1981, Belytschko, 1984 and Liu, 
1984].  The 𝛾𝛼 in equations (16.21)–(16.38) are the stabilization vectors.  They are 
orthogonal to the linear displacement field and provide a consistent stabilization for the 
element. 
 
 The strain operators, 𝐁̅̅̅̅̅(𝜉 , 𝜂, 𝜁), can be decomposed into two parts, the 
dilatational part, 𝐁̅̅̅̅̅dil(𝜉 , 𝜂, 𝜁), and the deviatoric part, 𝐁̅̅̅̅̅dev(𝜉 , 𝜂, 𝜁), both of which can be 
expanded about the element center as in Equation (16.9) 

𝐁̅̅̅̅̅dil(𝛏, 𝛈, 𝛇) = 𝐁̅̅̅̅̅dil(0) + 𝐁̅̅̅̅̅,𝜉
dil(0)𝛏 + 𝐁̅̅̅̅̅,𝜂

dil(0)𝛈 + 𝐁̅̅̅̅̅,𝜁
dil(0)𝛇

+2[𝐁̅̅̅̅̅,𝜉𝜂
dil(0)𝛏𝛈 + 𝐁̅̅̅̅̅,𝜂𝜁

dil (0)𝛈𝛇 + 𝐁̅̅̅̅̅,𝜁𝜉
dil(0)𝛇𝛏],

 (16.47)
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𝐁̅̅̅̅̅dev(𝜉 , 𝜂, 𝜁) = 𝐁̅̅̅̅̅dev(0) + 𝐁̅̅̅̅̅,𝜉
dev(0)𝜉 + 𝐁̅̅̅̅̅,𝜂

dev(0)𝛈 + 𝐁̅̅̅̅̅,𝜁
dev(0)𝛇

+2[𝐁̅̅̅̅̅,𝜉𝜂
dev(0)𝛏𝛈 + 𝐁̅̅̅̅̅,𝜂𝜁

dev(0)𝛈𝛇 + 𝐁̅̅̅̅̅,𝜁𝜉
dev(0)𝛇𝛏],

 (16.48)

 
 To avoid volumetric locking, the dilatational part of the strain operators is 
evaluated only at one quadrature point, the center of the element, i.e., they are constant 
terms 

𝐁̅̅̅̅̅dil(𝝃 , 𝜼, 𝜻) = 𝐁̅̅̅̅̅dil(0). (16.49)

 
 To remove shear locking, the deviatoric strain submatrices can be written in an 
orthogonal co-rotational coordinate system rotating with the element as 

B̅̅̅̅̅𝑥𝑥
dev(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑥𝑥

dev(0) + B̅̅̅̅̅𝑥𝑥,𝜉
dev (0)𝜉 + B̅̅̅̅̅𝑥𝑥,𝜂

dev (0)𝜂 + B̅̅̅̅̅𝑥𝑥,𝜁
dev (0)𝜁

+2[B̅̅̅̅̅𝑥𝑥,𝜉𝜂
dev (0)𝜉𝜂 + B̅̅̅̅̅𝑥𝑥,𝜂𝜁

dev (0)𝜂𝜁 + B̅̅̅̅̅𝑥𝑥,𝜁𝜉
dev (0)𝜁𝜉],

 (16.50)

B̅̅̅̅̅𝑦𝑦
dev(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑦𝑦

dev(0) + B̅̅̅̅̅𝑦𝑦,𝜉
dev (0)𝜉 + B̅̅̅̅̅𝑦𝑦,𝜂

dev (0)𝜂 + B̅̅̅̅̅𝑦𝑦,𝜁
dev (0)𝜁

+2[B̅̅̅̅̅𝑦𝑦,𝜉𝜂
dev (0)𝜉𝜂 + B̅̅̅̅̅𝑦𝑦,𝜂𝜁

dev (0)𝜂𝜁 + B̅̅̅̅̅𝑦𝑦,𝜁𝜉
dev (0)𝜁𝜉],

 (16.51)

B̅̅̅̅̅𝑧𝑧
dev(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑧𝑧

dev(0) + B̅̅̅̅̅𝑧𝑧,𝜉
dev(0)𝜉 + B̅̅̅̅̅𝑧𝑧,𝜂

dev(0)𝜂 + B̅̅̅̅̅𝑧𝑧,𝜁
dev(0)𝜁

+2[B̅̅̅̅̅𝑧𝑧,𝜉𝜂
dev (0)𝜉𝜂 + B̅̅̅̅̅𝑧𝑧,𝜂𝜁

dev (0)𝜂𝜁 + B̅̅̅̅̅𝑧𝑧,𝜁𝜉
dev (0)𝜁𝜉],

 (16.52)

B̅̅̅̅̅𝑥𝑦
dev(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑥𝑦

dev(0) + B̅̅̅̅̅𝑥𝑦,𝜁
dev (0)𝜁 , (16.53)

B̅̅̅̅̅𝑦𝑧
dev(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑦𝑧

dev(0) + B̅̅̅̅̅𝑦𝑧,𝜉
dev(0)𝜉 , (16.54)

B̅̅̅̅̅𝑧𝑥
dev(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑧𝑥

dev(0) + B̅̅̅̅̅𝑧𝑥,𝜂
dev(0)𝜂. (16.55)

 
 Here, only one linear term is left for shear strain components such that the modes 
causing shear locking are removed.  The normal strain components keep all non-
constant terms given in equation (16.48).   
 
 Summation of equation (16.49) and equations (16.50)–(16.55) yields the following 
strain submatrices which can eliminate the shear and volumetric locking: 

B̅̅̅̅̅𝑥𝑥(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑥𝑥(0) + B̅̅̅̅̅𝑥𝑥,𝜉
dev (0)𝜉 + B̅̅̅̅̅𝑥𝑥,𝜂

dev (0)𝜂 + B̅̅̅̅̅𝑥𝑥,𝜁
dev (0)𝜁

+2[B̅̅̅̅̅𝑥𝑥,𝜉𝜂
dev (0)𝜉𝜂 + B̅̅̅̅̅𝑥𝑥,𝜂𝜁

dev (0)𝜂𝜁 + B̅̅̅̅̅𝑥𝑥,𝜁𝜉
dev (0)𝜁𝜉],

 (16.56)

B̅̅̅̅̅𝑦𝑦(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑦𝑦(0) + B̅̅̅̅̅𝑦𝑦,𝜉
dev (0)𝜉 + B̅̅̅̅̅𝑦𝑦,𝜂

dev (0)𝜂 + B̅̅̅̅̅𝑦𝑦,𝜁
dev (0)𝜁

+2[B̅̅̅̅̅𝑦𝑦,𝜉𝜂
dev (0)𝜉𝜂 + B̅̅̅̅̅𝑦𝑦,𝜂𝜁

dev (0)𝜂𝜁 + B̅̅̅̅̅𝑦𝑦,𝜁𝜉
dev (0)𝜁𝜉],

 (16.57)
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B̅̅̅̅̅𝑧𝑧(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑧𝑧(0) + B̅̅̅̅̅𝑧𝑧,𝜉
dev(0)𝜉 + B̅̅̅̅̅𝑧𝑧,𝜂

dev(0)𝜂 + B̅̅̅̅̅𝑧𝑧,𝜁
dev(0)𝜁

+2[B̅̅̅̅̅𝑧𝑧,𝜉𝜂
dev (0)𝜉𝜂 + B̅̅̅̅̅𝑧𝑧,𝜂𝜁

dev (0)𝜂𝜁 + B̅̅̅̅̅𝑧𝑧,𝜁𝜉
dev (0)𝜁𝜉],

 (16.58)

B̅̅̅̅̅𝑥𝑦(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑥𝑦(0) + B̅̅̅̅̅𝑥𝑦,𝜁
dev (0)𝜁 , (16.59)

B̅̅̅̅̅𝑦𝑧(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑦𝑧(0) + B̅̅̅̅̅𝑦𝑧,𝜉
dev (0)𝜉 , (16.60)

B̅̅̅̅̅𝑧𝑥(𝜉 , 𝜂, 𝜁) = B̅̅̅̅̅𝑧𝑥(0) + B̅̅̅̅̅𝑧𝑥,𝜂
dev(0)𝜂. (16.61)

 
 It is noted that the elements developed above cannot pass the patch test if the 
elements are skewed.  To remedy this drawback, the gradient vectors defined in 
(16.18)–(16.20) are replaced by the uniform gradient matrices, proposed by Flanagan 
[1981], 

⎣
⎢⎢
⎡b̃1

b̃2
b̃3⎦

⎥⎥
⎤

=
1

𝑉𝑒
∫

⎣
⎢
⎡

B1(𝜉 , 𝜂, 𝜁)
B2(𝜉 , 𝜂, 𝜁)
B3(𝜉 , 𝜂, 𝜁)⎦

⎥
⎤ 𝑑𝑉

Ω𝑒
. (16.62)

Where 𝑉𝑒 is the element volume and the stabilization vector are redefined as 

𝛄̃𝛼 = 𝐡𝛼 − (𝐡𝛼
T𝐱𝑖)𝐛̃𝑖. (16.63)

 
 The element using the strain submatrices (16.56)-(16.61) and uniform gradient 
matrices (16.62) with four-point quadrature scheme is called HEXDS element. 
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 Figure 16.1.  Definition of co-rotational coordinate system 
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16.3.2  Co-rotational Coordinate System 

 In elements for shell/plate structure simulations, the elimination of the shear 
locking depends on the proper treatment of the shear strain.  It is necessary to attach a 
local coordinate system to the element so that the strain tensor in this local system is 
relevant for the treatment.  The co-rotational coordinate system determined here is one 
of the most convenient ways to define such a local system. 
 
 A co-rotational coordinate system is defined as a Cartesian coordinate system 
which rotates with the element.  Let {𝑥𝑎, 𝑦𝑎, 𝑧𝑎} denote the current nodal spatial 
coordinates in the global system.  For each quadrature point with natural coordi-
nates(𝜉 , 𝜂, 𝜁), we can have two tangent directions on the mid-surface (𝜁 = 0) within the 
element (see Fig. 16.1) 

𝐠1 =
∂𝐱
∂𝜉 = [

∂𝑥
∂𝜉

∂𝑦
∂𝜉

∂𝑧
∂𝜉] = [𝑁𝑎,𝜉𝑥𝑎 𝑁𝑎,𝜉𝑦𝑎 𝑁𝑎,𝜉𝑧𝑎](𝜉,𝜂,0), (16.64)

𝐠2 =
∂𝐱
∂𝜂 = [

∂𝑥
∂𝜂

∂𝑦
∂𝜂

∂𝑧
∂𝜂] = [𝑁𝑎,𝜂𝑥𝑎 𝑁𝑎,𝜂𝑦𝑎 𝑁𝑎,𝜂𝑧𝑎](𝜉,𝜂,0). (16.65)

 
 The unit vector 𝐞1̂ of the co-rotational coordinate system is defined as the bisector 
of the angle intersected by these two tangent vectors 𝐠1 and 𝐠2; the unit vector 𝐞3̂ is 
perpendicular to the mid-surface and the other unit vector is determined by 𝐞1̂ and 𝐞3̂, 
i.e., 

𝐞1̂ = (
𝐠1
∣𝐠1∣

+
𝐠2
∣𝐠2∣

) (∣
𝐠1
∣𝐠1∣

+
𝐠2
∣𝐠2∣
∣)⁄ , (16.66)

𝐞3̂ =
𝐠1 × 𝐠2
∣𝐠1 × 𝐠2∣

, (16.67)

𝐞2̂ = 𝐞3̂ × 𝐞1̂, (16.68)
which lead to the transformation matrix 

𝐑 =
⎣
⎢⎡

𝐞1̂
𝐞2̂
𝐞3̂⎦

⎥⎤. (16.69)

 

16.3.3  Stress and Strain Measures 

 Since the co-rotational coordinate system rotates with the configuration, the 
stress defined in this co-rotational system does not change with the rotation or 
translation of the material body and is thus objective.  Therefore, we use the Cauchy 
stress in the co-rotational coordinate system, called the co-rotational Cauchy stress, as 
our stress measure.   
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 The rate of deformation (or velocity strain tensor), also defined in the co-
rotational coordinate system, is used as the measure of the strain rate, 

𝛆̇ = 𝐝̂ =
1
2 ⎣

⎢⎡
∂𝐯̂def

∂𝐱̂ + (
∂𝐯̂def

∂𝐱̂ )
T

⎦
⎥⎤, (16.70)

where 𝐯̂def is the deformation part of the velocity in the co-rotational system 𝐱.̂ If the 
initial strain 𝛆 ̂(𝐗, 0) is given, the strain tensor can be expressed as, 

𝛆(̂X, 𝑡) = 𝛆(̂𝐗, 0) + ∫ 𝐝̂(𝐗, 𝜏)
𝑡

0
𝑑𝜏. (16.71)

 
 The strain increment is then given by the mid-point integration of the velocity 
strain tensor, 

Δ𝛆̂ = ∫ 𝐝̂𝑑𝜏
𝑡𝑛+1

𝑡𝑛
=̇

1
2

⎣
⎢⎢
⎡∂Δ𝐮̂def

∂𝐱
𝑛̂+1

2

+
⎝
⎜⎜⎜
⎛∂Δ𝐮̂def

∂𝐱
𝑛̂+1

2 ⎠
⎟⎟⎟
⎞

T

⎦
⎥⎥
⎤

, (16.72)

where Δ𝐮̂def is the deformation part of the displacement increment in the co-rotational 
system 𝐱𝑛̂ + 12

 referred to the mid-point configuration. 
 

16.3.4  Co-rotational Stress and Strain Updates 

 For stress and strain updates, we assume that all variables at the previous time 
step 𝑡𝑛 are known.  Since the stress and strain measures defined in the earlier section are 
objective in the co-rotational system, we only need to calculate the strain increment 
from the displacement field within the time increment [𝑡𝑛, 𝑡𝑛 + 1].  The stress is then 
updated by using the radial return algorithm. 
 
 All the kinematical quantities must be computed from the last time step 
configuration, Ω𝑛, at 𝑡 =  𝑡𝑛 and the current configuration, Ω𝑛 + 1 at 𝑡 =  𝑡𝑛 + 1 since 
these are the only available data.  Denoting the spatial coordinates of these two 
configurations as 𝐱nand 𝐱n + 1 in the fixed global Cartesian coordinate system 𝑂x, as 
shown in Figure 16.2, the coordinates in the corresponding co-rotational Cartesian 
coordinate systems, 𝑂𝐱𝑛̂ and 𝑂𝐱𝑛̂ + 1, can be obtained by the following transformation 
rules: 

𝐱𝑛̂ = 𝐑𝑛𝐱𝑛, (16.73)

𝐱𝑛̂+1 = 𝐑𝑛+1𝐱𝑛+1, (16.74)
where 𝐑𝑛 and 𝐑𝑛 + 1 are the orthogonal transformation matrices which rotate the global 
coordinate system to the corresponding co-rotational coordinate systems, respectively.   
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 Since the strain increment is referred to the configuration at 𝑡 =  𝑡𝑛 + 12

, by 
assuming the velocities within the time increment [𝑡𝑛, 𝑡𝑛 + 1] are constant, we have 

𝐱
𝑛+1

2
=

1
2 (𝐱𝑛 + 𝐱𝑛+1), (16.75)

and the transformation to the co-rotational system associated with this mid-point 
configuration, Ω𝑛 + 12

, is given by 

𝐱
𝑛̂+1

2
= 𝐑

𝑛+1
2
𝐱

𝑛+1
2
. (16.76)

 
 Similar to polar decomposition, an incremental deformation can be separated 
into the summation of a pure deformation and a pure rotation [Belytschko, 1973].  
Letting Δ𝐮 indicate the displacement increment within the time increment [𝑡𝑛, 𝑡𝑛 + 12

], 
we write 

Δ𝐮 = Δ𝐮def + Δ𝐮rot, (16.77)

where Δ𝐮def and Δ𝐮rot are, respectively, the deformation part and the pure rotation part 
of the displacement increment in the global coordinate system.  The deformation part 
also includes the translation displacements which cause no strains.   
 

Ωn+1/2

Ωn+1

Ωn

Xn

^

X
^

n+1/2

X
^

n+1

O

 Figure 16.2.  Configurations at times 𝑡𝑛, 𝑡𝑛 + 12
, and 𝑡𝑛+1, 
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 In order to obtain the deformation part of the displacement increment referred to 
the configuration at 𝑡 = 𝑡𝑛 + 12

, we need to find the rigid rotation from Ω𝑛 to Ω𝑛 + 1 
provided that the mid-point configuration, Ω𝑛 + 12

, is held still.  Defining two virtual 
configurations, Ω′𝑛 and Ω′𝑛 + 1, by rotating the element bodies Ω𝑛 and Ω𝑛 + 1 into the 
co-rotational system 𝑂x𝑛̂ + 12

 (Fig.  13.3) and denoting and 𝐱′̂𝑛 + 1 as the coordinates of 
Ω′𝑛 and Ω′𝑛 + 1 in the co-rotational system 𝑂𝐱𝑛̂ + 12

, we have 

𝐱′̂𝑛 =  𝐱𝑛̂, 𝐱′̂𝑛 + 1 = 𝐱𝑛̂ + 1. (16.78)

 
 We can see that from Ω𝑛 to Ω′𝑛 and from Ω′𝑛 + 1 to Ω𝑛 + 1, the body experiences 
two rigid rotations and the rotation displacements are given by 

Δ𝐮1
rot = 𝐱′𝑛 − 𝐱𝑛 = 𝐑

𝑛+1
2

T 𝐱′̂𝑛 − 𝐱𝑛 = 𝐑
𝑛+1

2

T 𝐱𝑛̂ − 𝐱𝑛, (16.79)

Δ𝐮2
rot = 𝐱𝑛+1 − 𝐱′𝑛+1 = 𝐱𝑛+1 − 𝐑

𝑛+1
2

T 𝐱′̂𝑛+1 = 𝐱𝑛+1 − 𝐑
𝑛+1

2

T 𝐱𝑛̂+1. (16.80)

 
Thus the total rotation displacement increment can be expressed as 

Δ𝐮rot = Δ𝐮1
rot + Δ𝐮2

rot = 𝐱𝑛+1 − 𝐱𝑛 − 𝐑
𝑛+1

2

T (𝐱𝑛̂+1 − 𝐱𝑛̂)

= Δ𝐮 − 𝐑
𝑛+1

2

T (𝐱𝑛̂+1 − 𝐱𝑛̂).
 (16.81)

 
 Then the deformation part of the displacement increment referred to the 
configuration Ω𝑛 + 12

 is 

Δ𝐮def = Δ𝐮 − Δ𝐮rot = 𝐑
𝑛+1

2

T (𝐱𝑛̂+1 − 𝐱𝑛̂). (16.82)

 
 Therefore, the deformation displacement increment in the co-rotational 
coordinate system 𝑂x𝑛̂ + 12

 is obtained as  

Δ𝐮̂def = 𝐑
𝑛+1

2
Δ𝐮def = 𝐱𝑛̂+1 − 𝐱𝑛̂. (16.83)

 
 Once the strain increment is obtained by equation (16.72), the stress increment, 
also referred to the mid-point Configuration, can be calculated with the radial return 
algorithm.  The total strain and stress can then be updated as 

𝛆𝑛̂+1 = 𝛆𝑛̂ + Δ𝛆,̂ (16.84)

𝛔̂𝑛+1 = 𝛔̂𝑛 + Δ𝛔̂. (16.85)
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 Note that the resultant stress and strain tensors are both referred to the current 
configuration and defined in the current co-rotational coordinate system.  By using the 
tensor transformation rule we can have the strain and stress components in the global 
coordinate system.   
 

  Tangent Stiffness Matrix and Nodal Force Vectors 

 From the Hu-Washizu variational principle, at both 𝑣th and (𝑣 + 1)th iteration, 
we have 

∫ 𝛿𝜀𝑖̂𝑗
𝑣 𝜎̂𝑖𝑗

𝑣
Ω̂𝑣

𝑑𝑉 = 𝛿𝜋̂ext
𝑣 , (16.86)

∫ 𝛿𝜀𝑖̂𝑗
𝑣+1𝜎̂𝑖𝑗

𝑣+1
Ω̂𝑣+1

𝑑𝑉 = 𝛿𝜋̂ext
𝑣+1, (16.87)

where 𝛿𝜋̂ext is the virtual work done by the external forces.  Note that both equations 
are written in the co-rotational coordinate system defined in the 𝑣th iterative 
configuration given by x𝑛+1

𝑣 .  The variables in this section are within the time step 
[𝑡𝑛, 𝑡𝑛+1

2
] and superscripts indicate the number of iterations. 

 
 Assuming that all external forces are deformation-independent, linearization of 
Equation (16.87) gives [Liu, 1992] 

∫ 𝛿𝑢𝑖̂,𝑗
𝑣 𝐶𝑖̂𝑗𝑘𝑙

𝑣 Δ𝑢𝑘̂,𝑙𝑑𝑉 +
Ω̂𝑣

∫ 𝛿𝑢𝑖̂,𝑗
𝑣 𝑇̂𝑖𝑗𝑘𝑙

𝑣 Δ𝑢𝑘̂,𝑙𝑑𝑉 = 𝛿𝜋̂ext
𝑣+1 −

Ω̂𝑣
𝛿𝜋̂ext

𝑣 , (16.88)
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 Figure 16.3.  Separation of the displacement increment 
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where the Green-Naghdi rate of Cauchy stress tensor is used, i.e., 

𝑇̂𝑖𝑗𝑘𝑙
𝑣 = 𝛿𝑖𝑘𝜎̂𝑗𝑙

𝑣. (16.89)

 
 The first term on the left hand side of (16.88) denotes the material response since 
it is due to pure deformation or stretching; the second term is an initial stress part 
resulting from finite deformation effect.   
 
 Taking account of the residual of the previous iteration, Equation (16.87) can be 
approximated as  

∫ 𝛿𝑢𝑖̂,𝑗
𝑣 (𝐶𝑖̂𝑗𝑘𝑙

𝑣 + 𝑇̂𝑖𝑗𝑘𝑙
𝑣 )Δ𝑢𝑘̂,𝑙Ω̂𝑣

𝑑𝑉 = 𝛿𝜋̂ext
𝑣+1 − ∫ 𝛿𝜀𝑖̂𝑗

𝑣 𝜎̂𝑖𝑗
𝑣𝑑𝑉

Ω̂𝑣
. (16.90)

If the strain and stress vectors are defined as  

𝛆T = [𝜀𝑥 𝜀𝑦 𝜀𝑧 2𝜀𝑥𝑦 2𝜀𝑦𝑧 2𝜀𝑧𝑥 2𝜔𝑥𝑦 2𝜔𝑦𝑧 2𝜔𝑧𝑥], (16.91)

𝛔T = [𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜎𝑥𝑦 𝜎𝑦𝑧 𝜎𝑧𝑥], (16.92)

 
 We can rewrite equation (16.90) as  

∫ 𝛿𝜀𝑖̂
𝑣(𝐶𝑖̂𝑗

𝑣 + 𝑇̂𝑖𝑗
𝑣)𝛿𝜀𝑗̂Ω̂𝑣

𝑑𝑉 = 𝛿𝜋̂ext
𝑣+1 − ∫ 𝛿𝜀𝑖̂

𝑣𝜎̂𝑗
𝑣𝑑𝑉

Ω̂𝑣
, (16.93)

where 𝐶𝑖̂𝑗
𝑣  is the consistent tangent modulus tensor corresponding to pure deformation 

(see Section 3.2.3) but expanded to a 9 by 9 matrix; 𝑇̂𝑖𝑗
𝑣 is the geometric stiffness matrix 

which is given as follows [Liu 1992]:   
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T =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎1 0 0

𝜎4
2 0

𝜎6
2

𝜎4
2 0 −

𝜎6
2

𝜎2 0
𝜎4
2

𝜎5
2 0 −

𝜎4
2

𝜎5
2 0

𝜎3 0
𝜎5
2

𝜎6
2 0 −

𝜎5
2

𝜎6
2

𝜎1  + 𝜎2
4

𝜎6
4

𝜎5
4

𝜎2  − 𝜎1
4

𝜎6
4 −

𝜎5
4

𝜎2  + 𝜎3
4

𝜎4
4 −

𝜎6
4

𝜎3  − 𝜎2
4

𝜎4
4

𝜎1  + 𝜎3
4

𝜎5
4 −

𝜎4
4

𝜎1  − 𝜎3
4

symm.
𝜎1  + 𝜎2

4 −
𝜎6
4 −

𝜎5
4

𝜎2  + 𝜎3
4 −

𝜎4
4

𝜎3  + 𝜎1
4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.(16.94)

By interpolation 
Δ𝐮 = 𝐍Δ𝐝, 𝛿𝐮 = 𝐍𝛿𝐝; (16.95)

Δ𝛆 = 𝐁̅̅̅̅̅Δ𝐝, 𝛿𝛆 = 𝐁̅̅̅̅̅𝛿𝐝, (16.96)

where 𝐍 and 𝐁̅̅̅̅̅ are, respectively, the shape functions and strain operators defined in 
Section 2.  This leads to a set of equations  

𝐊̂𝑣Δ𝐝̂ = 𝐫𝑣̂+1 = 𝐟êxt
𝑣+1 − 𝐟înt

𝑣 , (16.97)

where the tangent stiffness matrix, 𝐊̂𝑣, and the internal nodal force vector, 𝐟înt
𝑣 , are  

𝐊̂𝑣 = ∫ 𝐁̂̅̅̅̅̅T(𝐂𝑣̂ + 𝐓̂𝑣)𝐁̂̅̅̅̅̅dV
Ω̂𝑣

, (16.98)

𝐟înt
𝑣 = ∫ 𝐁̂̅̅̅̅̅T𝛔̂𝑣dV

Ω̂𝑣
. (16.99)

 
 The tangent stiffness and nodal force are transformed into the global coordinate 
system tensorially as  

𝐊𝑣 = 𝐑𝑣T𝐊̂𝑣𝐑𝑣, (16.100)

𝐫𝑣+1 = 𝐑𝑣T𝐫înt𝑣 , (16.101)

where 𝐑𝑣 is the transformation matrix of the co-rotational system defined by 𝐱𝑛+1
𝑣 .  

Finally, we get a set of linear algebraic equations 

𝐊𝑣Δ𝐝𝑣+1 = 𝐫𝑣+1. (16.102)
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16.4  Numerical Examples 

 To investigate the performance of the element introduced in this paper, a variety 
of problems including linear elastic and nonlinear elastic-plastic/large deformation 
problems are studied.  Since the element is developed to avoid locking, the applicability 
to problems of thin structures is studied by solving the standard test problems 
including pinched cylinder and Scordelis-Lo roof, which are proposed by MacNeal, 
1985 and Belytschko, 1984b.  Also a sheet metal forming problem is solved to test and 
demonstrate the effectiveness and efficiency of this element.   
 

16.4.1  Timoshenko Cantilever Beam 

 The first problem is a linear, elastic cantilever beam with a load at its end as 
shown in Fig. 16.4, where 𝑀 and 𝑃 at the left end of the cantilever are reactions at the 
support.  The analytical solution from Timoshenko, 1970 is  

𝑢𝑥(𝑥, 𝑦) =
−𝑃𝑦
6𝐸̅̅̅̅𝐼

[(6𝐿 − 3𝑥)𝑥 + (2 + 𝑣̅) (𝑦2 −
1
4 𝐷2)], (16.103)

𝑢𝑦(𝑥, 𝑦) =
𝑃

6𝐸̅̅̅̅𝐼
[3𝑣̅𝑦2(𝐿 − 𝑥) +

1
4 (4 + 5𝑣̅)𝐷2𝑥 + (3𝐿 − 𝑥)𝑥2], (16.104)

where 

𝐼 =
1
12 𝐷3, (16.105)

𝐸̅̅̅̅  =  {𝐸,
𝐸/(1 − 𝑣2) , 𝑣̅  =  

⎩{
⎨
{⎧ 𝑣 for plane stress

𝑣
1 − 𝑣 for plane strain (16.106)

 
 The displacements at the support end, 𝑥 = 0, − 1

2 𝐷 ≤ 𝑦 ≤ 1
2 𝐷 are nonzero except 

at the top, bottom and midline (as shown in Fig.  13.5).  Reaction forces are applied at 
the support based on the stresses corresponding to the displacement field at 𝑥 = 0, 
which are 

𝜎𝑥𝑥 = −
𝑃𝑦
𝐼 (𝐿 − 𝑥), 𝜎𝑦𝑦 = 0, 𝜎𝑥𝑦 =

𝑃
2𝐼 (

1
4 𝐷2 − 𝑦2). (16.107)

 
 The distribution of the applied load to the nodes at 𝑥 = 𝐿 is also obtained from 
the closed-form stress fields. 
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 The parameters for the cantilever beam are: 𝐿 = 1.0, 𝐷 = 0.02, 𝑃 = 2.0, 𝐸 = 1 ×
107; and two values of Poisson’s ratio: (1)𝑣 = 0.25, (2)𝑣 = 0.4999.   
 
 Since the problem is anti-symmetric, only the top half of the beam is modeled.  
Plane strain conditions are assumed in the z-direction and only one layer of elements is 
used in this direction.  Both regular mesh and skewed mesh are tested for this problem.   
 
 Normalized vertical displacements at point A for each case are given in Table 
13.1.  Tables 13.1a and 13.1b show the normalized displacement at point A for the 

M

P

L

D
xP

 Figure 16.4.  Timoshenko cantilever beam. 
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(a) Regular mesh

(b) Skewed mesh

 Figure 16.5.  Top half of anti-symmetric beam mesh 
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regular mesh.  There is no shear or volumetric locking for this element.  For the skewed 
mesh, with the skewed angle increased, we need more elements to get more accurate 
solution (Table 13.1c).   

(a) 𝑣 = 0.25, regular mesh 
       Analytical solution 𝑤A = 9.3777 × 10−2 
 
Mesh 

 
4  1  1

 
8  1  1 

 
8  2  1 

 
HEXDS 

 
1.132 

 
1.142 

 
1.029 

 
 
 
 

(b) 𝑣 = 0.4999, regular mesh 
       Analytical solution 𝑤A = 7.5044 × 10−2 
 
Mesh 

 
4  1  1

 
8  1  1 

 
8  2  1 

 
HEXDS 

 
1.182 

 
1.197 

 
1.039 

 
 
 

(c) 𝑣 = 0.25, skewed mesh 
 
 

 
1 

 
5 

 
10 

 
4  1 1 

 
1.078 

 
0.580 

 
0.317 

 
8  1 1 

 
1.136 

 
0.996 

 
0.737 

 
16  1 1 

 
1.142 

 
1.090 

 
.955 

 
Table 13.1.  Normalized displacement at point A of cantilever beam. 



Eight-Node Solid Element for Thick Shell Simulations LS-DYNA Theory Manual 

14-18 (Eight-Node Solid Element for Thick Shell Simulations) LS-DYNA DEV 06/21/18 (r:10113) 

 

16.4.2  Pinched Cylinder 

 Figure 16.6 shows a pinched cylinder subjected to a pair of concentrated loads.  
Two cases are studied in this example.  In the first case, both ends of the cylinder are 
assumed to be free.  In the second case, both ends of the cylinder are covered with rigid 
diaphragms so that only the displacement in the axial direction is allowed at the ends.  
The parameters for the first case  
(without diaphragms) are 

𝐸 = 1.05 × 106, 𝑣 = 0.3125, 𝐿 = 10.35, 𝑅 = 1.0, 𝑡 = 0.094, 𝑃 = 100.0; (16.108)

while for the second case (with diaphragms), the parameters are set to be 

𝐸 = 3 × 106, 𝑣 = 0.3, 𝐿 = 600.0, 𝑅 = 300.0, 𝑡 = 3.0, 𝑃 = 1.0. (16.109)

 
 Due to symmetry only one octant of the cylinder is modeled.  The computed 
displacements at the loading point are compared to the analytic solutions in Table 13.2. 
HEXDS element works well in both cases, indicating that this element can avoid not 
only shear locking but also membrane locking; this is not unexpected since membrane 
locking occurs primarily in curved elements [Stolarski, 1983].   

16.4.3  Scordelis-Lo Roof 

 Scordelis-Lo roof subjected to its own weight is shown in Figure 16.7.  Both ends 
of the roof are assumed to be covered with rigid diaphragms.  The parameters are 
selected to be: 𝐸 = 4.32 × 108, 𝑣 =  0.0, 𝐿 =  50.0, 𝑅 = 25.0, 𝑡 =  0.25, 𝜃 =  40∘, and 
the gravity is 360.0 per volume. 
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 Figure 16.6.  Pinched cylinder and the element model 
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 (a) First case without diaphragms 
        Analytical solution 𝑤max = 0.1137 
 
Mesh 

 
10  10  2 

 
16  16  4 

 
20  20  4 

 
HEXDS 

 
1.106 

 
1.054 

 
1.067 

 
(b) Second case with diaphragms 
        Analytical solution wmax = 1.8248 × 10−5 
 
Mesh 

 
10  10  2 

 
16  16  4 

 
20  20  4 

 
HEXDS 

 
0.801 

 
0.945 

 
.978 

 
Table 13.2.  Normalized displacement at loading point of pinched cylinder 

 
 Due to symmetry only one quarter of the roof is modeled.  The computed 
displacement at the midpoint of the edge is compared to the analytic solution in Table 
13.3.  In this example the HEXDS element can get good result with 100 × 2 elements.   
 
 
 
 

2L

R

θ

t

 Figure 16.7.  Scordelis-Lo roof under self-weight 
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Analytical solution 𝑤max = 0.3024 
 
Mesh 

 
8  8  1 

 
16  16  1 

 
32  32  1 

 
10  10  2 

 
HEXDS 

 
1.157 

 
1.137 

 
1.132 

 
1.045 

 

16.4.4  Circular Sheet Stretched with a Tight Die 

 A circular sheet is stretched under a hemisphere punch and a tight die with a 
small corner radius (Fig. 16.8).  The material is elastoplastic with nonlinear hardening 
rule.  The elastic material constants are: 𝐸 = 206 GPa and 𝑣 = 0.3.  In the plastic range, 
the uniaxial stress-strain curve is given by  

𝜎 = 𝐾𝜀𝑛, (16.110)
where 𝐾 = 509.8MPa, 𝑛 = 0.21, 𝜎  is Cauchy stress and 𝜀 is natural strain (logarithmic 
strain).  The initial yield stress is obtained to be 𝜎0 = 103.405Mpa and the tangent 
modulus at the initial yield point is 𝐸t = 0.4326 × 105MPa. 
 
 Because of the small corner radius of the die, the same difficulties as in the 
problem of sheet stretch under the rigid cylinders lead the shell elements to failure in 
this problem.  Three-dimensional solid elements are needed and fine meshes should be 
put in the areas near the center and the edge of the sheet.   
 
 One quarter of the sheet is modeled with 1400  2 HEXDS elements due to the 
double symmetries.  The mesh is shown in Fig. 16.9.  Two layers of elements are used in 
the thickness.  Around the center and near the circular edge of the sheet, fine mesh is 
used.  The nodes on the edge are fixed in x- and y-directions and the bottom nodes on 
the edge are prescribed in three directions.  No friction is considered in this simulation.  

R0=50.8mm

tight die

r=2mm
Rd=54mm

R=54mm

t=2mm

 Figure 16.8.  Circular sheet stretched with a tight die 
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For comparison, the axisymmetric four-node element with reduced integration 
(CAX4R) is also used and the mesh for this element is the same as shown in the top of 
Figure 13.9. 
 
 The results presented here are after the punch has traveled down 50 mm.  The 
profile of the circular sheet is shown in Figure 16.10 where we can see that the sheet 

under the punch experiences most of the stretching and the thickness of the sheet above 

 Figure 16.9.  Mesh for circular sheet stretching 

 Figure 16.10.  Deformed shape of a circular sheet with punch travel 50 mm 
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the die changes a lot.  The deformation between the punch and the die is small.  
However, the sheet thickness obtained by the CAX4R element is less than that by the 
HEXDS element and there is slight difference above the die.  These observations can be 
verified by the strain distributions in the sheet along the radial direction (Figure 13.12).  
The direction of the radial strain is the tangent of the mid-surface of the element in the 
rz plane and the thickness strain is in the direction perpendicular to the mid-surface of 
the element.  The unit vector of the circumferential strain is defined as the cross-product 
of the directional cosine vectors of the radial strain and the thickness strain.  We can see 
that the CAX4R element yields larger strain components in the area under the punch 
than the HEXDS element.  The main difference of the strain distributions in the region 
above the die is that the CAX4R element gives zero circumferential strain in this area 
but the HEXDS element yields non-zero strain.  The value of the reaction force shown in 
the Figure 13.11 is only one quarter of the total punch reaction force since only one 
quarter of the sheet is modeled.  From this figure we can see that the sheet begins 
softening after the punch travels down about 45 mm, indicating that the sheet may have 
necking though this cannot be seen clearly from Figure 16.10. 
 
 
 

 Figure 16.11.  Reaction force vs.  punch travel for the circular sheet 
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(a) Radial strain distribution 

 

 
(b) Circumferential strain distribution 

 

 
(c) Thickness strain distribution 

 
Figure 13.12.  Strain distributions in circular sheet with punch travel 50 mm 
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16.5  Conclusions 

 A new eight-node hexahedral element is implemented for the large deformation 
elastic-plastic analysis.  Formulated in the co-rotational coordinate system, this element 
is shown to be effective and efficient and can achieve fast convergence in solving a wide 
variety of nonlinear problems.   
 
 By using a co-rotational system which rotates with the element, the locking 
phenomena can be suppressed by omitting certain terms in the generalized strain 
operators.  In addition, the integration of the constitutive equation in the co-rotational 
system takes the same simple form as small deformation theory since the stress and 
strain tensors defined in this co-rotational system are objective. 
 
 Radial return algorithm is used to integrate the rate-independent elastoplastic 
constitutive equation.  The tangent stiffness matrix consistently derived from this 
integration scheme is crucial to preserve the second order convergence rate of the 
Newton’s iteration method for the nonlinear static analyses.   
 
 Test problems studied in this paper demonstrate that the element is suitable to 
continuum and structural numerical simulations.  In metal sheet forming analysis, this 
element has advantages over shell elements for certain problems where through the 
thickness deformation and strains are significant.
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17    
Truss Element 

 One of the simplest elements is the pin-jointed truss element shown in 
Figure 17.1.  This element has three degrees of freedom at each node and carries an axial 
force.  The displacements and velocities measured in the local system are interpolated 
along the axis according to 

𝑢 = 𝑢1 +
𝑥
𝐿 (𝑢2 − 𝑢1), (17.1)

𝑢̇ = 𝑢1̇ +
𝑥
𝐿 (𝑢2̇ − 𝑢1̇), (17.2)

where at 𝑥 = 0, 𝑢 = 𝑢1 and at 𝑥 = 𝐿, 𝑢 = 𝑢2.  Incremental strains are found from 

Δ𝜀 =
(𝑢2̇ − 𝑢1̇)

𝐿 Δ𝑡 (17.3)

and are computed in LS-DYNA using 

Δ𝜀𝑛+1
2⁄ =

2 (𝑢2̇
𝑛+1

2⁄ − 𝑢1̇
𝑛+1

2⁄ )

𝐿𝑛 + 𝐿𝑛+1 Δ𝑡𝑛+1
2⁄ (17.4)

 
 The normal force 𝑁 is then incrementally updated using a tangent modulus 𝐸𝑡 
according to 

𝑁𝑛+1 = N𝑛𝐴𝐸𝑡 + Δ𝜀𝑛+1/2 (17.5)
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 Two constitutive models are implemented for the truss element: elastic and 
elastic-plastic with kinematic hardening.

N1

u1

u2

N2

A

L

 Figure 17.1.  Truss element. 



LS-DYNA Theory Manual Membrane Element 

LS-DYNA DEV 06/21/18 (r:10113) 16-1 (Membrane Element) 

18    
Membrane Element 

 The Belytschko-Lin-Tsay shell element {Belytschko and Tsay [1981], Belytschko 
et al., [1984a]} is the basis for this very efficient membrane element.  In this section we 
briefly outline the theory employed which, like the shell on which it is based, uses a 
combined co-rotational and velocity-strain formulation.  The efficiency of the element is 
obtained from the mathematical simplifications that result from these two kinematical 
assumptions.  The co-rotational portion of the formulation avoids the complexities of 
nonlinear mechanics by embedding a coordinate system in the element.  The choice of 
velocity strain or rate of deformation in the formulation facilitates the constitutive 
evaluation, since the conjugate stress is the more familiar Cauchy stress.   
 
 In membrane elements the rotational degrees of freedom at the nodal points may 
be constrained, so that only the translational degrees-of-freedom contribute to the 
straining of the membrane.  A triangular membrane element may be obtained by 
collapsing adjacent nodes of the quadrilateral. 
 

18.1  Co-rotational Coordinates 

 The mid-surface of the quadrilateral membrane element is defined by the 
location of the element’s four corner nodes.  An embedded element coordinate system 
(Figure 7.1) that deforms with the element is defined in terms of these nodal 
coordinates.  The co-rotational coordinate system follows the development in Section 7, 
Equations (7.1)—(7.3). 
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18.2  Velocity-Strain Displacement Relations 

 The co-rotational components of the velocity strain (rate of deformation) are 
given by: 

𝑑𝑖̂𝑗 =
1
2 (

∂𝜐𝑖̂
∂𝑥𝑗̂

+
∂𝜐𝑗̂

∂𝑥𝑖̂
), (18.1)

 
 The above velocity-strain relations are evaluated only at the center of the shell.  
Standard bilinear nodal interpolation is used to define the mid-surface velocity, angular 
velocity, and the element’s coordinates (isoparametric representation).  These 
interpolation relations are given by 

𝑣𝑚 = 𝑁𝐼(𝜉 , 𝜂)𝑣𝐼, (18.2)

𝑥𝑚 = 𝑁𝐼(𝜉 , 𝜂)𝑥𝐼, (18.3)
where the subscript 𝐼 is summed over all the element’s nodes and the nodal velocities 
are obtained by differentiating the nodal coordinates with respect to time, i.e., 𝜐𝐼 = x𝐼̇.  
The bilinear shape functions are defined in Equations (7.10). 
 
 The velocity strains at the center of the element, i.e., at 𝜉 = 0, and 𝜂 = 0, are 
obtained as in Section 7 giving: 

𝑑𝑥̂ = 𝐵1𝐼𝜐𝑥̂𝐼, (18.4)

𝑑𝑦̂ = 𝐵2𝐼𝜐𝑦̂𝐼, (18.5)

2𝑑𝑥̂𝑦 = 𝐵2𝐼𝑣̂𝑥𝐼 + 𝐵1𝐼𝑣̂𝑦𝐼, (18.6)

where 

𝐵1𝐼 =
∂𝑁𝐼
∂𝑥̂ ,

(18.7)

𝐵2𝐼 =
∂𝑁𝐼
∂𝑦̂ . (18.8)

 

18.3  Stress Resultants and Nodal Forces 

 After suitable constitutive evaluations using the above velocity strains, the 
resulting stresses are multiplied by the thickness of the membrane, h, to obtain local 
resultant forces.  Therefore,  

𝑓𝛼̂𝛽𝑅 = ℎ𝜎̂𝛼𝛽, (18.9)
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where the superscript R indicates a resultant force and the Greek subscripts emphasize 
the limited range of the indices for plane stress plasticity. 
 
 The above element centered force resultants are related to the local nodal forces 
by 

𝑓𝑥̂𝐼 = 𝐴(𝐵1𝐼𝑓𝑥̂𝑥
𝑅 + 𝐵2𝐼𝑓𝑥̂𝑦

𝑅 ), (18.10)

𝑓𝑦̂𝐼 = 𝐴(𝐵2𝐼𝑓𝑦̂𝑦
𝑅 + 𝐵1𝐼𝑓𝑥̂𝑦

𝑅 ), (18.11)

where 𝐴 is the area of the element. 
 
 The above local nodal forces are then transformed to the global coordinate 
system using the transformation relations given in Equation (7.5a). 
 

18.4  Membrane Hourglass Control 

 Hourglass deformations need to be resisted for the membrane element.  The 
hourglass control for this element is discussed in Section 7.4.
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19    
Discrete Elements and Masses 

 The discrete elements and masses in LS-DYNA provide a capability for modeling 
simple spring-mass systems as well as the response of more complicated mechanisms.  
Occasionally, the response of complicated mechanisms or materials needs to be 
included in LS-DYNA models, e.g., energy absorbers used in passenger vehicle 
bumpers.  These mechanisms are often experimentally characterized in terms of force-
displacement curves.  LS-DYNA provides a selection of discrete elements that can be 
used individually or in combination to model complex force-displacement relations. 
 
 The discrete elements are assumed to be massless.  However, to solve the 
equations of motion at unconstrained discrete element nodes or nodes joining multiple 
discrete elements, nodal masses must be specified at these nodes.  LS-DYNA provides a 
direct method for specifying these nodal masses in the model input. 
 
 All of the discrete elements are two-node elements, i.e., three-dimensional 
springs or trusses.  A discrete element may be attached to any of the other LS-DYNA 
continuum, structural, or rigid body element.  The force update for the discrete 
elements may be written as 

𝐟𝑖̂+1 = 𝐟𝑖̂ + Δ𝐟,̂ (19.1)

where the superscript 𝑖 + 1 indicates the time increment and the superposed caret (⋅)̂ 
indicates the force in the local element coordinates, i.e., along the axis of the element.  In 
the default case, i.e., no orientation vector is used; the global components of the discrete 
element force are obtained by using the element’s direction cosines: 

⎩{
⎨
{⎧𝐹𝑥

𝐹𝑦
𝐹𝑧⎭}

⎬
}⎫

  =
𝑓 ̂
𝑙  

⎩{
⎨
{⎧Δ𝑙𝑥

Δ𝑙𝑦
Δ𝑙𝑧⎭}

⎬
}⎫

= 𝑓 ̂
⎩{⎨
{⎧𝑛𝑥

𝑛𝑦
𝑛𝑧⎭}⎬

}⎫ = 𝑓 𝐧̂~, (19.2)

where  
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Δ𝐥 =
⎩{
⎨
{⎧Δ𝑙𝑥

Δ𝑙𝑦
Δ𝑙𝑧⎭}

⎬
}⎫

=  
⎩{⎨
{⎧𝑥2 − 𝑥1

𝑦2 − 𝑦1
𝑧2 − 𝑧1 ⎭}⎬

}⎫. (19.3)

𝑙 is the length  

𝑙 = √Δ𝑙𝑥2 + Δ𝑙𝑦2 + Δ𝑙𝑧2, (19.4)

and (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are the global coordinates of the nodes of the spring element.  The forces 
in Equation (19.2) are added to the first node and subtracted from the second node. 
 
 For a node tied to ground we use the same approach but for the (𝑥2, 𝑦2, 𝑧2) 
coordinates in Equation (19.2) the initial coordinates of node 1, i.e., (𝑥0, 𝑦0, 𝑧0) are used 
instead; therefore, 

⎩{
⎨
{⎧𝐹𝑥

𝐹𝑦
𝐹𝑧⎭}

⎬
}⎫

=
𝑓 ̂
𝑙  

⎩{⎨
{⎧𝑥0 − 𝑥1

𝑦0 − 𝑦1
𝑧0 − 𝑧1 ⎭}⎬

}⎫ = 𝑓 ̂
⎩{⎨
{⎧𝑛𝑥

𝑛𝑦
𝑛𝑧⎭}⎬

}⎫. (19.5)

 
 The increment in the element force is determined from the user specified force-
displacement relation.  Currently, nine types of force-displacement/velocity 
relationships may be specified: 
 1. linear elastic; 
 2. linear viscous; 
 3. nonlinear elastic; 
 4. nonlinear viscous; 
 5. elasto-plastic with isotropic hardening; 
 6. general nonlinear; 
 7. linear viscoelastic. 
 8. inelastic tension and compression only. 
 9. muscle model. 
 
 The force-displacement relations for these models are discussed in the following 
later. 
 

19.1  Orientation Vectors 

 An orientation vector, 

𝐦 =
⎩{⎨
{⎧𝑚1

𝑚2
𝑚3⎭}⎬

}⎫, (19.6)

can be defined to control the direction the spring acts.  If orientation vectors are used, it 
is strongly recommended that the nodes of the discrete element be coincident and 
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remain approximately so throughout the calculation.  If the spring or damper is of finite 
length, rotational constraints will appear in the model that can substantially affect the 
results.  If finite length springs are needed with directional vectors, then the discrete 
beam elements, the type 6 beam, should be used with the coordinate system flagged for 
the finite length case. 
 
 We will first consider the portion of the displacement that lies in the direction of 
the vector.  The displacement of the spring is updated based on the change of length 
given by 

Δ𝐼 = 𝐼 − 𝐼0, (19.7)
where 𝐼0 is the initial length in the direction of the vector and lis the current length 
given for a node to node spring by 

𝐼 = 𝑚1(𝑥2 − 𝑥1) + 𝑚2(𝑦2 − 𝑦1) + 𝑚3(𝑧2 − 𝑧1), (19.8)
and for a node to ground spring by 

𝐼 = 𝑚1(𝑥0 − 𝑥1) + 𝑚2(𝑦0 − 𝑦1) + 𝑚3(𝑧0 − 𝑧1), (19.9)
The latter case is not intuitively obvious and can affect the sign of the force in 
unexpected ways if the user is not familiar with the relevant equations.  The nodal 
forces are then given by 

⎩{
⎨
{⎧𝐹𝑥

𝐹𝑦
𝐹𝑧⎭}

⎬
}⎫

= 𝑓 ̂
⎩{⎨
{⎧𝑚1

𝑚2
𝑚3⎭}⎬

}⎫. (19.10)

 
 The orientation vector can be either permanently fixed in space as defined in the 
input or acting in a direction determined by two moving nodes which must not be 
coincident but may be independent of the nodes of the spring.  In the latter case, we 
recompute the direction every cycle according to: 

⎩{⎨
{⎧𝑚1

𝑚2
𝑚3⎭}⎬

}⎫ =
1
𝑙𝑛  

⎩{
⎨
{⎧𝑥2

𝑛 − 𝑥1
𝑛

𝑦2
𝑛 − 𝑦1

𝑛

𝑧2
𝑛 − 𝑧1

𝑛 ⎭}
⎬
}⎫

. (19.11)

In Equation (19.9) the superscript, 𝑛, refers to the orientation nodes.   
 
 For the case where we consider motion in the plane perpendicular to the 
orientation vector we consider only the displacements in the plane, Δ𝑙𝑝, given by, 

Δ𝐥𝑝 = Δ𝐥 −𝐦(𝐦 ⋅ Δ𝐥). (19.12)
We update the displacement of the spring based on the change of length in the plane 
given by 

Δ𝑙𝑝 = 𝑙𝑝 − 𝑙0
𝑝, (19.13)

where 𝑙0
𝑝 is the initial length in the direction of the vector and 𝑙 is the current length 

given for a node to node spring by 
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𝑙𝑝 = 𝑚1
𝑝(𝑥2 − 𝑥1) + 𝑚2

𝑝(𝑦2 − 𝑦1) + 𝑚3
𝑝(𝑧2 − 𝑧1), (19.14)

and for a node to ground spring by 

𝑙𝑝 = 𝑚1
𝑝(𝑥0 − 𝑥1) + 𝑚2

𝑝(𝑦0 − 𝑦1) + 𝑚3
𝑝(𝑧0 − 𝑧1), (19.15)

where 

⎩{
{⎨
{{
⎧𝑚1

𝑝

𝑚2
𝑝

𝑚3
𝑝⎭}
}⎬
}}
⎫

=
1

√Δ𝑙𝑥
𝑝 2

+ Δ𝑙𝑦
𝑝 2

+ Δ𝑙𝑧
𝑝 2

⎩{
{⎨
{{
⎧Δ𝑙𝑥

𝑝

Δ𝑙𝑦
𝑝

Δ𝑙𝑧
𝑝⎭}
}⎬
}}
⎫

. (19.16)

After computing the displacements, the nodal forces are then given by 

⎩{
⎨
{⎧𝐹𝑥

𝐹𝑦
𝐹𝑧⎭}

⎬
}⎫

= 𝑓 ̂

⎩{
{⎨
{{
⎧𝑚1

𝑝

𝑚2
𝑝

𝑚3
𝑝⎭}
}⎬
}}
⎫

. (19.17)

 

19.2  Dynamic Magnification “Strain Rate” Effects 

 To account for “strain rate” effects, we have a simple method of scaling the forces 
based on the relative velocities that applies to all springs.  The forces computed from 
the spring elements are assumed to be the static values and are scaled by an 
amplification factor to obtain the dynamic value: 

𝐹dynamic = (1. + 𝑘𝑑
𝑉
𝑉0

) 𝐹static, (19.18)

where 
𝑘𝑑 = is a user defined input value 
𝑉 = absolute relative velocity  

𝑉0 = dynamic test velocity 
 
 For example, if it is known that a component shows a dynamic crush force at 15 
m/s equal to 2.5 times the static crush force, use 𝑘𝑑 = 1.5 and 𝑉0 = 15. 
 

19.3  Deflection Limits in Tension and Compression 

 The deflection limit in compression and tension is restricted in its application to 
no more than one spring per node subject to this limit, and to deformable bodies only.  
For example in the former case, if three spring are in series either the center spring or 
the two end springs may be subject to a limit but not all three.  When the limiting 
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deflection is reached momentum conservation calculations are performed and a 
common acceleration is computed: 

𝑎ĉommon =
𝑓1̂ + 𝑓2̂

𝑚1 + 𝑚2
. (19.19)

An error termination will occur if a rigid body node is used in a spring definition where 
compression is limited. 
 

19.4  Linear Elastic or Linear Viscous 

 These discrete elements have the simplest force-displacement relations.  The 
linear elastic discrete element has a force-displacement relation of the form 

𝑓 ̂= 𝐾Δ𝑙, (19.20)

where 𝐾 is the element’s stiffness and Δ𝑙 is the change in length of the element.  The 
linear viscous element has a similar force-velocity (rate of displacement) relation: 

𝑓 ̂= 𝐶
Δ𝑙
Δ𝑡.

(19.21)

where 𝐶 is a viscous damping parameter and Δ𝑡 is the time step increment. 
 

19.5  Nonlinear Elastic or Nonlinear Viscous 

 These discrete elements use piecewise force-displacement or force-relative 
velocity relations.  The nonlinear elastic discrete element has a tabulated force-
displacement relation of the form 

𝑓 ̂= 𝐾Δ𝑙, (19.22)

where 𝐾(Δ𝑙) is the tabulated force that depends on the total change in the length of the 
element (Figure 19.1)  The nonlinear viscous element has a similar tabulated force-
relative  velocity relation: 

𝑓 ̂= 𝐶
Δ𝑙
Δ𝑡,

(19.23)

where 𝐶(Δ𝑙
Δ𝑡) is the viscous damping force that depends on the rate of change of the 

element’s length.  Nonlinear discrete elements unload along the loading paths. 
 
 If the spring element is initially of zero length and if no orientation vectors are 
used then only the tensile part of the stress strain curve needs to be defined.  However, 
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if the spring element is initially of finite length then the curve must be defined in both 
the positive and negative quadrants.   
 

19.6  Elasto-Plastic with Isotropic Hardening 

 The elasto-plastic discrete element has a bilinear force-displacement relationship 
that is specified by the elastic stiffness, a tangent stiffness and a yield force (Figure 19.2).  
This discrete element uses the elastic stiffness model for unloading until the yield force 
is exceeded during unloading.  The yield force is updated to track its maximum value 
which is equivalent to an isotropic hardening model.  The force-displacement relation 
during loading may be written as 

𝑓 ̂= 𝐹𝑦 (1 −
𝐾𝑡
𝐾) + 𝐾𝑡Δ𝑙, (19.24)

where 𝐹𝑦 is the yield force and 𝐾𝑡 is the tangent stiffness. 
 

19.7  General Nonlinear 

 The general nonlinear discrete element allows the user to specify independent 
and nonsymmetrical piecewise linear loading and unloading paths (Figure 19.3(a)). 
 

Nolinear Elastic/Viscous

F
o

r
c
e

Displacement/Velocity

Figure 19.1.  Piecewise linear force-displacement curve for nonlinear elastic 
discrete element. 
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 This element combines the features of the above-described nonlinear elastic and 
elasto-plastic discrete elements by allowing the user to specify independent initial yield 
forces in tension (FYT) and in compression (FYC).  If the discrete element force remains 
between these initial yield values, the element unloads along the loading path (Figure 
19.3(b)).  This corresponds to the nonlinear elastic discrete element. 
 
 However, if the discrete element force exceeds either of these initial yield values, 
the specified unloading curve is used for subsequent unloading.  Additionally, the 
initial loading and unloading curves are allowed to move in the force-displacement 
space by specifying a mixed hardening parameter 𝛽 where 𝛽 = 0 corresponds to 
kinematic hardening (Figure 19.3(c)) and 𝛽 = 0 𝛽 = 1 corresponds to isotropic 
hardening (Figure 19.3(d)). 
 

19.8  Linear Visco-Elastic 

 The linear viscoelastic discrete element [Schwer, Cheva, and Hallquist 1991] 
allows the user to model discrete components that are characterized by force relaxation 
or displacement creep behavior.  The element’s variable stiffness is defined by three 
parameters and has the form 

𝐾(𝑡) = 𝐾∞ + (𝐾0 − 𝐾∞)𝑒−𝛽𝑡, (19.25)

E

ET

FY

Elasto-Plastic Unloading

Elsto-Plastic with

Isotropic Hardening

Displacement

F
o

r
c
e

Figure 19.2.  Loading and unloading force-displacement curves for elasto-
plastic discrete element. 
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where 𝐾∞ is the long duration stiffness, 𝐾0 is the short time stiffness, and 𝛽 is a decay 
parameter that controls the rate at which the stiffness transitions between the short and 
long duration stiffness (Figure 16.4). 
 This model corresponds to a three-parameter Maxwell model (see insert in 
Figure 19.4) which consists of a spring and damper in series connected to another 
spring in parallel.  Although this discrete element behavior could be built up using the 
above- described linear elastic and linear viscous discrete elements, such a model would 
also require the user to specify the nodal mass at the connection of the series spring and 
damper.  This mass introduces a fourth parameter which would further complicate 
fitting the model to experimental data. 
 

β>0

β=0

loading

curve

options

unloading curve

β>0

β=0F
yt

Fyt - Fyc

F
yc

F
yt

-F
yc

force

kinematic hardening β<1 isotropic hardening β=1

F1

F2

F2

force

δδ

δ δ

Figure 19.3.  Loading and unloading force displacement curves for general
nonlinear discrete element. 
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19.9  Muscle Model 

 This is Material Type 15 for discrete springs and dampers.  This material is a 
Hill-type muscle model with activation.  It is for use with discrete elements.  The LS-
DYNA implementation is due to Dr.  J.A. Weiss. 
 L0  Initial muscle length, Lo. 
 VMAX Maximum CE shortening velocity, Vmax. 
 SV Scale factor, Sv, for Vmax vs.  active state. 
     LT.0: absolute value gives load curve ID 
     GE.0: constant value of 1.0 is used 
 A Activation level vs.  time function. 
     LT.0: absolute value gives load curve ID 
     GE.0: constant value of A is used 
 FMAX Peak isometric force, Fmax. 
 TL Active tension vs.  length function. 
     LT.0: absolute value gives load curve ID 
     GE.0: constant value of 1.0 is used 

Log K0

L
o

g
 K

(t
)

Log K∞
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Log t
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Figure 19.4.  Typical stiffness relaxation curve used for the viscoelastic discrete
element. 
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 TV Active tension vs.  velocity function. 
     LT.0: absolute value gives load curve ID 
     GE.0: constant value of 1.0 is used 
 FPE Force vs.  length function, Fpe, for parallel elastic element. 
     LT.0: absolute value gives load curve ID 
     EQ.0: exponential function is used (see below) 
     GT.0: constant value of 0.0 is used 
 LMAX Relative length when Fpe reaches Fmax.  Required if Fpe = 0 above. 
 KSH Constant, Ksh, governing the exponential rise of Fpe.  Required if Fpe = 0 
above. 
 
 The material behavior of the muscle model is adapted from the original model 
proposed by Hill (1938).  Reviews of this model and extensions can be found in Winters 
(1990) and Zajac (1989).  The most basic Hill-type muscle model consists of a contractile 
element (CE) and a parallel elastic element (PE) (Figure 19.5).  An additional series 
elastic element (SEE) can be added to represent tendon compliance.  The main 
assumptions of the Hill model are that the contractile element is entirely stress free and 
freely distensible in the resting state, and is described exactly by Hill’s equation (or 
some variation).  When the muscle is activated, the series and parallel elements are 
elastic, and the whole muscle is a simple combination of identical sarcomeres in series 
and parallel.  The main criticism of Hill’s model is that the division of forces between 
the parallel elements and the division of extensions between the series elements is 
arbitrary, and cannot be made without introducing auxiliary hypotheses.  However, 
these criticisms apply to any discrete element model.  Despite these limitations, the Hill 
model has become extremely useful for modeling musculoskeletal dynamics, as 
illustrated by its widespread use today. 
 
 When the contractile element (CE) of the Hill model is inactive, the entire 
resistance to elongation is provided by the PE element and the tendon load-elongation 

L
M

v
M

F
MF

M

F
CE

F
PE

a(t)

SEE

CE

PEL
M

Figure 19.5.  Discrete model for muscle contraction dynamics, based on a Hill-
type representation.  The total force is the sum of passive force FPE and active
force FCE.  The passive element (PE) represents energy storage from muscle
elasticity, while the contractile element (CE) represents force generation by the
muscle.  The series elastic element (SEE), shown in dashed lines, is often
neglected when a series tendon compliance is included.  Here, a(t) is the
activation level, LM is the length of the muscle, and vM is the shortening
velocity of the muscle. 
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behavior.  As activation is increased, force then passes through the CE side of the 
parallel Hill model, providing the contractile dynamics.  The original Hill model 
accommodated only full activation - this limitation is circumvented in the present 
implementation by using the modification suggested by Winters (1990).  The main 
features of his approach were to realize that the CE force-velocity input force equals the 
CE tension-length output force.  This yields a three-dimensional curve to describe the 
force-velocity-length relationship of the CE.  If the force-velocity y-intercept scales with 
activation, then given the activation, length and velocity, the CE force can be 
determined. 
 
 Without the SEE, the total force in the muscle FM is the sum of the force in the 
CE and the PE because they are in parallel: 

𝐹M = 𝐹PE + 𝐹CE. (19.26)

The relationships defining the force generated by the CE and PE as a function of LM, 
VM and 𝑎(𝑡) are often scaled by 𝐹max, the peak isometric force (p.  80, Winters 1990), L0, 
the initial length of the muscle (p.  81, Winters 1990), and 𝑉max, the maximum unloaded 
CE shortening velocity (p.  80, Winters 1990).  From these, dimensionless length and 
velocity can be defined: 

𝐿 =
𝐿M

𝐿o
, 

𝑉 =
𝑉M

𝑉max ∗ 𝑆V(𝑎(t)).
(19.27)

Here, 𝑆V scales the maximum CE shortening velocity 𝑉max and changes with activation 
level 𝑎(𝑡). This has been suggested by several researchers, i.e. Winters and Stark [1985].  
The activation level specifies the level of muscle stimulation as a function of time.  Both 
have values between 0 and 1. The functions 𝑆V(𝑎(𝑡)) and 𝑎(𝑡) are specified via load 
curves in LS-DYNA, or default values of 𝑆V = 1 and 𝑎(𝑡) = 0 are used.  Note that L is 
always positive and that 𝑉 is positive for lengthening and negative for shortening. 
 
 The relationship between FCE, V and L was proposed by Bahler et al.  [1967].  A 
three-dimensional relationship between these quantities is now considered standard for 
computer implementations of Hill-type muscle models [i.e., eqn 5.16, p. 81, Winters 
1990].  It can be written in dimensionless form as: 

𝐹CE = 𝑎(𝑡) ∗ 𝐹max ∗ 𝑓TL(𝐿) ∗ 𝑓TV(𝑉), (19.28)

The force in the parallel elastic element FPE is determined directly from the current 
length of the muscle using an exponential relationship [eqn 5.5, p. 73, Winters 1990]: 

𝑓PE =
𝐹PE

𝐹MAX
= 0 𝐿 ≤ 1

𝑓PE =
𝐹PE

𝐹MAX
=

1
exp(𝐾sh) − 1 [exp

⎝
⎜⎛ 𝐾sh

𝐿max
(L − 1)

⎠
⎟⎞ − 1] 𝐿 > 1

 (19.29)
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 For computation of the total force developed in the muscle FM, the functions for 
the tension-length 𝑓TLand force-velocity 𝑓TV relationships used in the Hill element must 
be defined.  These relationships have been available for over 50 years, but have been 
refined to allow for behavior such as active lengthening.  The active tension-length 
curve 𝑓TL describes the fact that isometric muscle force development is a function of 
length, with the maximum force occurring at an optimal length.  According to Winters, 
this optimal length is typically around 𝐿 = 1.05, and the force drops off for shorter or 
longer lengths, approaching zero force for 𝐿 = 0.4 and 𝐿 = 1.5. Thus the curve has a 
bell-shape.  Because of the variability in this curve between muscles, the user must 
specify the function 𝑓TL via a load curve, specifying pairs of points representing the 
normalized force (with values between 0 and 1) and normalized length 𝐿 (Figure 19.6). 
 
 The active tension-velocity relationship 𝑓TV used in the muscle model is mainly 
due to the original work of Hill.  Note that the dimensionless velocity V is used.  When 
V = 0, the normalized tension is typically chosen to have a value of 1.0.  When V is 
greater than or equal to 0, muscle lengthening occurs.  As V increases, the function is 
typically designed so that the force increases from a value of 1.0 and asymptotes 
towards a value near 1.4.  When V is less than zero, muscle shortening occurs and the 
classic Hill equation hyperbola is used to drop the normalized tension to 0 (Figure 16.6).  
The user must specify the function 𝑓TV  via a load curve, specifying pairs of points 
representing the normalized tension (with values between 0 and 1) and normalized 
velocity V. 
 

Figure 19.6.  Typical normalized tension-length (TL) and tension-velocity (TV)
curves for skeletal muscle. 
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19.10  Seat Belt Material 

 The seat belt capability reported here was developed by Walker and co-workers 
[Walker and Dallard 1991, Strut, Walker, et al., 1991] and this section excerpted from 
their documentation.  Each belt material defines stretch characteristics and mass 
properties for a set of belt elements.  The user enters a load curve for loading, the points 
of which are (Strain, Force).  Strain is defined as engineering strain, i.e. 

Strain =
current   length
initial  length − 1. (19.30)

 
 Another similar curve is entered to describe the unloading behavior.  Both 
loadcurves should start at the origin (0,0) and contain positive force and strain values 
only.  The belt material is tension only with zero forces being generated whenever the 
strain becomes negative.  The first non-zero point on the loading curve defines the 
initial yield point of the material.  On unloading, the unloading curve is shifted along 
the strain axis until it crosses the loading curve at the ‘yield’ point from which 
unloading commences.  If the initial yield has not yet been exceeded or if the origin of 
the (shifted) unloading curve is at negative strain, the original loading curves will be 
used for both loading and unloading.  If the strain is less than the strain at the origin of 
the unloading curve, the belt is slack and no force is generated.  Otherwise, forces will 
then be determined by the unloading curve for unloading and reloading until the strain 
again exceeds yield after which the loading curves will again be used. 
 
 A small amount of damping is automatically included.  This reduces high 
frequency oscillation, but, with realistic force-strain input characteristics and loading 
rates, does not significantly alter the overall forces-strain performance.  The damping 
forced opposes the relative motion of the nodes and is limited by stability: 

𝐷 =
. 1 × mass × relative  velocity

timestep  size . (19.31)

 
 In addition, the magnitude of the damping forces is limited to one tenth of the 
force calculated from the forces-strain relationship and is zero when the belt is slack.  
Damping forces are not applied to elements attached to sliprings and retractors. 
 
 The user inputs a mass per unit length that is used to calculate nodal masses on 
initialization. 
 
 A ‘minimum length’ is also input.  This controls the shortest length allowed in 
any element and determines when an element passes through sliprings or are absorbed 
into the retractors.  One tenth of a typical initial element length is usually a good choice. 
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19.11  Seat Belt Elements 

 Belt elements are single degree of freedom elements connecting two nodes and 
are treated in a manner similar to the spring elements.  When the strain in an element is 
positive (i.e., the current length is greater then the unstretched length), a tension force is 
calculated from the material characteristics and is applied along the current axis of the 
element to oppose further stretching.  The unstretched length of the belt is taken as the 
initial distance between the two nodes defining the position of the element plus the 
initial slack length.  At the beginning of the calculation the seatbelt elements can be 
obtained within a retractor. 
 

19.12  Sliprings 

 Sliprings are defined in the LS-DYNA input by giving a slipring ID and element 
ID’s for two elements who share a node which is coincident with the slipring node.  The 
slipring node may not be attached to any belt elements. 
 
 Sliprings allow continuous sliding of a belt through a sharp change of angle.  
Two elements (1 and 2 in Figure 19.7) meet at the slipring.  Node B in the belt material 
remains attached to the slipring node, but belt material (in the form of unstretched 
length) is passed from element 1 to element 2 to achieve slip.  The amount of slip at each 
timestep is calculated from the ratio of forces in elements 1 and 2.  The ratio of forces is 
determined by the relative angle between elements 1 and 2 and the coefficient of 
friction, 𝜇.  The tension in the belts is taken as T1 and T2, where T2 is on the high-
tension side and T1 is the force on the low-tension side.  Thus if T2 is sufficiently close 
to T1 no slip occurs; otherwise, slip is just sufficient to reduce the ratio T2⁄T1 to 𝑒𝜇𝜃.  No 
slip occurs if both elements are slack.  The out-of-balance force at node B is reacted on 
the slipring node; the motion of node B follows that of slipring node. 
 
 If, due to slip through the slipring, the unstretched length of an element becomes 
less than the minimum length (as entered on the belt material card), the belt is 
remeshed locally:  the short element passes through the slipring and reappears on the 
other side (see Figure 19.7).  The new unstretched length of e1 is 1.1 × minimum length.  
Force and strain in e2 and e3 are unchanged; force and strain in e1 are now equal to 
those in e2.  Subsequent slip will pass material from e3 to e1.  This process can continue 
with several elements passing in turn through the slipring.  
 
 To define a slipring, the user identifies the two belt elements which meet at the 
slipring, the friction coefficient, and the slipring node.  The two elements must have a 
common node coincident with the slipring node.  No attempt should be made to 
restrain or constrain the common node for its motion will automatically be constrained 
to follow the slipring node.  Typically, the slipring node is part of the vehicle body 
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structure and, therefore, belt elements should not be connected to this node directly, but 
any other feature can be attached, including rigid bodies. 
 

19.13  Retractors 

 Retractors are defined by giving a node, the “retractor node” and an element ID 
of an element outside the retractor but with one node that is coincident with the 
retractor node.  Also sensor ID’s must be defined for up to four sensors which can 
activate the seatbelt. 
 Retractors allow belt material to be paid out into a belt element, and they operate 
in one of two regimes: unlocked when the belt material is paid out or reeled in under 
constant tension and locked when a user defined force-pullout relationship applies. 
 
 The retractor is initially unlocked, and the following sequence of events must 
occur for it to become locked: 

• Any one of up to four sensors must be triggered.  (The sensors are described 
below). 

• Then a user-defined time delay occurs. 

• Then a user-defined length of belt must be payed out (optional). 

• Then the retractor locks. 

and once locked, it remains locked. 

Element 2

Element 1

B

Element 3

Before

Slip ring

B

Element 1

Element 2

Element 3

After

 Figure 19.7.  Elements passing through slipring. 
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 In the unlocked regime, the retractor attempts to apply a constant tension to the 
belt.  This feature allows an initial tightening of the belt, and takes up any slack 
whenever it occurs.  The tension value is taken from the first point on the force-pullout 
load curve.  The maximum rate of pull out or pull in is given by 0.01 × fed length per 
time step.  Because of this, the constant tension value is not always achieved. 
 
 In the locked regime, a user-defined curve describes the relationship between the 
force in the attached element and the amount of belt material paid out.  If the tension in 
the belt subsequently relaxes, a different user-defined curve applies for unloading.  The 
unloading curve is followed until the minimum tension is reached. 
 
 The curves are defined in terms of initial length of belt.  For example, if a belt is 
marked at 10mm intervals and then wound onto a retractor, and the force required to 
make each mark emerge from the (locked) retractor is recorded, the curves used for 
input would be as follows: 
 
0 Minimum tension (should be > zero) 
10 mm Force to emergence of first mark 
20 mm Force to emergence of second mark 
.. 
.. 
.. 
 
 Pyrotechnic pretensions may be defined which cause the retractor to pull in the 
belt at a predetermined rate.  This overrides the retractor force-pullout relationship 
from the moment when the pretensioner activates. 
 
 If desired, belt elements may be defined which are initially inside the retractor.  
These will emerge as belt material is paid out, and may return into the retractor if 
sufficient material is reeled in during unloading.  
 
 Elements e2, e3 and e4 are initially inside the retractor, which is paying out 
material into element e1.  When the retractor has fed Lcrit into e1, where: 

Lcrit = fed length − 1.1 × minimum length (19.32)
Here, minimum length is defined on belt material input, and fed length is defined on 
retractor input.  
 
element e2 emerges with an unstretched length of 1.1 × minimum length; the 
unstretched length of element e1 is reduced by the same amount.  The force and strain 
in e1 are unchanged; in e2, they are set equal to those in e1.  The retractor now pays out 
material into e2. 
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 If no elements are inside the retractor, e2 can continue to extend as more material 
is fed into it. 
 
 As the retractor pulls in the belt (for example, during initial tightening), if the 
unstretched length of the mouth element becomes less than the minimum length, the 
element is taken into the retractor. 
 
 To define a retractor, the user enters the retractor node, the ‘mouth’ element (into 
which belt material will be fed, e1 in Figure 19.8, up to 4 sensors which can trigger 
unlocking, a time delay, a payout delay (optional), load and unload curve numbers, and 
the fed length.  The retractor node is typically part of the vehicle stricture; belt elements 
should not be connected to this node directly, but any other feature can be attached 
including rigid bodies.  The mouth element should have a node coincident with the 
retractor but should not be inside the retractor.  The fed length would typically be set 
either to a typical element initial length, for the distance between painted marks on a 
real belt for comparisons with high-speed film.  The fed length should be at least three 
times the minimum length. 
 
 If there are elements initially inside the retractor (e2, e3 and e4 in the Figure) they 
should not be referred to on the retractor input, but the retractor should be identified on 
the element input for these elements.  Their nodes should all be coincident with the 
retractor node and should not be restrained or constrained.  Initial slack will 
automatically be set to 1.1 × minimum length for these elements; this overrides any 
user-defined value. 
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 Weblockers can be included within the retractor representation simply by 
entering a ‘locking up’ characteristic in the force pullout curve, see Figure 19.9.  The 
final section can be very steep (but must have a finite slope). 
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 Figure 19.8.  Elements in a retractor. 
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 Figure 19.9.  Retractor force pull characteristics. 
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19.14  Sensors 

Sensors are used to trigger locking of retractors and activate pretensioners.  Four 
types of sensor are available which trigger according to the following criteria: 
 
Type 1–When the magnitude of x-, y-, or z- acceleration of a given node has remained 
above a given level continuously for a given time, the sensor triggers.  This does not 
work with nodes on rigid bodies. 
 
Type 2–When the rate of belt payout from a given retractor has remained above a given 
level continuously for a given time, the sensor triggers. 
 
Type 3–The sensor triggers at a given time. 
 
Type 4–The sensor triggers when the distance between two nodes exceeds a given 
maximum or becomes less than a given minimum.  This type of sensor is intended for 
use with an explicit mas/spring representation of the sensor mechanism. 
 

By default, the sensors are inactive during dynamic relaxation.  This allows 
initial tightening of the belt and positioning of the occupant on the seat without locking 
the retractor or firing any pretensioners.  However, a flag can be set in the sensor input 
to make the sensors active during the dynamic relaxation phase. 
 

19.15  Pretensioners 

 Pretensioners allow modeling of three types of active devices which tighten the 
belt during the initial stages of a crash.  The first type represents a pyrotechnic device 
which spins the spool of a retractor, causing the belt to be reeled in.  The user defines a 
pull-in versus time curve which applies once the pretensioner activates.  The remaining 
types represents preloaded springs or torsion bars which move the buckle when 
released.  The pretensioner is associated with any type of spring element including 
rotational.  Note that the preloaded spring, locking spring and any restraints on the 
motion of the associated nodes are defined in the normal way; the action of the 
pretensioner is merely to cancel the force in one spring until (or after) it fires.  With the 
second type, the force in the spring element is cancelled out until the pretensioner is 
activated.  In this case the spring in question is normally a stiff, linear spring which acts 
as a locking mechanism, preventing motion of the seat belt buckle relative to the 
vehicle.  A preloaded spring is defined in parallel with the locking spring.  This type 
avoids the problem of the buckle being free to ‘drift’ before the pretensioner is 
activated. 
 
 To activate the pretensioner the following sequence of events must occur: 
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1. Any one of up to four sensors must be triggered. 
2. Then a user-defined time delay occurs. 
3. Then the pretensioner acts. 

19.16  Accelerometers 

 The accelerometer is defined by three nodes in a rigid body which defines a triad 
to measure the accelerations in a local system.  The presence of the accelerometer means 
that the accelerations and velocities of node 1 will be output to all output files in local 
instead of global coordinates. 
 
 The local coordinate system is defined by the three nodes as follows: 

• local 𝐱 from node 1 to node 2 

• local 𝐳 perpendicular to the plane containing nodes, 1, 2, and 3 (𝐳 = 𝐱 × 𝐚), where 
𝐚 is from node 1 to node 3). 

• local 𝐲 = 𝐱 × 𝐳 

 
 The three nodes should all be part of the same rigid body.  The local axis then 
rotates with the body.
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20    
Simplified Arbitrary Lagrangian-
Eulerian 

 Arbitrary Lagrangian-Eulerian (ALE) formulations may be thought of as 
algorithms that perform automatic rezoning.  Users perform manual rezoning by  

1. Stopping the calculation when the mesh is distorted,  

2. Smoothing the mesh,  

3. Remapping the solution from the distorted mesh to the smooth mesh. 
 
 An ALE formulation consists of a Lagrangian time step followed by a “remap” or 
“advection” step.  The advection step performs an incremental rezone, where 
“incremental” refers to the fact that the positions of the nodes are moved only a small 
fraction of the characteristic lengths of the surrounding elements.  Unlike a manual 
rezone, the topology of the mesh is fixed in an ALE calculation.  An ALE calculation can 
be interrupted like an ordinary Lagrangian calculation and a manual rezone can be 
performed if an entirely new mesh is necessary to continue the calculation. 
 
 The accuracy of an ALE calculation is often superior to the accuracy of a 
manually rezoned calculation because the algorithm used to remap the solution from 
the distorted to the undistorted mesh is second order accurate for the ALE formulation 
while the algorithm for the manual rezone is only first order accurate. 
 
 In theory, an ALE formulation contains the Eulerian formulation as a subset.  
Eulerian codes can have more than one material in each element, but most ALE 
implementations are simplified ALE formulations which permit only a single material 
in each element.  The primary advantage of a simplified formulation is its reduced cost 
per time step.  When elements with more than one material are permitted, the number 
and types of materials present in an element can change dynamically.  Additional data 
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is necessary to specify the materials in each element and the data must be updated by 
the remap algorithms. 
 
 The range of problems that can be solved with an ALE formulation is a direct 
function of the sophistication of the algorithms for smoothing the mesh.  Early ALE 
codes were not very successful largely because of their primitive algorithms for 
smoothing the mesh.  In simplified ALE formulations, most of the difficulties with the 
mesh are associated with the nodes on the material boundaries.  If the material 
boundaries are purely Lagrangian, i.e., the boundary nodes move with the material at 
all times, no smooth mesh maybe possible and the calculation will terminate.  The 
algorithms for maintaining a smooth boundary mesh are therefore as important to the 
robustness of the calculations as the algorithms for the mesh interior.   
 
 The cost of the advection step per element is usually much larger than the cost of 
the Lagrangian step.  Most of the time in the advection step is spent in calculating the 
material transported between the adjacent elements, and only a small part of it is spent 
on calculating how and where the mesh should be adjusted.  Second order accurate 
monotonic advection algorithms are used in LS-DYNA despite their high cost per 
element because their superior coarse mesh accuracy which allows the calculation to be 
performed with far fewer elements than would be possible with a cheaper first order 
accurate algorithm. 
 
 The second order transport accuracy is important since errors in the transport 
calculations generally smooth out the solution and reduce the peak values in the history 
variables.  Monotonic advection algorithms are constructed to prevent the transport 
calculations from creating new minimum or maximum values for the solution variables.  
They were first developed for the solution of the Navier Stokes equations to eliminate 
the spurious oscillations that appeared around the shock fronts.  Although monotonic 
algorithms are more diffusive than algorithms that are not monotonic, they must be 
used for stability in general purpose codes.  Many constitutive models have history 
variables that have limited ranges, and if their values are allowed to fall outside of their 
allowable ranges, the constitutive models are undefined.  Examples include explosive 
models, which require the burn fraction to be between zero and one, and many 
elastoplasticity models, such as those with power law hardening, which require a non-
negative plastic strain. 
 
 The overall flow of an ALE time step is: 

1. Perform a Lagrangian time step. 

2. Perform an advection step. 

a) Decide which nodes to move. 

b) Move the boundary nodes. 
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c) Move the interior nodes. 

d) Calculate the transport of the element-centered variables. 

e) Calculate the momentum transport and update the velocity. 
 
 Each element solution variable must be transported.  The total number of 
solution variables, including the velocity, is at least six and depends on the material 
models.  For elements that are modeled with an equation of state, only the density, the 
internal energy, and the shock viscosity are transported.  When the elements have 
strength, the six components of the stress tensor and the plastic strain must also be 
advected, for a total of ten solution variables.  Kinematic hardening, if it is used, 
introduces another five solution variables, for a total of fifteen.  
 
 The nodal velocities add an extra three solution variables that must be 
transported, and they must be advected separately from the other solution variables 
because they are centered at the nodes and not in the elements.  In addition, the 
momentum must be conserved, and it is a product of the node-centered velocity and the 
element-centered density.  This imposes a constraint on how the momentum transport 
is performed that is unique to the velocity field.  A detailed consideration of the 
difficulties associated with the transport of momentum is deferred until later. 
 
 Perhaps the simplest strategy for minimizing the cost of the ALE calculations is 
to perform them only every few time steps.  The cost of an advection step is typically 
two to five times the cost of the Lagrangian time step.  By performing the advection step 
only every ten steps, the cost of an ALE calculation can often be reduced by a factor of 
three without adversely affecting the time step size.  In general, it is not worthwhile to 
advect an element unless at least twenty percent of its volume will be transported 
because the gain in the time step size will not offset the cost of the advection 
calculations.  
 

20.1  Mesh Smoothing Algorithms 

 The algorithms for moving the mesh relative to the material control the range of 
the problems that can be solved by an ALE formulation.  The equipotential method 
which is used in LS-DYNA was developed by Winslow [1990] and is also used in the 
DYNA2D ALE code [Winslow 1963].  It, and its extensions, have proven to be very 
successful in a wide variety of problems.  The following is extracted from reports 
prepared by Alan Winslow for LSTC. 



Simplified Arbitrary Lagrangian-Eulerian LS-DYNA Theory Manual 

18-4 (Simplified Arbitrary Lagrangian-Eulerian) LS-DYNA DEV 06/21/18 (r:10113) 

20.1.1  Equipotential Smoothing of Interior Nodes 

 “Equipotential” zoning [Winslow, 1963] is a method of making a structured 
mesh for finite difference or finite element calculations by using the solutions of Laplace 
equations (later extended to Poisson equations) as the mesh lines.  The same method 
can be used to smooth selected points in an unstructured three-dimensional mesh 
provided that it is at least locally structured.  This chapter presents a derivation of the 
three-dimensional equipotential zoning equations, taken from the references, and gives 
their finite difference equivalents in a form ready to be used for smoothing interior 
points.  We begin by reviewing the well-known two-dimensional zoning equations, and 
then discuss their extension to three dimensions. 
 
 In two dimensions we define curvilinear coordinates 𝜉  𝜂 which satisfy Laplace’s 
equation:  

∇2𝜉 = 0, (20.1.1a)

∇2𝜂 = 0. (1.1.1b)

 
 We solve Equations (1.1.1b) for the coordinates 𝑥(𝜉 , 𝜂) and 𝑦(𝜉 , 𝜂) of the mesh 
lines: that is, we invert them so that the geometric coordinates 𝑥, 𝑦 become the 
dependent variables and the curvilinear coordinates 𝜉 , 𝜂 the independent variables.  By 
the usual methods of changing variables we obtain 

𝛼𝑥𝜉𝜉 − 2𝛽𝑥𝜉𝜂 + 𝛾𝑥𝜂𝜂 = 0, (20.1.2a)

𝛼𝑦𝜉𝜉 − 2𝛽𝑦𝜉𝜂 + 𝛾𝑦𝜂𝜂 = 0, (20.1.2b)

where 

𝛼 ≡ 𝑥𝜂2 + 𝑦𝜂2,    𝛽 ≡ 𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂, 𝛾 ≡ 𝑥𝜉2 + 𝑦𝜉2. (20.1.3)

 
 Equations (16.1.2) can be written in vector form: 

𝛼𝐫𝜉𝜉 − 2𝛽𝐫𝜉𝜂 + 𝛾𝐫𝜂𝜂 = 𝟎, (20.1.4)

where 
𝐫 ≡ 𝑥𝐢 + 𝑦𝐣. (20.1.5)

 
 We differentiate Equations (20.1.4) and solve them numerically by an iterative 
method, since they are nonlinear.  In (𝜉 , 𝜂) space, we use a mesh whose curvilinear 
coordinates are straight lines which take on integer values corresponding to the usual 
numbering in a two-dimensional mesh.  The numerical solution then gives us the 
location of the “equipotential” mesh lines. 
 
 In three dimensions 𝑥, 𝑦, 𝑧, we add a third curvilinear coordinate 𝜁  and a third 
Laplace equation 
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∇2𝜁 = 0. (20.1.1c)

 
 Inversion of the system of three equations (17.1.1) by change of variable is rather 
complicated.  It is easier, as well as more illuminating, to use the methods of tensor 
analysis pioneered by Warsi [1982].  Let the curvilinear coordinates be represented by 
𝜉 𝑖(𝑖 = 1,2,3).  For a scalar function 𝐴(𝑥, 𝑦, 𝑧),Warsi shows that the transformation of its 
Laplacian from rectangular Cartesian to curvilinear coordinates is given by  

∇2𝐴 = ∑ 𝑔𝑖𝑗𝐴𝜉𝑖𝜉𝑗 + ∑(∇2𝜉 𝑘)𝐴𝜉𝑘
3

𝑘=1

3

𝑖,𝑗=1
, (20.1.6)

where a variable subscript indicates differentiation with respect to that variable.  Since 
the curvilinear coordinates are each assumed to satisfy Laplace’s equation, the second 
summation in Equation (20.1.6) vanishes and we have 

∇2𝐴 = ∑ 𝑔𝑖𝑗𝐴𝜉𝑖𝜉𝑗
3

𝑖,𝑗=1
. (20.1.7)

 
 If now we let 𝐴 = 𝑥, 𝑦, and 𝑧 successively, the left-hand side of (20.1.7) vanishes 
in each case and we get three equations which we can write in vector form 

∑ 𝑔𝑖𝑗𝐫𝜉𝑖𝜉𝑗 = 0
3

𝑖,𝑗=1
. (20.1.8)

 
 Equation (20.1.8) is the three-dimensional generalization of Equations (20.1.4), 
and it only remains to determine the components of the contravariant metric tensor 𝑔𝑖𝑗 
in three dimensions.  These are defined to be 

𝑔𝑖𝑗 ≡ 𝐚𝑖 ⋅ 𝐚𝑗, (20.1.9)

where the contravariant base vectors of the transformation from (𝑥, 𝑦, 𝑧) to (𝜉 1, 𝜉 2, 𝜉 3) 
are given by 

𝐚𝑖 ≡ ∇𝜉 𝑖 =
𝐚𝑗 × 𝐚𝑘

√𝑔
, (20.1.10)

(𝑖, 𝑗, 𝑘 cyclic).  Here the covariant base vectors, the coordinate derivatives, are given by 
𝐚𝑖 ≡ 𝐫𝜉𝑖, (20.1.11)

where  

𝐫 ≡ 𝑥ı ̂ + 𝑦j ̂ + 𝑧𝐤̂. (20.1.12)

 
 Also,  

𝑔 ≡ det(𝑔𝑖𝑗) = [𝐚1 ⋅ (𝐚2 × 𝐚3)]2 = 𝐽2, (20.1.13)
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where 𝑔𝑖𝑗 is the covariant metric tensor given by 

𝑔𝑖𝑗 ≡ 𝐚𝑖 ⋅ 𝐚𝑗, (20.1.14)

and 𝐽 is the Jacobian of the transformation. 
 
 Substituting (20.1.10) into (20.1.9), and using the vector identity  

(𝐚 × 𝐛) ⋅ (𝐜 × 𝐝) ≡ (𝐚 ⋅ 𝐜) ⋅ (𝐛 ⋅ 𝐝) − (𝐚 ⋅ 𝐝)(𝐛 ⋅ 𝐜), (20.1.15)
we get 

𝑔𝑔𝑖𝑖 = 𝐚𝑗
2𝐚𝑘

2 − (𝐚𝑗 ⋅ 𝐚𝑘)2 = 𝑔𝑗𝑗𝑔𝑘𝑘 − (𝑔𝑗𝑘)2, (20.1.16)

𝑔𝑔𝑖𝑗 = (𝐚𝑖 ⋅ 𝐚𝑘)(𝐚𝑗 ⋅ 𝐚𝑘) − (𝐚𝑖 ⋅ 𝐚𝑗)𝐚𝑘
2 = 𝑔𝑖𝑘𝑔𝑗𝑘 − 𝑔𝑖𝑗𝑔𝑘𝑘. (20.1.17)

 
 Before substituting (20.1.11) into (17.1.13a, b), we return to our original notation:  

𝜉 + 𝜉 1, 𝜂 + 𝜉 2, 𝜁 + 𝜉 3. (20.1.18)

Then, using (20.1.11), we get 

𝑔𝑔11 = 𝐫𝜂2𝐫𝜁2 − (𝐫𝜂 ⋅ 𝐫𝜁)2, (20.1.19)

𝑔𝑔22 = 𝐫𝜁2𝐫𝜉2 − (𝐫𝜁 ⋅ 𝐫𝜉)2, (20.1.20)

𝑔𝑔33 = 𝐫𝜉2𝐫𝜂2 − (𝐫𝜉 ⋅ 𝐫𝜂)
2, (20.1.21)

for the three diagonal components, and 

𝑔𝑔12 = (𝐫𝜉 ⋅ 𝐫𝜁)(𝐫𝜂 ⋅ 𝐫𝜁) − (𝐫𝜉 ⋅ 𝐫𝜂)𝐫𝜁2, (20.1.22)

𝑔𝑔23 = (𝐫𝜂 ⋅ 𝐫𝜉)(𝐫𝜁 ⋅ 𝐫𝜉) − (𝐫𝜂 ⋅ 𝐫𝜁)𝐫𝜉2, (20.1.23)

𝑔𝑔31 = (𝐫𝜁 ⋅ 𝐫𝜂)(𝐫𝜉 ⋅ 𝐫𝜂) − (𝐫𝜁 ⋅ 𝐫𝜉)𝐫𝜂2, (20.1.24)

for the three off-diagonal components of this symmetric tensor. 
 
 When we express Equations (17.1.15) in terms of the Cartesian coordinates, some 
cancellation takes place and we can write them in the form 

𝑔𝑔11 = (𝑥𝜂𝑦𝜁 − 𝑥𝜁𝑦𝜂)2 + (𝑥𝜂𝑧𝜁 − 𝑥𝜁𝑧𝜂)2 + (𝑦𝜂𝑧𝜁 − 𝑦𝜁𝑧𝜂)2, (20.1.25)

𝑔𝑔22 = (𝑥𝜁𝑦𝜉 − 𝑥𝜉𝑦𝜁)2 + (𝑥𝜁𝑧𝜉 − 𝑥𝜉𝑧𝜁)2 + (𝑦𝜁𝑧𝜉 − 𝑦𝜉𝑧𝜁)2, (20.1.26)

𝑔𝑔33 = (𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉)2 + (𝑥𝜉𝑧𝜂 − 𝑥𝜂𝑧𝜉)2 + (𝑦𝜉𝑧𝜂 − 𝑦𝜂𝑧𝜉)2, (20.1.27)

guaranteeing positivity as required by Equations (20.1.9).  Writing out Equations 
(17.1.16) we get 
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𝑔𝑔12 = (𝑥𝜉𝑥𝜁 + 𝑦𝜉𝑦𝜁 + 𝑧𝜉𝑧𝜁)(𝑥𝜂𝑥𝜁 + 𝑦𝜂𝑦𝜁 + 𝑧𝜂𝑧𝜁)
−(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂)(𝑥𝜁2 + 𝑦𝜁2 + 𝑧𝜁2),

(20.1.28)

𝑔𝑔23 = (𝑥𝜂𝑥𝜉 + 𝑦𝜂𝑦𝜉 + 𝑧𝜂𝑧𝜉)(𝑥𝜁𝑥𝜉 + 𝑦𝜁𝑦𝜉 + 𝑧𝜁𝑧𝜉)
−(𝑥𝜂𝑥𝜁 + 𝑦𝜂𝑦𝜁 + 𝑧𝜂𝑧𝜁)(𝑥𝜉2 + 𝑦𝜉2 + 𝑧𝜉2),

(20.1.29)

𝑔𝑔31 = (𝑥𝜁𝑥𝜂 + 𝑦𝜁𝑦𝜂 + 𝑧𝜁𝑧𝜂)(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂)
−(𝑥𝜁𝑥𝜉 + 𝑦𝜁𝑦𝜉 + 𝑧𝜁𝑧𝜉)(𝑥𝜂2 + 𝑦𝜂2 + 𝑧𝜂2).

(20.1.30)

 
 Hence, we finally write Equations (20.1.8) in the form 

𝑔(𝑔11𝐫𝜉𝜉 + 𝑔22𝐫𝜂𝜂 + 𝑔33𝐫𝜁𝜁 + 2𝑔12𝐫𝜉𝜂 + 2𝑔23𝐫𝜂𝜁 + 2𝑔31𝐫𝜁𝜉) = 0, (20.1.31)

where the 𝑔𝑔𝑖𝑗 are given by Equations (17.1.17) and (17.1.18).  Because Equations (20.1.8) 
are homogeneous, we can use 𝑔𝑔𝑖𝑗 in place of 𝑔𝑖𝑗 as long as 𝑔 is positive, as it must be for 
a nonsingular transformation.  We can test for positivity at each mesh point by using 
Equation (1.1.32): 

√𝑔 = 𝐽 =
∣
∣∣
∣𝑥𝜉 𝑦𝜉 𝑧𝜉
𝑥𝜂 𝑦𝜂 𝑧𝜂
𝑥𝜁 𝑦𝜁 𝑧𝜁 ∣

∣∣
∣
, (20.1.32)

and requiring that 𝐽 >  0. 
 
 To check that these equations reproduce the two-dimensional equations when 
there is no variation in one-dimension, we take 𝜁  as the invariant direction, thus 
reducing (17.1.19) to 

𝑔𝑔11𝐫𝜉𝜉 + 2𝑔𝑔12𝐫𝜉𝜂 + 𝑔𝑔22𝐫𝜂𝜂 = 0. (20.1.33)

If we let 𝜁 = 𝑧, then the covariant base vectors become 
𝐚1 = 𝑥𝜉𝐢 + 𝑦𝜉 𝐣, (20.1.34)

𝐚2 = 𝑥𝜂𝐢 + 𝑦𝜂𝐣, (20.1.35)

𝐚3 = 𝐤. (20.1.36)
From (17.1.22), using (17.1.13), we get 

𝑔𝑔11 = 𝑥𝜂2 + 𝑦𝜂2, (20.1.37)

𝑔𝑔22 = 𝑥𝜉2 + 𝑦𝜉2, (20.1.38)

𝑔𝑔12 = −(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂). (20.1.39)

Substituting (17.1.23) into (20.1.33) yields the two-dimensional equipotential zoning 
Equations (17.1.2). 
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 Before differencing Equations (17.1.19) we simplify the notation and write them 
in the form 

𝛼1𝐫𝜉𝜉 + 𝛼2𝐫𝜂𝜂 + 𝛼3𝐫𝜁𝜁 + 2𝛽1𝐫𝜉𝜂 + 2𝛽2𝐫𝜂𝜁 + 2𝛽3𝐫𝜁𝜉 = 0, (20.1.40)

where 

𝛼1 = (𝑥𝜂𝑦𝜁 − 𝑥𝜁𝑦𝜂)2 + (𝑥𝜂𝑧𝜁 − 𝑥𝜁𝑧𝜂)2 + (𝑦𝜂𝑧𝜁 − 𝑦𝜁𝑧𝜂)2, (20.1.41)

𝛼2 = (𝑥𝜁𝑦𝜉 − 𝑥𝜉𝑦𝜁)2 + (𝑥𝜁𝑧𝜉 − 𝑥𝜉𝑧𝜁)2 + (𝑦𝜁𝑧𝜉 − 𝑦𝜉𝑧𝜁)2, (20.1.42)

𝛼3 = (𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉)2 + (𝑥𝜉𝑧𝜂 − 𝑥𝜂𝑧𝜉)2 + (𝑦𝜉𝑧𝜂 − 𝑦𝜂𝑧𝜉)2. (20.1.43)

 
𝛽1 = (𝑥𝜉𝑥𝜁 + 𝑦𝜉𝑦𝜁 + 𝑧𝜉𝑧𝜁)(𝑥𝜂𝑥𝜁 + 𝑦𝜂𝑦𝜁 + 𝑧𝜂𝑧𝜁)
−(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂)(𝑥𝜁2 + 𝑦𝜁2 + 𝑧𝜁2), (20.1.44)

𝛽2 = (𝑥𝜂𝑥𝜉 + 𝑦𝜂𝑦𝜉 + 𝑧𝜂𝑧𝜉)(𝑥𝜉𝑥𝜁 + 𝑦𝜉𝑦𝜁 + 𝑧𝜉𝑧𝜁)
−(𝑥𝜁𝑥𝜂 + 𝑦𝜁𝑦𝜂 + 𝑧𝜁𝑧𝜂)(𝑥𝜉2 + 𝑦𝜉2 + 𝑧𝜉2), (20.1.45)

𝛽3 = (𝑥𝜂𝑥𝜁 + 𝑦𝜂𝑦𝜁 + 𝑧𝜂𝑧𝜁)(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂)
−(𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 + 𝑧𝜉𝑧𝜂)(𝑥𝜂2 + 𝑦𝜂2 + 𝑧𝜂2), (20.1.46)

 
 We difference Equations (20.1.40) in a cube in the rectangular 𝜉  𝜂 𝜁  space with 
unit spacing between the coordinate surfaces, using subscript 𝑖 to represent the 𝜉  
direction, 𝑗 the 𝜂 direction, and 𝑘 the 𝜁 direction, as shown in Figure 20.1. 
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 Using central differencing, we obtain the following finite difference 
approximations for the coordinate derivatives:  

𝐫𝜉 = (𝐫𝑖+1 − 𝐫𝑖−1) 2,⁄ (20.1.47)

𝐫𝜂 = (𝐫𝑗+1 − 𝐫𝑗−1) 2⁄ , (20.1.48)

𝐫𝜁 = (𝐫𝑘+1 − 𝐫𝑘−1) 2⁄ , (20.1.49)

𝐫𝜉𝜉 = (𝐫𝑖+1 − 2𝐫 + 𝐫𝑖−1), (20.1.50)

𝐫𝜂𝜂 = (𝐫𝑗+1 − 2𝐫 + 𝐫𝑗−1), (20.1.51)

𝐫𝜁𝜁 = (𝐫𝑘+1 − 2𝐫 + 𝐫𝑘−1), (20.1.52)

𝐫𝜉𝜂 =
1
4 [(𝐫𝑖+1,𝑗+1 + 𝐫𝑖−1,𝑗−1) − (𝐫𝑖+1,𝑗−1 + 𝐫𝑖−1,𝑗+1)], (20.1.53)

𝐫𝜂𝜁 =
1
4 [(𝐫𝑗+1,𝑘+1 + 𝐫𝑗−1,𝑘−1) − (𝐫𝑗+1,𝑘−1 + 𝐫𝑗−1,𝑘+1)], (20.1.54)

𝐫𝜁𝜉 =
1
4 [(𝐫𝐼+1,𝑘+1 + 𝐫𝐼−1,𝑘−1) − (𝐫𝐼+1,𝑘−1 + 𝐫𝐼−1,𝑘+1)], (20.1.55)

where for brevity we have omitted subscripts 𝑖, 𝑗, or 𝑘 (e.g., 𝑘 + 1 stands for 𝑖, 𝑗, 𝑘 +  1).  
Note that these difference expressions use only coordinate planes that pass through the 
central point, and therefore do not include the eight corners of the cube. 

ξ

ζ
η

 Figure 20.1.  Example Caption 
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 Substituting Equations (17.1.26) into (17.1.24,17.1.25) and collecting terms, we get 

∑
18

𝑚=1
𝜔𝑚(𝐫𝑚 − 𝐫) = 0, (20.1.56)

where the sum is over the 18 nearest (in the transform space) neighbors of the given 
point.  The coefficients 𝜔𝑚 are given in Table 17.1. 
 
 Equations (20.1.56) can be written 

𝐫𝑚 =
∑ 𝜔𝑚𝐫𝑚𝑚
∑ ω𝑚𝑚

, (20.1.57)

expressing the position of the central point as a weighted mean of its 18 nearest 
neighbors.  The denominator of (20.1.57) is equal to 2(𝛼1 + 𝛼2 + 𝛼3) which is guaranteed 
to be positive by (17.1.25).  This vector equation is equivalent to the three scalar 
equations 

𝑥 =
∑ 𝜔𝑚x𝑚𝑚
∑ ω𝑚𝑚

, (20.1.58)

𝑦 =
∑ 𝜔𝑚y𝑚𝑚
∑ 𝜔𝑚𝑚

, (20.1.59)

 
 m Index 𝜔𝑚
  1 𝑖 + 1 𝛼1
  2 𝑖– 1 𝛼1
  3 𝑗 + 1 𝛼2
  4 𝑗– 1 𝛼2
  5 𝑘 + 1 𝛼3
  6 𝑘– 1 𝛼3
  7 𝑖 + 1, 𝑗 + 1 𝛽1/2 
  8 𝑖– 1, 𝑗– 1 𝛽1/2 
  9 𝑖 + 1, 𝑗– 1 −𝛽1/2 
10 𝑖– 1, 𝑗 + 1 −𝛽1/2 
11 𝑗 + 1, 𝑘 + 1 𝛽2/2 
12 𝑗– 1, 𝑘– 1 𝛽2/2 
13 𝑗 + 1, 𝑘– 1 −𝛽2/2 
14 𝑗– 1, 𝑘 + 1 −𝛽2/2 
15 𝑖 + 1, 𝑘 + 1 𝛽3/2 
16 𝑖– 1, 𝑘– 1 𝛽3/2 
17 𝑖 + 1, 𝑘– 1 −𝛽3/2 
18 𝑖– 1, 𝑘 + 1 −𝛽3/2 
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Table 17.1.  3D Zoning Weight Coefficients 
 

𝑧 =
∑ 𝜔𝑚𝑧𝑚𝑚
∑ 𝜔𝑚𝑚

. (20.1.60)

the same weights 𝜔𝑚 appearing in each equation. 
 
 These equations are nonlinear, since the coefficients are functions of the 
coordinates.  Therefore we solve them by an iterative scheme, such as SOR.  When 
applied to Equation (20.1.58), for example, this gives for the (n+1)st iteration 

𝑥𝑛+1 = (1 − f)𝑥𝑛 + f (
∑ 𝜔𝑚𝑥𝑚𝑚
∑ 𝜔𝑚𝑚

), (20.1.61)

where the over relaxation factor 𝑓  must satisfy 0 < 𝑓 < 2.  In (20.1.61) the values of 𝑥𝑚 at 
the neighboring points are the latest available values.  The coefficients 𝜔𝑚 are 
recalculated before each iteration using Table 17.1 and Equations (17.1.25).   
 
 To smooth one interior point in a three-dimensional mesh, let the point to be 
smoothed be the interior point of Figure 17.1, assuming that its neighborhood has the 
logical structure shown.  Even though Equations (17.1.29) are nonlinear, the 𝜔𝑚 do not 
involve the coordinates of the central point, since the ’s and’s do not.  Hence we 
simply solve Equations (17.1.29) for the new coordinates (𝑥, 𝑦, 𝑧), holding the 18 
neighboring points fixed, without needing to iterate. 
 
 If we wish to smooth a group of interior points, we solve iteratively for the 
coordinates using equations of the form (20.1.61). 
 

20.1.2  Simple Averaging 

 The coordinates of a node is the simple average of the coordinates of its 
surrounding nodes. 

𝑥SA
𝑛+1 =

1
𝑚tot ∑ 𝑥𝑚

𝑛
𝑚tot

𝑚=1
. (20.1.62)

 

20.1.3  Kikuchi’s Algorithm 

  Kikuchi proposed an algorithm that uses a volume-weighted average of the 
coordinates of the centroids of the elements surrounding a node.  Variables that are 
subscripted with Greek letters refer to element variables, and subscripts with capital 
letters refer to the local node numbering within an element. 

𝑥αn =
1
8 ∑ 𝑥𝐴𝑛
𝐴

, (20.1.63)
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𝑥𝐾𝑛+1 =
∑ 𝑉a𝑥αn
αtot
α=1

∑ Va
αtot
α=1

. (20.1.64)

20.1.4  Surface Smoothing 

 The surfaces are smoothed by extending the two-dimensional equipotential 
stencils to three dimensions.  Notice that the form of Equation (20.1.2a) and (20.1.2b) for 
the 𝑥 and 𝑦 directions are identical.  The third dimension, 𝑧, takes the same form.  When 
Equation (16.1.2) is applied to all three dimensions, it tends to flatten out the surface 
and alter the total volume.  To conserve the volume and retain the curvature of the 
surface, the point given by the relaxation stencil is projected on to the tangent plane 
defined by the normal at the node. 

20.1.5  Combining Smoothing Algorithms 

 The user has the option of using a weighted average of all three algorithms to 
generate a composite algorithm, where the subscripts E, SA, and K refer to the 
equipotential, simple averaging, and Kikuchi’s smoothing algorithm respectively, and 
ww is the weighting factor.  

𝑥𝑛+1 = 𝑤E𝑥E𝑛+1 + 𝑤SA𝑥SA
𝑛+1 + 𝑤K𝑥K𝑛+1. (20.1.65)

20.2  Advection Algorithms 

 LS-DYNA follows the SALE3D strategy for calculating the transport of the 
element-centered variables (i.e., density, internal energy, the stress tensor and the 
history variables).  The van Leer MUSCL scheme [van Leer 1977] is used instead of the 
donor cell algorithm to calculate the values of the solution variables in the transport 
fluxes to achieve second order accurate monotonic results.  To calculate the momentum 
transport, two algorithms have been implemented.  The less expensive of the two is the 
one that is implemented in SALE3D, but it has known dispersion problems and may 
violate monotonocity (i.e., introduce spurious oscillations) [Benson 1992].  As an 
alternative, a significantly more expensive method [Benson 1992], which can be shown 
analytically to not have either problem on a regular mesh, has also been implemented. 
 In this section the donor cell and van Leer MUSCL scheme are discussed.  Both 
methods are one-dimensional and their extensions to multidimensional problems are 
discussed later. 
 

20.2.1  Advection Methods in One Dimension 

 In this section the donor cell and van Leer MUSCL scheme are discussed.  Both 
methods are one-dimensional and their extensions to multidimensional problems are 
discussed later. 
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 The remap step maps the solution from a distorted Lagrangian mesh on to the 
new mesh.  The underlying assumptions of the remap step are 1) the topology of the 
mesh is fixed (a complete rezone does not have this limitation), and 2) the mesh motion 
during a step is less than the characteristic lengths of the surrounding elements.  Within 
the fluids community, the second condition is simply stated as saying the Courant 
number, 𝐶, is less than one. 

𝐶 =
𝑢Δ𝑡
Δ𝑥 =

𝑓
V ≤ 1, (20.2.66)

 
 Since the mesh motion does not occur over any physical time scale, t is 
arbitrary, and ut is the transport volume, 𝑓 , between adjacent elements.  The transport 
volume calculation is purely geometrical for ALE formulations and it is not associated 
with any of the physics of the problem. 
 
 The algorithms for performing the remap step are taken from the computational 
fluids dynamics community, and they are referred to as “advection” algorithms after 
the first order, scalar conservation equation that is frequently used as a model 
hyperbolic problem.  

∂φ
∂t + a(𝑥)

∂φ
∂𝑥 = 0. (20.2.67)

 
 A good advection algorithm for the remap step is accurate, stable, conservative 
and monotonic.  Although many of the solution variables, such as the stress and plastic 
strain, are not governed by conservation equations like momentum and energy, it is still 
highly desirable that the volume integral of all the solution variables remain unchanged 
by the remap step.  Monotonicity requires that the range of the solution variables does 
not increase during the remap.  This is particularly important with mass and energy, 
where negative values would lead to physically unrealistic solutions. 
 
 Much of the research on advection algorithms has focused on developing 
monotonic algorithms with an accuracy that is at least second order.  Not all recent 
algorithms are monotonic.  For example, within the finite element community, the 
streamline upwind Petrov-Galerkin (SUPG) method developed by Hughes and 
coworkers [Brooks and Hughes 1982] is not monotonic.  Johnson et al., [1984] have 
demonstrated that the oscillations in the SUPG solution are localized, and its 
generalization to systems of conservation equations works very well for the Euler 
equations.  Mizukami and Hughes [1985] later developed a monotonic SUPG 
formulation.  The essentially non-oscillatory (ENO) [Harten 1989] finite difference 
algorithms are also not strictly monotonic, and work well for the Euler equations, but 
their application to hydrodynamics problems has resulted in negative densities 
[McGlaun 1990].  Virtually all the higher order methods that are commonly used were 
originally developed for solving the Euler equations, usually as higher order extensions 



Simplified Arbitrary Lagrangian-Eulerian LS-DYNA Theory Manual 

18-14 (Simplified Arbitrary Lagrangian-Eulerian) LS-DYNA DEV 06/21/18 (r:10113) 

to Godunov’s method.  Since the operator split approach is the dominant one in 
Eulerian hydrocodes, these methods are implemented only to solve the scalar advection 
equation. 
 
The Donor Cell Algorithm.  Aside from its first order accuracy, it is everything a good 
advection algorithm should be: stable, monotonic, and simple.  The value of 𝑓𝑗

𝜑 is 
dependent on the sign of a at node 𝑗, which defines the upstream direction.  

φ𝑗+1
2⁄

𝑛+1 = φ𝑗+1
2⁄

𝑛 +
Δ𝑡
Δ𝑥 (𝑓𝑗

𝜑 − 𝑓𝑗+1
𝜑 ), (20.2.68)

𝑓𝑗
𝜑 =

𝑎𝑗

2 (φ𝑗−1
2⁄

𝑛 + φ𝑗+1
2⁄

𝑛 ) +
|𝑎𝑗|
2 (φ𝑗−1

2⁄
𝑛 − φ𝑗+1

2⁄
𝑛 ). (20.2.69)

 
 The donor cell algorithm is a first order Godunov method applied to the 
advection equation.  The initial values of 𝜙 to the left and the right of node 𝑗 are φ𝑗−1

2⁄
𝑛  

and φ𝑗+1
2⁄

𝑛 , and the velocity of the contact discontinuity at node 𝑗 is 𝑎𝑗.  
 
The Van Leer MUSCL Algorithm. Van Leer [1977] introduced a family of higher order 
Godunov methods by improving the estimates of the initial values of left and right 
states for the Riemann problem at the nodes.  The particular advection algorithm that is 
presented in this section is referred to as the MUSCL (monotone upwind schemes for 
conservation laws) algorithm for brevity, although MUSCL really refers to the family of 
algorithms that can be applied to systems of equations. 
 
 The donor cell algorithm assumes that the distribution of 𝜙 is constant over an 
element.  Van Leer replaces the piecewise constant distribution with a higher order 
interpolation function, φ𝑗+1

2⁄
𝑛 (𝑥) that is subject to an element level conservation 

constraint.  The value of 𝜙 at the element centroid is regarded in this context as the 
average value of 𝜙 over the element instead of the spatial value at 𝑥𝑗+1

2⁄ . 

φ𝑗+1
2⁄

𝑛 = ∫ φ𝑗+1
2⁄

𝑛𝑥𝑗+1

𝑥𝑗
(𝑥)d𝑥, (20.2.70)

 
 To determine the range of 𝜙, [φ𝑗+1

2⁄
min , φ𝑗+1

2⁄
max ], for imposing the monotonicity 

constraint, the maximum and minimum values of φ𝑗−1
2⁄

𝑛 , φ𝑗+1
2⁄

𝑛 , and φ𝑗+3
2⁄

𝑛  are used.  
Monotonicity can be imposed in either of two ways.  The first is to require that the 
maximum and minimum values of φ𝑗+1

2⁄
𝑛 (𝑥) fall within the range determined by the 

three elements.  The second is to restrict the average value of 𝜙 in the transport volumes 
associated with element  𝑗 + 1/2.  While the difference may appear subtle, the actual 
difference between the two definitions is quite significant even at relatively low 
Courant numbers.  The second definition allows the magnitude of the 𝜙 transported to 



LS-DYNA Theory Manual Simplified Arbitrary Lagrangian-Eulerian 

LS-DYNA DEV 06/21/18 (r:10113) 18-15 (Simplified Arbitrary Lagrangian-Eulerian) 

adjacent elements to be larger than the first definition.  As a consequence, the second 
definition is better able to transport solutions with large discontinuities.  The magnitude 
of 𝜙 an algorithm is able to transport before its monotonicity algorithm restricts 𝜙 is a 
measure of the algorithm’s “compressiveness.” 
 
 The first step up from a piecewise constant function is a piecewise linear 
function, where 𝑥 is now the volume coordinate.  The volume coordinate of a point is 
simply the volume swept along the path between the element centroid and the point.  
Conservation is guaranteed by expanding the linear function about the element 
centroid. 

φ𝑗+1
2⁄

𝑛 (𝑥) = 𝑆𝑗+1
2⁄

𝑛 (𝑥 − 𝑥𝑗+1
2⁄

𝑛 ) + φj+1
2⁄

𝑛 . (20.2.71)

 
 Letting 𝑠𝑗+1

2⁄
𝑛  be a second order approximation of the slope, the monotonicity 

limited value of the slope, 𝑠𝑗+1
2⁄

𝑛 , according to the first limiting approach, is determined 
by assuming the maximum permissible values at the element boundaries. 

𝑆𝑗+1
2⁄

𝑛 =
1
2 (sgn(sL) + sgn(sR)) × min (∣sL∣, ∣s𝑗+1

2⁄
𝑛 ∣ , ∣sR∣), (20.2.72)

𝑠L =
φ𝑗+1

2⁄
𝑛 − φ𝑗−1

2⁄
𝑛

1
2 Δ𝑥𝑗+1

2⁄

, (20.2.73)

𝑠R =
φ𝑗+3

2⁄
𝑛 − φ𝑗+1

2⁄
𝑛

1
2 Δ𝑥𝑗+1

2⁄

. (20.2.74)

 
 The second limiter is similar to the first, but it assumes that the maximum 
permissible values occur at the centroid of the transport volumes.  Note that as stated in 
Equation (17.2.6), this limiter still limits the slope at the element boundary even if the 
element is the downstream element at that boundary.  A more compressive limiter 
would not limit the slope based on the values of 𝜙 at the downstream boundaries.  For 
example, if 𝑎𝑗 is negative, only 𝑆𝑅 would limit the value of 𝑆𝑛 in Equation (17.2.6).  If the 
element is the downstream element at both boundaries, then the slope in the element 
has no effect on the solution. 

𝑠L =
φ𝑗+1

2⁄
𝑛 − φ𝑗−1

2⁄
𝑛

1
2 Δ𝑥𝑗+1

2⁄ − 1
2 max(0, 𝑎𝑗Δ𝑡)

. (20.2.75)

𝑠R =
φ𝑗+3

2⁄
𝑛 − φ𝑗+1

2⁄
𝑛

1
2 𝑥𝑗+1

2⁄ + 1
2 min(0, 𝑎𝑗+1Δ𝑡)

. (20.2.76)
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 The flux at node 𝑗 is evaluated using the upstream approximation of 𝜙. 

𝑓𝑗
φ =

𝑎𝑗

2 (φ𝑗
− + φ𝑗

+) +
|𝑎𝑗|
2 (φ𝑗

− − φ𝑗
+), (20.2.77)

φ𝑗
+ = S𝑗+1

2⁄
𝑛 (𝑥C − 𝑥𝑗+1

2⁄
𝑛 ) + φ𝑗+1

2⁄
𝑛 , (20.2.78)

φ𝑗
− = S𝑗−1

2⁄
𝑛 (𝑥C − 𝑥𝑗−1

2⁄
𝑛 ) + φ𝑗−1

2⁄
𝑛 , (20.2.79)

𝑥C = 𝑥𝑗
𝑛 +

1
2 𝑎𝑗Δ𝑡. (20.2.80)

 
 The method for obtaining the higher order approximation of the slope is not 
unique.  Perhaps the simplest approach is to fit a parabola through the centroids of the 
three adjacent elements and evaluate its slope at 𝑥𝑗+1

2⁄
𝑛 .  When the value of 𝜙 at the 

element centroids is assumed to be equal to the element average this algorithm defines 
a projection.  

𝑠𝑗+1
2⁄

𝑛 =
(𝜑𝑗+3

2⁄
𝑛 − φ𝑗+1

2⁄
n ) Δ𝑥𝑗

2 + (φ𝑗+1
2⁄

𝑛 − φ𝑗−1
2⁄

𝑛 ) Δ𝑥𝑗+1
2

Δ𝑥𝑗Δ𝑥𝑗+1(Δ𝑥𝑗 + Δ𝑥𝑗+1)
, (20.2.81)

Δ𝑥𝑗 = 𝑥𝑗+1
2⁄

𝑛 − 𝑥𝑗−1
2⁄

𝑛 . (20.2.82)

20.2.2  Advection Methods in Three Dimensions 

 For programs that use a logically regular mesh, one-dimensional advection 
methods are extended to two and three dimensions by using a sequence of one-
dimensional sweeps along the logically orthogonal mesh lines.  This strategy is not 
possible for unstructured meshes because they don’t have uniquely defined sweep 
directions through the mesh.  CAVEAT [Addessio, et al., 1986] uses one-dimensional 
sweeps in the spatial coordinate system, but their approach is expensive relative to the 
other algorithms and it does not always maintain spherical symmetry, which is an 
important consideration in underwater explosion calculations. 
 
 The advection in LS-DYNA is performed isotropically.  The fluxes through each 
face of element A are calculated simultaneously, but the values of 𝜙 in the transport 
volumes are calculated using the one-dimensional expressions developed in the 
previous sections.  

φA𝑛+1 =
1
VA𝑛+1 ⎝

⎜⎛VA𝑛 φA𝑛 + ∑ f𝑗
φ

6

𝑗=1 ⎠
⎟⎞. (20.2.83)
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 The disadvantage of isotropic advection is that there is no coupling between an 
element and the elements that are joined to it only at its corners and edges (i.e., 
elements that don’t share faces).  The lack of coupling introduces a second order error 
that is significant only when the transport is along the mesh diagonals. 
 
 The one-dimensional MUSCL scheme, which requires elements on either side of 
the element whose transport is being calculated, cannot be used on the boundary 
elements in the direction normal to the boundary.  Therefore, in the boundary elements, 
the donor cell algorithm is used to calculate the transport in the direction that is normal 
to the boundary, while the MUSCL scheme is used in the two tangential directions. 
 
 It is implicitly assumed by the transport calculations that the solution variables 
are defined per unit current volume.  In LS-DYNA, some variables, such as the internal 
energy, are stored in terms of the initial volume of the element.  These variables must be 
rescaled before transport, then the initial volume of the element is advected between the 
elements, and then the variables are rescaled using the new “initial” volumes.  
Hyperelastic materials are not currently advected in LS-DYNA because they require the 
deformation gradient, which is calculated from the initial geometry of the mesh.  If the 
deformation gradient is integrated by using the midpoint rule, and it is advected with 
the other solution variables, then hyperelastic materials can be advected without any 
difficulties. 

F𝑛+1 = (I −
Δ𝑡

2L𝑛+1
2⁄
)−1 (I +

Δ𝑡

2L𝑛+1
2⁄
)F𝑛. (20.2.84)

 
Advection of the Nodal Velocities.  Except for the Godunov schemes, the velocity is 
centered at the nodes or the edges while the remaining variables are centered in the 
elements.  Momentum is advected instead of the velocity in most codes to guarantee 
that momentum is conserved.  The element-centered advection algorithms must be 
modified to advect the node-centered momentum.  Similar difficulties are encountered 
when node-centered algorithms, such as the SUPG method [Brooks and Hughes 1982], 
are applied to element-centered quantities [Liu, Chang, and Belytschko, to be published].  
There are two approaches: 1) construct a new mesh such that the nodes become the 
element centroids of the new mesh and apply the element-centered advection 
algorithms, and 2) construct an auxiliary set of element-centered variables from the 
momentum, advect them, and then reconstruct the new velocities from the auxiliary 
variables.  Both approaches can be made to work well, but their efficiency is heavily 
dependent on the architecture of the codes.  The algorithms are presented in detail for 
one dimension first for clarity.  Their extensions to three dimensions, which are 
presented later, are straightforward even if the equations do become lengthy.  A 
detailed discussion of the algorithms in two dimensions is presented in Reference 
[Benson 1992]. 
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Notation.  Finite difference notation is used in this section so that the relative locations 
of the nodes and fluxes are clear.  The algorithms are readily applied, however, to 
unstructured meshes.  To avoid limiting the discussion to a particular element-centered 
advection algorithm, the transport volume through node 𝑖 is 𝑓 , the transported mass is 
𝑓 ̃𝑖, and the flux of 𝜙 is 𝜙𝑖𝑓𝑖.  Most of the element-centered flux-limited advection 
algorithms calculate the flux of 𝜙 directly, but the mean value of 𝜙 in the transport 
volumes is calculated by dividing the 𝜙i𝑓i, by the transport volume.  A superscript “-” 
or “+” denotes the value of a variable before or after the advection.  Using this notation, 
the advection of 𝜙 in one dimension is represented by Equation (17.2.12), where the 
volume is V. 

φ𝑗+1
2⁄

+ =
(φ𝑗+1

2⁄
− V𝑗+1

2⁄
− + φ𝑖𝑓𝑖 − φ𝑖+1𝑓𝑖+1)

V+ , (20.2.85)

V𝑗+1
2⁄

+ = V𝑗+1
2⁄

− + 𝑓𝑖 − 𝑓𝑖+1. (20.2.86)

 
The Staggered Mesh Algorithm.  YAQUI [Amsden and Hirt 1973] was the first code to 
construct a new mesh that is staggered with respect to original mesh for momentum 
advection.  The new mesh is defined so that the original nodes become the centroids of 
the new elements.  The element-centered advection algorithms are applied to the new 
mesh to advect the momentum.  In theory, the momentum can be advected with the 
transport volumes or the velocity can be advected with the mass. 

v𝑗
+ =

(M𝑗
−v𝑗

− + v𝑗−1
2⁄ 𝑓 ̃

𝑗−1
2⁄ − v𝑗+1

2⁄ 𝑓 ̃
𝑗+1

2⁄ )

M𝑗
+ , (20.2.87)

v𝑗
+ =

(M𝑗
−v𝑗

− + {ρv}𝑗−1
2⁄ 𝑓𝑗−1

2⁄ − {ρv}𝑗+1
2⁄ 𝑓𝑗−1

2⁄ )

M𝑗
+ , (20.2.88)

M𝑗
+ = M𝑗

− + 𝑓 ̃
𝑗−1

2⁄ − 𝑓 ̃
𝑗+1

2⁄ . (20.2.89)

 
 A consistency condition, first defined by DeBar [1974], imposes a constraint on 
the formulation of the staggered mesh algorithm:  if a body has a uniform velocity and a 
spatially varying density before the advection, then the velocity should be uniform and 
unchanged after the advection.  The new mass of a node can be expressed in terms of 
the quantities used to advect the element-centered mass. 

M𝑗
+ =

1
2 (M𝑗−1

2⁄
+ +M𝑗+1

2⁄
+ ), (20.2.90)

M𝑗
+ =

1
2 (M𝑗−1

2⁄
− + 𝜌𝑗−1𝑓𝑗−1 − 𝜌𝑗𝑓𝑗 + M𝑗+1

2⁄
− + 𝜌𝑗𝑓𝑗 − 𝜌𝑗+1𝑓𝑗+1), (20.2.91)
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M𝑗
+ = M𝑗

− +
1
2 [(𝜌𝑗−1𝑓𝑗−1 − 𝜌𝑗𝑓𝑗) + (𝜌𝑗𝑓𝑗 − 𝜌𝑗+1𝑓𝑗+1)]. (20.2.92)

The staggered mass fluxes and transport volumes are defined by equating Equation 
(20.2.90) and Equation (17.2.15). 

𝜌𝑗+1
2⁄ 𝑓𝑗+1

2⁄ = 𝑓 ̃
𝑗+1

2⁄ =
1
2 (𝜌𝑗𝑓𝑗 + 𝜌𝑗+1𝑓𝑗+1). (20.2.93)

The density 𝜌𝑗+1
2⁄  is generally a nonlinear function of the volume 𝑓𝑗+1

2⁄ , hence 
calculating 𝑓𝑗+1

2⁄  from Equation (20.2.93) requires the solution of a nonlinear equation 
for each transport volume.  In contrast, the mass flux is explicitly defined by Equation 
(20.2.93).  Most codes, including KRAKEN [Debar 1974], CSQ [Thompson 1975], CTH 
[McGlaun 1989], and DYNA2D [Hallquist 1980], use mass fluxes with the staggered 
mesh algorithm because of their simplicity. 
 
 The dispersion characteristics of this algorithm are identical to the underlying 
element-centered algorithm by construction.  This is not true, however, for some of the 
element-centered momentum advection algorithms.  There are some difficulties in 
implementing the staggered mesh method in multi-dimensions.  First, the number of 
edges defining a staggered element equals the number of elements surrounding the 
corresponding node.  On an unstructured mesh, the arbitrary connectivity results in an 
arbitrary number of edges for each staggered element.  Most of the higher order 
accurate advection algorithms assume a logically regular mesh of quadrilateral 
elements, making it difficult to use them with the staggered mesh.  Vectorization also 
becomes difficult because of the random number of edges that each staggered element 
might have.  In the ALE calculations of DYNA2D, only the nodes that have a locally 
logically regular mesh surrounding them can be moved in order to avoid these 
difficulties [Benson 1992].  These difficulties do not occur in finite difference codes 
which process logically regular blocks of zones.  Another criticism is the staggered 
mesh algorithm tends to smear out shocks because not all the advected variables are 
element-centered [Margolin 1989].  This is the primary reason, according to Margolin 
[1989], that the element-centered algorithm was adopted in SALE [Amdsden, Ruppel, 
and Hirt  1980]. 
 
The SALE Algorithm. SALE advects an element-centered momentum and redistributes 
its changes to the nodes [Amdsden, Ruppel, and Hirt 1980].  The mean element velocity, 
𝐯̅̅̅̅𝑗+1

2⁄ , specific momentum, 𝐩𝑗+1
2⁄ , element momentum, 𝐏𝑗+1

2⁄ , and nodal momentum 
are defined by Equation (17.2.17). 

𝐯̅̅̅̅𝑗+1
2⁄ =

1
2 (𝐯𝑗 + 𝐯𝑗+1), (20.2.94)

𝐩𝑗+1
2⁄ = ρ𝑗+1

2⁄ 𝐯̅̅̅̅𝑗+1
2⁄ , (20.2.95)

𝐏j+1
2⁄ = M𝑗+1

2⁄ 𝐯̅̅̅̅𝑗+1
2⁄ . (20.2.96)
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Denoting the change in the element momentum Δ𝐏𝑗+1
2⁄ , the change in the velocity at a 

node is calculated by distributing half the momentum change from the two adjacent 
elements. 

Δ𝐏𝑗−1
2⁄ = p𝑗−1𝑓𝑗−1 − p𝑗𝑓𝑗, (20.2.97)

P𝑗
+ = P𝑗

− +
1
2 (Δ𝐏𝑗−1

2⁄ + Δ𝐏𝑗+1
2⁄ ), (20.2.98)

𝐯𝑗
+ =

𝐏𝑗
+

M𝑗
+. (20.2.99)

 
 This algorithm can also be implemented by advecting the mean velocity, 𝐯̅̅̅̅𝑗+1

2⁄  

with the transported mass, and the transported momentum 𝐩𝑗𝑓𝑗 is changed to 𝐯̅̅̅̅𝑗𝑓 ̃𝑗. 
 
 The consistency condition is satisfied regardless of whether masses or volumes 
are used.  Note that the velocity is not updated from the updated values of the adjacent 
element momenta.  The reason for this is the original velocities are not recovered if 𝑓𝑖 =
0, which indicates that there is an inversion error associated with the algorithm.  
 
The HIS (Half Index Shift) Algorithm.  Benson [1992] developed this algorithm based 
on his analysis of other element-centered advection algorithms.  It is designed to 
overcome the dispersion errors of the SALE algorithm and to preserve the monotonicity 
of the velocity field.  The SALE algorithm is a special case of a general class of 
algorithms.  To sketch the idea behind the HIS algorithm, the discussion is restricted to 
the scalar advection equation.  Two variables, Ψ1,𝑗+1

2⁄  and Ψ2,𝑗+1
2⁄  are defined in terms 

of a linear transformation of 𝜙𝑗 and 𝜙𝑗+1.  The linear transformation may be a function 
of the element 𝑗 + 1/2. 

⎩{
⎨
{⎧Ψ1,𝑗+1

2⁄
−

Ψ2,𝑗+1
2⁄

−
⎭}
⎬
}⎫ = [a b

c d] {
φ𝑗

−

φ𝑗+1
− }. (20.2.100)

This relation is readily inverted. 

{
φ𝑗

+

φ𝑗+1
+ } =

1
ad − bc [d −b

−c a ]
⎩{
⎨
{⎧Ψ1,𝑗+1

2⁄
+

Ψ2,𝑗+1
2⁄

+
⎭}
⎬
}⎫

. (20.2.101)

 
 A function is monotonic over an interval if its derivative does not change sign.  
The sum of two monotonic functions is monotonic, but their difference is not 
necessarily monotonic.  As a consequence, Ψ1,𝑗+1

2⁄
−  and Ψ2,𝑗+1

2⁄
−  are monotonic over the 

same intervals as φ𝑗
− if all the coefficients in the linear transformation have the same 

sign.  On the other hand, φ𝑗
+ is not necessarily monotonic even if Ψ1,𝑗+1

2⁄
+  and Ψ2,𝑗+1

2⁄
+  
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are monotonic because of the appearance of the negative signs in the inverse matrix.  
Monotonicity can be maintained by transforming in both directions provided that the 
transformation matrix is diagonal.  Symmetry in the overall algorithm is obtained by 
using a weighted average of the values of 𝜙𝑗 calculated in elements 𝑗 + 1/2 and 𝑗 − 1/2. 
 
 A monotonic element-centered momentum advection algorithm is obtained by 
choosing the identity matrix for the transformation and by using mass weighting for the 
inverse relationship. 

⎩{
⎨
{⎧Ψ1,𝑗+1

2⁄

Ψ2,𝑗+1
2⁄ ⎭}
⎬
}⎫ = [1 0

0 1] {
v𝑗

−

v𝑗+1
− } (20.2.102)

To conserve momentum, Ψ is advected with the transport masses. 

Ψ𝑚,𝑗+1/2
+ =

(M
𝑗+1

2

− Ψ
𝑚,𝑗+1

2

− + Ψ𝑚,𝑗
− 𝑓 ̃𝑗 − Ψ𝑚,𝑗+1

− 𝑓 ̃𝑗+1)

M
𝑗+1

2

+ , (20.2.103)

v𝑗 =
1

2M𝑗
(M𝑗+1/2Ψ1,𝑗+1/2 +M𝑗−1/2Ψ2,𝑗−1/2). (20.2.104)

 
Dispersion Errors. A von Neumann analysis [Trefethen 1982] characterizes the 
dispersion errors of linear advection algorithms.  Since the momentum advection 
algorithm modifies the underlying element-centered advection algorithm, the 
momentum advection algorithm does not necessarily have the same dispersion 
characteristics as the underlying algorithm.  The von Neumann analysis provides a tool 
to explore the changes in the dispersion characteristics without considering a particular 
underlying advection algorithm.  
 
 The model problem is the linear advection equation with a constant value of c.  A 
class of solutions can be expressed as complex exponentials, where i is √−1 ,  is the 
frequency, and χ is the wave number. 

∂φ
∂𝑡 + c

∂φ
∂𝑥 = 0, (20.2.105)

φ(𝑥, 𝑡) = 𝑒𝑖(ω𝑡−χ𝑥). (20.2.106)

 
 For Equation (17.2.24), the dispersion equation is 𝜔 = 𝑐𝜒, but for discrete 
approximations of the equation and for general hyperbolic equations, the relation is 
𝜔 = 𝜔𝜒.  The phase velocity, cp, and the group speed, cg, are defined by Equation 
(17.2.25). 

cp =
ω
χ , (20.2.107)
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cg =
∂ω
∂χ . (20.2.108)

 
 The mesh spacing is assumed to have a constant value 𝐽, and the time step, ℎ, is 
also constant.  The + and - states in the previous discussions correspond to times n and 
n + 1 in the dispersion analysis.  An explicit linear advection method that has the form 
given by Equation (1.2.109) results in a complex dispersion equation, Equation (17.2.27), 
where Π is a complex polynomial. 

𝜑𝑗
𝑛+1 = 𝜑𝑗

𝑛 + F(c, ℎ, 𝐽, . . . , 𝜑𝑗−1
𝑛 , 𝜑𝑗,

𝑛𝜑𝑗+1
𝑛 , . . . ), (20.2.109)

𝑒𝑖ωℎ = 1 + P(𝑒𝑖χ𝐽), (20.2.110)

Π(𝑒𝑖χ𝐽) = ∑𝛽𝑗𝑒𝑖χ𝑗𝐽

𝑗
. (20.2.111)

 
 The dispersion equation has the general form given in Equation (1.2.112), where 
Πr and Πi denote the real and imaginary parts of Π, respectively. 

ωℎ = tan−1 (
Π𝑖

1 + Πr
). (20.2.112)

Recognizing that the relations in the above equations are periodic in 𝜔ℎ and χ𝐽, the 
normalized frequency and wave number are defined to simplify the notation. 

𝜔̅̅̅̅ = ωℎ, χ̅̅̅̅ = χ𝐽. (20.2.113)

The von Neumann analysis of the SALE algorithm proceeds by first calculating the 
increment in the cell momentum. 

p𝑗+1/2
𝑛 =

1
2 (v𝑗

𝑛 + v𝑗+1
𝑛 ), (20.2.114)

p𝑗+1/2
𝑛 =

1
2 (1 + 𝑒−𝑖χ̅̅̅̅̅)v𝑗

𝑛, (20.2.115)

Δp𝑗+1/2
𝑛+1 = P𝑗+1

2⁄
𝑛+1 − P𝑗+1

2⁄
𝑛 , (20.2.116)

Δp𝑗+1/2
𝑛+1 =

1
2 (1 + e−𝑖χ̅̅̅̅̅)Πv𝑗

𝑛. (20.2.117)

 
The velocity is updated from the changes in the cell momentum. 

v𝑗
𝑛+1 = v𝑗

𝑛 +
1
2 (Δp𝑗+1/2

𝑛+1 + Δp𝑗−1/2
𝑛+1 ), (20.2.118)

v𝑗
𝑛+1 =

1
4 (1 + 𝑒𝑖χ̅̅̅̅̅)(1 + 𝑒−𝑖χ̅̅̅̅̅)Πv𝑗

𝑛, (20.2.119)
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v𝑗
𝑛+1 =

1
2 (1 + cos(χ̅̅̅̅))Πv𝑗

𝑛. (20.2.120)

 
 The dispersion relation for the SALE advection algorithm is given by Equation 
(1.2.121). 

𝜔̅̅̅̅ = tan−1

⎝
⎜⎜
⎜⎛

1
2 (1 + cos(χ̅̅̅̅))Π𝑖

1 + 1
2 (1 + cos(χ̅̅̅̅))Πr⎠

⎟⎟
⎟⎞. (20.2.121)

 
 By comparing Equation (20.2.112) and Equation (20.2.121), the effect of the SALE 
momentum advection algorithm on the dispersion is to introduce a factor λ, equal to 
1
2 (1 + cos(χ̅̅̅̅))Π, into the spatial part of the advection stencil.  For small values of χ̅̅̅̅, λ is 
close to one, and the dispersion characteristics are not changed, but when χ̅̅̅̅ is π, the 
phase and group velocity go to zero and the amplification factor is one independent of 
the underlying advection algorithm.  Not only is the wave not transported, it is not 
damped out.  The same effect is found in two dimensions, where λ, has the form 
1
4 (1 + cos(χ̅̅̅̅) + cos(χ̅̅̅̅̅̅̅̅) + cos(χ̅̅̅̅)cos(χ̅̅̅̅̅̅̅̅)). 
 
 In contrast, none of the other algorithms alter the dispersion characteristics of the 
underlying algorithm.  Benson has demonstrated for the element-centered algorithms 
that the SALE inversion error and the dispersion problem are linked.  Algorithms that 
fall into the same general class as the SALE and HIS algorithms will, therefore, not have 
dispersion problems [Benson 1992]. 
 
Three-Dimensional Momentum Advection Algorithms.  The momentum advection 
algorithms discussed in the previous sections are extended to three dimensions in a 
straightforward manner.  The staggered mesh algorithm requires the construction of a 
staggered mesh and the appropriate transport masses.  Based on the consistency 
arguments, the appropriate transport masses are given by Equation (1.2.122).  

𝑓 ̃𝑗+1/2,𝑘,𝑙 =
1
8 ∑ ∑ ∑ 𝑓𝐽,𝐾,𝐿

𝑙+1
2⁄

𝐿=𝑙−1
2⁄

𝑘+1
2⁄

𝐾=𝑘−1
2⁄

𝑗+1

𝐽=𝑗
. (20.2.122)

 
 The SALE advection algorithm calculates the average momentum of the element 
from the four velocities at the nodes and distributes 1⁄8 of the change in momentum to 
each node. 

p𝑗+1
2⁄ ,𝑘+1

2⁄ ,𝑙+1
2⁄ =

1
8 𝜌𝑗+1

2⁄ ,𝑘+1
2⁄ ,𝑙+1

2⁄ ∑ ∑ ∑v𝐽𝐾𝐿
𝑙+1

𝐿=𝑙

𝑘+1

𝐾=𝑘

𝑗+1

𝐽=𝑗
, (20.2.123)
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p𝑗+1
2⁄ ,𝑘+1

2⁄ ,𝑙+1
2⁄ =

1
8𝑀𝑗+1

2⁄ ,𝑘+1
2⁄ ,𝑙+1

2⁄ ∑ ∑ ∑v𝐽𝐾𝐿
𝑙+1

𝐿=𝑙

𝑘+1

𝐾=𝑘

𝑗+1

𝐽=𝑗
, (20.2.124)

v𝑗,𝑘,𝑙
+ =

1
𝑀𝑗,𝑘,𝑙

+
⎝
⎜⎜⎜
⎛
𝑀𝑗,𝑘,𝑙

− 𝑣𝑗,𝑘,𝑙
− +

1
8 ∑ ∑ ∑ 𝛥𝑃𝐽,𝐾,𝐿

𝑙+1
2⁄

𝐿=𝑙−1
2⁄

𝑘+1
2⁄

𝐾=𝑘−1
2⁄

𝑗+1
2⁄

𝐽=𝑗−1
2⁄ ⎠

⎟⎟⎟
⎞

. (20.2.125)

 
 The HIS algorithm is also readily extended to three dimensions.  The variable 
definitions are given in Equation (1.2.126) and Equation (1.2.127), where the subscript A 
refers to the local numbering of the nodes in the element.  In an unstructured mesh, the 
relative orientation of the nodal numbering within the elements may change.  The 
subscript A is always with reference to the numbering in element 𝑗, 𝑘, 𝑙.  The subscript Ã 
is the local node number in an adjacent element that refers to the same global node 
number as A. 

ΨA,𝑗+1
2⁄ ,𝑘+1

2⁄ ,𝑙+1
2⁄ = vA,𝑗+1

2⁄ ,𝑘+1
2⁄ ,𝑙+1

2⁄ , (20.2.126)

v𝑗,𝑘,𝑙
+ =

1
M𝑗,𝑘,𝑙

+ ∑ ∑ ∑ MJ,K,LΨÃ,J,K,L
+

𝑙+1
2⁄

𝐿=𝑙−1
2⁄

𝑘+1
2⁄

𝐾=𝑘−1
2⁄

𝑗+1
2⁄

𝐽=𝑗−1
2⁄

. (20.2.127)

20.3  The Manual Rezone 

 The central limitation to the simplified ALE formulation is that the topology of 
the mesh is fixed.  For a problem involving large deformations, a mesh that works well 
at early times may not work at late times regardless of how the mesh is distributed over 
the material domain.  To circumvent this difficulty, a manual rezoning capability has 
been implemented in LS-DYNA.  The general procedure is to 1) interrupt the 
calculation when the mesh is no longer acceptable, 2) generate a new mesh with 
INGRID by using the current material boundaries from LS-DYNA (the topologies of the 
new and old mesh are unrelated), 3) remap the solution from the old mesh to the new 
mesh, and 4) restart the calculation.  
 
 This chapter will concentrate on the remapping algorithm since the mesh 
generation capability is documented in the INGRID manual [Stillman and Hallquist 
1992].  The remapping algorithm first constructs an interpolation function on the 
original mesh by using a least squares procedure, and then interpolates for the solution 
values on the new mesh.  
 
 The one point quadrature used in LS-DYNA implies a piecewise constant 
distribution of the solution variables within the elements.  A piecewise constant 
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distribution is not acceptable for a rezoner since it implies that for even moderately 
large changes in the locations of the nodes (say, displacements on the order of fifty 
percent of the elements characteristic lengths) that there will be no changes in the values 
of the element-centered solution variables.  A least squares algorithm is used to 
generate values for the solution variables at the nodes from the element-centered 
values.  The values of the solution variables can then be interpolated from the nodal 
values, 𝜙A, using the standard trilinear shape functions anywhere within the mesh. 

𝜙(𝜉 , 𝜂, 𝜁) = 𝜙𝐴NA(𝜉, 𝜂, 𝜁). (20.3.128)
 
 The objective function for minimization, 𝐽, is defined material by material, and 
each material is remapped independently. 

𝐽 =
1
2 ∫(φA
V

NA − φ)2dV. (20.3.129)

 
 The objective function is minimized by setting the derivatives of 𝐽 with respect to 
𝜙𝐴 equal to zero. 

∂𝐽
∂φA

= ∫(φB
V

NB − φ)NAdV = 0. (20.3.130)

 
 The least square values of 𝜙A are calculated by solving the system of linear 
equations, Equation (17.3.4). 

MABφB = ∫ NA
V

φdV, (20.3.131)

MAB = ∫ NA
V

NBdV. (20.3.132)

The “mass matrix”, MAB, is lumped to give a diagonal matrix.  This eliminates the 
spurious oscillations that occur in a least squares fit around the discontinuities in the 
solution (e.g., shock waves) and facilitates an explicit solution for 𝜙A.  The integral on 
the right hand side of Equation (20.3.131) is evaluated using one point integration.  By 
introducing these simplifications, Equation (17.3.4) is reduced to Equation (1.3.133), 
where the summation over a is restricted to the elements containing node A. 

φA =
∑ φαVαα
∑ Vαα

. (20.3.133)

 
 The value of 𝜙α is the mean value of 𝜙 in element a.  From this definition, the 
value of 𝜙α is calculated using Equation (1.3.134). 

φα =
1
Vα

∫ φA
Vα

NAdV. (20.3.134)
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 The integrand in Equation (20.3.134) is defined on the old mesh, so that Equation 
(20.3.134) is actually performed on the region of the old mesh that overlaps element  in 
the new mesh, where the superscript “*” refers to elements on the old mesh. 

φα =
1
Vα

∑ ∗
β

∫ φA
Vα∩Vβ

∗

NAdV∗. (20.3.135)

One point integration is currently used to evaluate Equation (20.3.135), although it 
would be a trivial matter to add higher order integration.  By introducing this 
simplification, Equation (20.3.135) reduces to interpolating the value of 𝜙𝛼 from the 
least squares fit on the old mesh.  

𝜙a = 𝜙ANA(𝜉 ∗, 𝜂∗, 𝜁 ∗). (20.3.136)
 
 The isoparametric coordinates in the old mesh that correspond to the spatial 
location of the new element centroid must be calculated for Equation (20.3.136).  The 
algorithm that is described here is from Shapiro [1990], who references [Thompson and 
Maffeo 1985, Maffeo 1984, Maffeo 1985] as the motivations for his current strategy, and 
we follow his notation.  The algorithm uses a “coarse filter” and a “fine filter” to make 
the search for the correct element in the old mesh efficient. 
 
 The coarse filter calculates the minimum and maximum coordinates of each 
element in the old mesh.  If the new element centroid, (𝑥𝑠, 𝑦𝑠, 𝑧𝑠), lies outside of the box 
defined by the maximum and minimum values of an old element, then the old element 
does not contain the new element centroid. 
 
 Several elements may pass the coarse filter but only one of them contains the 
new centroid.  The fine filter is used to determine if an element actually contains the 
new centroid.  The fine filter algorithm will be explained in detail for the two-
dimensional case since it easier to visualize than the three-dimensional case, but the 
final equations will be given for the three-dimensional case. 
 
 The two edges adjacent to each node in Figure 20.2 (taken from [Shapiro 1990]) 
define four skew coordinate systems.  If the coordinates for the new centroid are 
positive for each coordinate system, then the new centroid is located within the old 
element.  Because of the overlap of the four positive quarter spaces defined by the skew 
coordinate systems, only two coordinate systems actually have to be checked.  Using 
the first and third coordinate systems, the coordinates, α𝑖, are the solution of Equation 
(17.3.9). 

𝑉𝑠 = 𝑉1 + 𝑎1𝑉12 + 𝑎2𝑉14, (20.3.137)

𝑉𝑠 = 𝑉3 + 𝑎3𝑉32 + 𝑎4𝑉34. (20.3.138)
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 Two sets of linear equations are generated for the α𝑖 by expanding the vector 
equations. 

[𝑥2 − 𝑥1 𝑥4 − 𝑥1
𝑦2 − 𝑦1 𝑦4 − 𝑦1

] {𝛼1
𝛼2
} = {𝑥𝑠 − 𝑥1

𝑦𝑠 − 𝑦1
}, (20.3.139)

[𝑥2 − 𝑥3 𝑥4 − 𝑥3
𝑦2 − 𝑦3 𝑦4 − 𝑦3

] {𝛼3
𝛼4
} = {𝑥𝑠 − 𝑥3

𝑦𝑠 − 𝑦3
}. (20.3.140)

 
 The generalization of Equation (17.3.9) to three dimensions is given by Equation 
(17.3.11), and it requires the solution of four sets of three equations.  The numbering 
convention for the nodes in Equation (17.3.11) follows the standard numbering scheme 
used in LS-DYNA for eight node solid elements. 

𝑉s = 𝑉1 + 𝑎1𝑉12 + 𝑎2𝑉14 + 𝑎3𝑉15, (20.3.141)

𝑉s = 𝑉3 + 𝑎4𝑉37 + 𝑎5𝑉34 + 𝑎6𝑉32, (20.3.142)

𝑉s = 𝑉6 + 𝑎7𝑉62 + 𝑎8𝑉65 + 𝑎9𝑉67, (20.3.143)

𝑉s = 𝑉8 + 𝑎10𝑉85 + 𝑎11𝑉84 + 𝑎12𝑉87. (20.3.144)
 
 The fine filter sometimes fails to locate the correct element when the mesh is 
distorted.  When this occurs, the element that is closest to the new centroid is located by 
finding the element for which the sum of the distances between the new centroid and 
the nodes of the element is a minimum. 
 

α3v32α4v34

α2v14

α1v12

(xs, ys)

4

1

3

2
vs

v1

y

x

 Figure 20.2.  Skew Coordinate System 



Simplified Arbitrary Lagrangian-Eulerian LS-DYNA Theory Manual 

18-28 (Simplified Arbitrary Lagrangian-Eulerian) LS-DYNA DEV 06/21/18 (r:10113) 

 Once the correct element is found, the isoparametric coordinates are calculated 
using the Newton-Raphson method, which usually converges in three or four iterations. 

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡𝑥A

∂𝑁A
∂𝜉 𝑥A

∂𝑁A
∂𝜂 𝑥A

∂𝑁A
∂𝜁

𝑦A
∂𝑁A
∂𝜉 𝑦A

∂𝑁A
∂𝜂 𝑦A

∂𝑁A
∂𝜁

𝑧A
∂𝑁A
∂𝜉 𝑧A

∂𝑁A
∂𝜂 𝑧A

∂𝑁A
∂𝜁 ⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

⎩{
⎨
{⎧Δ𝜉

Δ𝜂
Δ𝜁⎭}

⎬
}⎫ =

⎩{
⎨
{⎧𝑥s − 𝑥A𝑁A

𝑦s − 𝑦A𝑁A
𝑧s − 𝑧A𝑁A⎭}

⎬
}⎫, (20.3.145)

𝜉 𝑖+1 = 𝜉 𝑖 + 𝛥𝜉, 
𝜂𝑖+1 = 𝜂𝑖 + 𝛥𝜂, 
𝜁 𝑖+1 = 𝜁 𝑖 + 𝛥𝜁 .

(20.3.146)
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21    
Stress Update Overview 

21.1  Jaumann Stress Rate 

 Stresses for material which exhibit elastic-plastic and soil-like behavior 
(hypoelastic) are integrated incrementally in time: 

𝜎𝑖𝑗(𝑡 + 𝑑𝑡) = 𝜎𝑖𝑗(𝑡) + 𝜎̇𝑖𝑗𝑑𝑡, (21.1)

Here, and in equations which follow, we neglect the contribution of the bulk viscosity to 
the stress tensor.  In Equation (21.1), the dot denotes the material time derivative given 
by 

𝜎̇𝑖𝑗 = 𝜎𝑖𝑗
∇ + 𝜎𝑖𝑘𝜔𝑘𝑗 + 𝜎𝑗𝑘𝜔𝑘𝑖, (21.2)

in which 

𝜔𝑖𝑗 =
1
2 (

∂𝑣𝑖
∂𝑥𝑗

−
∂𝑣𝑗

∂𝑥𝑖
), (21.3)

is the spin tensor and 

𝜎𝑖𝑗
∇ = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘̇𝑙, (21.4)

is the Jaumann (co-rotational) stress rate.  In Equation (21.4), 𝐶𝑖𝑗𝑘𝑙 is the stress dependent 
constitutive matrix, 𝑣𝑖, is the velocity vector, and 𝜀𝑖̇𝑗 is the strain rate tensor: 

𝜀𝑖̇𝑗 =
1
2 (

∂𝑣𝑖
∂𝑥𝑗

+
∂𝑣𝑗

∂𝑥𝑖
). (21.5)

 
 In the implementation of Equation (21.1) we first perform the stress rotation, 
Equation (21.2), and then call a constitutive subroutine to add the incremental stress 
components 𝜎𝑖𝑗

𝛻 .  This may be written as  

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛 + 𝑟𝑖𝑗𝑛 + 𝜎𝑖𝑗
𝛻𝑛+1

2⁄ Δ𝑡𝑛+1
2⁄ , (21.6)
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where 

𝜎𝑖𝑗
𝛻𝑛+1

2⁄ Δ𝑡𝑛+1
2⁄ = 𝐶𝑖𝑗𝑘𝑙Δ𝜀𝑘𝑙

𝑛+1
2⁄ , 

Δ𝜀𝑖𝑗
𝑛+1

2⁄ = 𝜀𝑖̇𝑗
𝑛+1

2⁄ Δ𝑡𝑛+1
2⁄ ,

(21.7)

and 𝑟𝑖𝑗𝑛 gives the rotation of the stress at time 𝑡𝑛 to the configuration at 𝑡𝑛 + 1 

𝑟𝑖𝑗𝑛 = (𝜎𝑖𝑝
𝑛𝜔𝑝𝑗

𝑛+1
2⁄ + 𝜎𝑗𝑝

𝑛𝜔𝑝𝑖
𝑛+1

2⁄ ) Δ𝑡𝑛+1
2⁄ . (21.8)

 
 In the implicit NIKE2D/3D [Hallquist 1981b] codes, which are used for low 
frequency structural response, we do a half-step rotation, apply the constitutive law, 
and complete the second half-step rotation on the modified stress.  This approach has 
also been adopted for some element formulations in LS-DYNA when the invariant 
stress update is active.  An exact or second order accurate rotation is performed rather 
than the approximate one represented by Equation (21.3), which is valid only for small 
incremental rotations.  A typical implicit time step is usually 100 to 1000 or more times 
larger than the explicit time step; consequently, the direct use of Equation (21.7) could 
lead to very significant errors. 
 

21.2  Jaumann Stress Rate Used With Equations of State 

 If pressure is defined by an equation of state as a function of relative volume, 𝑉, 
and energy, 𝐸, or temperature, 𝑇, 

𝑝 = 𝑝(𝑉, 𝐸) = 𝑝(𝑉, 𝑇), (21.9)
we update the deviatoric stress components 

𝑠𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛 + 𝑟𝑖𝑗𝑛 + 𝑝𝑛𝛿𝑖𝑗 + 𝐶𝑖𝑗𝑘𝑙𝜀′̇𝑘𝑙
𝑛+1

2⁄ 𝛥𝑡𝑛+1
2⁄ , (21.10)

where 𝜀′̇𝑖𝑗
𝑛+1

2⁄  is the deviatoric strain rate tensor: 

𝜀′̇𝑖𝑗
𝑛+1

2⁄ = 𝜀𝑖̇𝑗 −
1
3 𝜀𝑘̇𝑘𝛿. (21.11)

 
 Before the equation of state, Equation (21.9), is evaluated, we compute the bulk 
viscosity, 𝑞, and update the total internal energy 𝑒 of the element being processed to a 
trial value 𝑒∗: 

𝑒∗𝑛+1 = 𝑒𝑛 −
1
2 Δ𝑣 (𝑝𝑛 + 𝑞𝑛−1

2⁄ + 𝑞𝑛+1
2⁄ ) + 𝑣𝑛+1

2⁄ 𝑠𝑖𝑗
𝑛+1

2⁄ Δ𝜀𝑖𝑗
𝑛+1

2⁄ , (21.12)

where 𝑣 is the element volume and 
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Δ𝑣 = 𝑣𝑛+1 − 𝑣𝑛,      𝑣𝑛+1
2⁄ =

1
2 (𝑣𝑛 + 𝑣𝑛+1), 𝑠𝑖𝑗

𝑛+1
2 =

1
2 (𝑠𝑖𝑗

𝑛 + 𝑠𝑖𝑗
𝑛+1). (21.13)

The time-centering of the viscosity is explained by Noh [1976]. 
 
 Assume we have an equation of state that is linear in internal energy of the form 

𝑝𝑛+1 = 𝐴𝑛+1 + 𝐵𝑛+1𝐸𝑛+1, (21.14)

where 

𝐸𝑛+1 =
𝑒𝑛+1

𝑣0
, (21.15)

and 𝜐0 is the initial volume of the element.  Noting that 

𝑒𝑛+1 = 𝑒∗𝑛+1 −
1
2 Δ𝑣𝑝𝑛+1, (21.16)

pressure can be evaluated exactly by solving the implicit form 

𝑝𝑛+1 =
(𝐴𝑛+1 + 𝐵𝑛+1𝐸∗𝑛+1)

(1 + 1
2 𝐵𝑛+1 Δ𝑣

𝑣0
)

, (21.17)

and the internal energy can be updated in Equation (21.16).  If the equation of state is 
not linear in internal energy, a one-step iteration is used to approximate the pressure 

𝑝∗𝑛+1 = 𝑝(𝑉𝑛+1, 𝐸∗𝑛+1). (21.18)

Internal energy is updated to 𝑛 + 1 using 𝑝∗𝑛+1 in Equation (21.16) and the final 
pressure is then computed: 

𝑝𝑛+1 = 𝑝(𝑉𝑛+1, 𝐸𝑛+1). (21.19)

This is also the iteration procedure used in KOVEC [Woodruff 1973].  All the equations 
of state in LS-DYNA are linear in energy except the ratio of polynomials. 
 

21.3  Green-Naghdi Stress Rate 

 The Green-Naghdi rate is defined as 

𝜎𝑖𝑗
𝛻 = 𝜎̇𝑖𝑗 + 𝜎𝑖𝑘𝛺𝑘𝑗 + 𝜎𝑗𝑘𝛺𝑘𝑖 = 𝑅𝑖𝑘𝑅𝑗𝑙𝜏̇

𝑘𝑙
, (21.20)

where 𝛺𝑖𝑗 is defined as 

𝛺𝑖𝑗 = 𝑅̇𝑖𝑘𝑅𝑖𝑘, (21.21)

and 𝐑 is found by application of the polar decomposition theorem 
𝐹𝑖𝑗 = 𝑅𝑖𝑘𝑈𝑘𝑗 = 𝑉𝑖𝑘𝑅𝑘𝑗, (21.22)
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𝐹𝑖𝑗 is the deformation gradient matrix and 𝑈𝑖𝑗 and 𝑉𝑖𝑗 are the positive definite right and 
left stretch tensors: 

𝐹𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑋𝑗

. (21.23)

 
 Stresses are updated for all materials by adding to the rotated Cauchy stress at 
time n. 

𝜏𝑖𝑗
𝑛 = 𝑅𝑘𝑖

𝑛 𝑅𝑙𝑗
𝑛𝜎𝑘𝑙

𝑛 , (21.24)

the stress increment obtained by an evaluation of the constitutive equations, 

Δ𝜏𝑖𝑗
𝑛+1

2⁄ = 𝐶𝑖𝑗𝑘𝑙 Δ𝑑𝑘𝑙
𝑛+1

2⁄ , (21.25)

where 

Δ𝑑𝑖𝑗
𝑛+1

2⁄ = 𝑅𝑘𝑖
𝑛+1

2⁄ 𝑅𝑙𝑗
𝑛+1

2⁄ Δ𝜀𝑘𝑙
𝑛+1

2⁄ (21.26)

 𝐶𝑖𝑗𝑘𝑙  =  constitutive matrix 
 Δ𝜀𝑘𝑙  =  increment in strain 
and to obtain the rotated Cauchy stress at 𝑡𝑛+1, i.e.,  

𝜏𝑖𝑗
𝑛+1 = 𝜏𝑖𝑗

𝑛 + Δ𝜏𝑖𝑗
𝑛+1

2⁄ . (21.27)

 
 The desired Cauchy stress at 𝑛 + 1 can now be found 

𝜎𝑖𝑗
𝑛+1 = 𝑅𝑖𝑘

𝑛+1𝑅𝑗𝑙
𝑛+1𝜏𝑘𝑙

𝑛+1. (21.28)

Because we evaluate our constitutive models in the rotated configuration, we avoid the 
need to transform history variables such as the back stress that arises in kinematic 
hardening. 
 
 In the computation of 𝐑, Taylor and Flanagan [1989] did an incremental update 
in contrast with the direct polar decomposition used in the NIKE3D code.  Following 
their notation the algorithm is given by. 
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𝑧𝑖 = 𝑒𝑖𝑗𝑘𝑉𝑗𝑚𝜀𝑚̇𝑘, 
𝜛𝑖 = 𝑒𝑖𝑗𝑘𝜔𝑗𝑘 − 2[𝑉𝑖𝑗 − 𝛿𝑖𝑗𝑉𝑘𝑘]−1𝑧𝑗, 

𝛺𝑖𝑗 =
1
2 𝑒𝑖𝑗𝑘𝜛𝑘, 

(𝛿𝑖𝑘 −
𝛥𝑡
2 𝛺𝑖𝑘)𝑅𝑘𝑗

𝑛+1 = (𝛿𝑖𝑘 +
𝛥𝑡
2 𝛺𝑖𝑘)𝑅𝑘𝑗

𝑛 , 

𝑉̇𝑖𝑗 = (𝜀𝑖̇𝑘 + 𝜔𝑖𝑘)𝑉𝑘𝑗 − 𝑉𝑖𝑘𝛺𝑘𝑗, 
𝑉𝑖𝑗

𝑛+1 = 𝑉𝑖𝑗
𝑛 + 𝛥𝑡𝑉̇𝑖𝑗. 

(21.29)

 
 We have adopted the PRONTO3D approach in LS-DYNA due to numerical 
difficulties with the polar decomposition in NIKE3D.  We believe the PRONTO3D 
approach is reliable.  Several disadvantages of the PRONTO3D approach include 300+ 
operations (at least that is the number we got), the requirement of 15 additional 
variables per integration point, and if we rezone the material in the future the initial 
geometry will need to be remapped and the 15 variables initialized. 
 

21.4  Elastoplastic Materials 

 
 At low stress levels in elastoplastic materials the stresses, 𝜎𝑖𝑗, depends only on 
the state of strain; however, above a certain stress level, called the yield stress, 𝜎𝑦(𝑎𝑖), 

Initial uniaxial

yield point σy0

elastic

strain

σy = σy(ai)

experimental curve

L
L0

plastic strain

ε = ln(L/L0)

σ = P/A

σ

ε

 Figure 21.1.  The uniaxial tension test demonstrates plastic behavior. 
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nonrecoverable plastic deformations are obtained.  The yield stress changes with 
increasing plastic deformations, which are measured by internal variables, 𝑎𝑖. 
 
 In the uniaxial tension test, a curve like that in Figure 21.1 is generated where 
logrithmic uniaxial strain is plotted against the uniaxial true stress which is defined as 
the applied load 𝑃 divided by the actual cross-sectional area, 𝐴.   
 
 For the simple von Mises plasticity models the yield stress is pressure 
independent and the yield surface is a cylinder in principal stress space as shown in 
Figure 21.2.  With isotropic hardening the diameter of the cylinder grows but the shape 
remains circular.  In kinematic hardening the diameter may remain constant but will 
translate in the plane as a function of the plastic strain tensor, See Figure 21.3. 
 
 The equation describing the pressure independent yield surface, 𝐹, is a function 
of the deviatoric stress tensor, 𝑠𝑖𝑗, of a form given in Equation (1.30). 

𝐹(𝑠𝑖𝑗, 𝑎𝑖) = 𝑓 (𝑠𝑖𝑗) − 𝜎𝑦(𝑎𝑖) = 0, (21.30)

𝑓 (𝑠𝑖𝑗) = determines the shape, 
𝜎𝑦(𝑎𝑖) = determines the translation and size. 
 
 The existence of a potential function, 𝑔, called the plastic potential, is assumed 

𝑔 = 𝑔(𝑠𝑖𝑗). (21.31)

Stability and uniqueness require that: 

𝑑𝜀𝑖𝑗
p = 𝜆

𝜕𝑔
𝜕𝑠𝑖𝑗

, (21.32)

σ1 = σ2 = σ3

deviatoria plane

yield curve = intersection of the deviatoric

plane with the yield surface

σ2

σ3

σ1

yield surface

defined by

F(δij, k)

Figure 21.2.  The yield surface in principal stress space in pressure
independent. 
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where 𝜆 is a proportionality constant. 
 
 As depicted in Figure 21.5 the plastic strain increments 𝑑𝜀𝑖𝑗

p are normal to the 
plastic potential function.  This is the normality rule of plasticity. 
 
 The plastic potential 𝑔 is identical with the yield condition 𝐹(𝑠𝑖𝑗) 

𝑔 ≡ 𝐹. (21.33)
Hence: 

𝑑𝜀𝑖𝑗
𝑝 = 𝜆

𝜕𝑓
𝜕𝑠𝑖𝑗

= 𝜆 grad𝑓 (21.34)

and the stress increments 𝑑𝑠𝑖𝑗 are normal to the plastic flow ∂𝑔
∂s𝑖𝑗

. 
 
 Post-yielding behavior from uniaxial tension tests typically show the following 
behaviors illustrated in Figure 21.4: 

 

current

yield

surface

σ3

σ2σ1

initial yield

curve in the

deviatoric

plane

Figure 21.3.  With kinematic hardening the yield surface may shift as a
function of plastic strain. 

 

 �0  

hardening

İ
 �0  

  

 �0  

ideal softening

İ 
İ 

 Figure 21.4.  Hardening, ideal, and softening plasticity models. 
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 The behavior of these hardening laws are characterized in Table 18.1. below.  
Although LS-DYNA permits softening to be defined and used, such softening behavior 
will result in strain localization and nonconvergence with mesh refinement. 
 
 
 

21.5  Hyperelastic Materials 

 Stresses for elastic and hyperelastic materials are path independent; 
consequently, the stress update is not computed incrementally.  The methods described 
here are well known and the reader is referred to Green and Adkins [1970] and Ogden 
[1984] for more details. 
 

A retangular cartesian coordinate system is used so that the covariant and con-
travariant metric tensors in the reference (undeformed) and deformed configuration 
are: 

𝑔𝑖𝑗 = 𝑔𝑖𝑗 = 𝛿𝑖𝑗,

𝐺𝑖𝑗 =
𝜕𝑥𝑘
𝜕𝑋𝑖

𝜕𝑥𝑘
𝜕𝑋𝑗

, 

𝐺𝑖𝑗 =
𝜕𝑋𝑖
𝜕𝑥𝑘

𝜕𝑋𝑗

𝜕𝑥𝑘
.

(21.35)

 
 The Green-St.  Venant strain tensor and the principal strain invariants are 
defined as 

σ1

σ3

σ2

 

 

g

 Figure 21.5.  The plastic strain is normal to the yield surface. 
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𝛾𝑖𝑗 =
1
2 (𝐺𝑖𝑗 − 𝛿𝑖𝑗), (21.36)

𝐼1 = 𝛿𝑖𝑗𝐺𝑖𝑗,

𝐼2 =
1
2 (𝛿𝑖𝑟𝛿𝑗𝑠𝐺𝑟𝑖𝐺𝑠𝑗 − 𝛿𝑖𝑟𝛿𝑗𝑠𝐺𝑖𝑗𝐺𝑟𝑠), 

𝐼3 = det(𝐺𝑖𝑗),

(21.37)

 
 Hardening Ideal Softening 
    
Behavior 𝜎𝑦(𝑎𝑖) is 

monotonic 
increasing 

𝜎𝑦(𝑎𝑖) is constant 𝜎𝑦(𝑎𝑖) is 
monotonic 
decreasing 

    
Stability yes yes No 
    
Uniqueness yes yes No 
    
Applications metals, 

concrete, rock 
with small 
deformations 

crude idealization 
for steel, plastics, 
etc. 

dense sand, 
concrete with  
large 
deformations 

Table 18.1.  Plastic hardening, ideal plasticity, and softening. 
 

For a compressible elastic material the existence of a strain energy functional, 𝑊, is 
assumed  

𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3), (21.38)
which defines the energy per unit undeformed volume.  The stress measured in the 
deformed configuration is given as [Green and Adkins, 1970]: 

𝑠𝑖𝑗 = 𝛷𝑔𝑖𝑗 + 𝛹𝐵𝑖𝑗 + 𝑝𝐺𝑖𝑗, (21.39)

where  

𝛷 =
2
√𝐼3

𝜕𝑊
𝜕𝐼1

,

𝛹 =
2
√𝐼3

𝜕𝑊
𝜕𝐼2

, 

𝑝 = 2√𝐼3
𝜕𝑊
𝜕𝐼3

, 

𝐵𝑖𝑗 = 𝐼1𝛿𝑖𝑗 − 𝛿𝑖𝑟𝛿𝑗𝑠𝐺𝑟𝑠.

(21.40)

 
 This stress is related to the second Piola-Kirchhoff stress tensor: 
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𝑆𝑖𝑗 = 𝑠𝑖𝑗√𝐼3. (21.41)

Second Piola-Kirchhoff stresses are transformed to physical (Cauchy) stresses according 
to the relationship: 

𝜎𝑖𝑗 =
𝜌
𝜌0

𝜕𝑥𝑖
𝜕𝑋𝑘

𝜕𝑥𝑗

𝜕𝑋𝑙
𝑆𝑘𝑙. (21.42)

21.6  Layered Composites 

 The composite models for shell elements in LS-DYNA include models for elastic 
behavior and inelastic behavior.  The approach used here for updating the stresses also 
applies to the airbag fabric model. 
 
 To allow for an arbitrary orientation of the shell elements within the finite 
element mesh, each ply in the composite has a unique orientation angle, 𝛽, which 
measures the offset from some reference in the element.  Each integration point through 
the shell thickness, typically though not limited to one point per ply, requires the 
definition of 𝛽at that point.  The reference is determined by the angle 𝛹 which can be 
defined for each element on the element card, and is measured from the 1-2 element 
side. Figures 21.6 and 21.7 depict these angles.  
 
 We update the stresses in the shell in the local shell coordinate system which is 
defined by the 1-2 element side and the cross product of the diagonals.  Thus to 
transform the stress tensor into local system determined by the fiber directions entails a 
transformation that takes place in the plane of the shell. 
 
 In the implementation of the material model we first transform the Cauchy stress 
and velocity strain tensor 𝑑𝑖𝑗into the coordinate system of the material denoted by the 
subscript L 

𝛔L = 𝐪T𝛔𝐪,
𝐪L = 𝐪T𝐝𝐪, 

𝛔L =
⎣
⎢⎡

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎32 𝜎32 𝜎33⎦

⎥⎤ , 

 𝛆L =
⎣
⎢
⎡𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23
𝑑32 𝑑32 𝑑33⎦

⎥
⎤, 

(21.43)
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 The Arabic subscripts on the stress and strain (𝛔 and 𝛆) are used to indicate the 
principal material directions where 1 indicates the fiber direction and 2 indicates the 
transverse fiber direction (in the plane).  The orthogonal 3 × 3 transformation matrix is 
given by 

𝐪 =
⎣
⎢⎡
cos𝜃 −sin𝜃 0
sin𝜃 cos𝜃 0

0 0 1⎦
⎥⎤. (21.44)

 
In shell theory we assume a plane stress condition, i.e., that the normal stress, 𝜎33, to the 
mid-surface is zero.  We can now incrementally update the stress state in the material 
coordinates 

𝛔L𝑛+1 = 𝛔L𝑛 + Δ𝛔L
𝑛+1

2⁄ , (21.45)

where for an elastic material  

n3
n4

n1 n2

ψ

β
13

2

X

 Figure 21.6.  Orientation of material directions relative to the 1-2 side. 

y

x

z

θ

θ = ψ+β

Figure 21.7.  A multi-layer laminate can be defined.  The angle i is defined for
the ith lamina. 
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Δ𝛔L
𝑛+1

2⁄ =

⎣
⎢
⎢
⎢
⎢
⎡

Δ𝜎11
Δ𝜎22
Δ𝜎12
Δ𝜎23
Δ𝜎31⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0

0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66⎦

⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡𝑑11

𝑑22
𝑑12
𝑑23
𝑑31⎦

⎥
⎥
⎥
⎥
⎤

L

Δ𝑡. (21.46)

The terms 𝑄𝑖𝑗 are referred to as reduced components of the lamina and are defined as 

𝑄11 =
𝐸11

1 − 𝜈12𝜈21
,

𝑄22 =
𝐸22

1 − 𝜈12𝜈21
, 

𝑄12 =
𝜈12𝐸11

1 − 𝜈12𝜈21
, 

𝑄44 = 𝐺12, 
𝑄55 = 𝐺23, 
𝑄66 = 𝐺31. 

(21.47)

Because of the symmetry properties,  

𝜈𝑗𝑖 = 𝜈𝑖𝑗
𝐸𝑗𝑗

𝐸𝑖𝑖
, (21.48)

where 𝜈𝑖𝑗 is Poisson’s ratio for the transverse strain in jth direction for the material 
undergoing stress in the ith-direction, 𝐸𝑖𝑗 are the Young’s modulii in the ith direction, 
and 𝐺𝑖𝑗 are the shear modulii. 
 
 After completion of the stress update we transform the stresses back into the 
local shell coordinate system. 

𝛔 = 𝐪𝛔L𝐪T. (21.49)

 

21.7  Constraints on Orthotropic Elastic Constants 

 The inverse of the constitutive matrix 𝐂l is generally defined in terms of the local 
material axes for an orthotropic material is given in terms of the nine independent 
elastic constants as 
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𝐂l−1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸 11

−
𝜐 21
𝐸 22

−
𝜐 31
𝐸 33

0 0 0

−
𝜐 12
𝐸 11

1
𝐸 22

−
𝜐 32
𝐸 33

0 0 0

−
𝜐 13
𝐸 11

−
𝜐 23
𝐸 22

1
𝐸 33

0 0 0

0 0 0
1
𝐺12

0 0

0 0 0 0
1
𝐺23

0

0 0 0 0 0
1
𝐺31⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (21.50)

 
 As discussed by Jones [1975], the constants for a thermodynamically stable 
material must satisfy the following inequalities: 

𝐸1, 𝐸2, 𝐸3, 𝐺12, 𝐺23, 𝐺31 > 0,
𝐶11,𝐶22, 𝐶33, 𝐶44, 𝐶55, 𝐶66 > 0, 
(1 − 𝜈23𝜈32), (1 − 𝜈13𝜈31), (1 − 𝜈12𝜈21) > 0, 
1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈21𝜈32𝜈13 > 0.

(21.51)

 
 Using Equation (21.48) and (21.51) leads to: 

|𝜈21| < (
𝐸22
𝐸11

)
1

2⁄
    |𝜈12| < (

𝐸11
𝐸22

)
1

2⁄
, 

∣𝜈32∣ < (
𝐸33
𝐸22

)
1

2⁄
    ∣𝜈23∣ < (

𝐸22
𝐸33

)
1

2⁄
, 

∣𝜈13∣ < (
𝐸11
𝐸33

)
1

2⁄
∣𝜈31∣ < (

𝐸33
𝐸11

)
1

2⁄
.

(21.52)

 

21.8  Local Material Coordinate Systems in Solid Elements 

 In solid elements there is a number of different ways of defining a local 
coordinate system.  Perhaps the most general is by defining a triad for each element that 
is oriented in the local material directions, See Figure 21.8.  In this approach two vectors 
𝐚 and 𝐝 are defined.  The local 𝐜 direction is found from the cross product, 𝐜 = 𝐚 × 𝐝, the 
local 𝐛 direction is the cross product 𝐛 = 𝐜 × 𝐚.  This triad is stored as history data at 
each integration point. 
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 The biggest concern when dealing with local material directions is that the 
results are not invariant with element numbering since the orientation of the local triad 
is fixed with respect to the base of the brick element, nodes 1-4, in Figure 21.9.  For 
Hyperelastic materials where the stress tensor is computed in the initial configuration, 
this is not a problem, but for materials like the honeycomb foams, the local directions 
can change due to element distortion causing relative movement of nodes 1-4.  In 
honeycomb foams we assume that the material directions are orthogonal in the 
deformed configuration since the stress update is performed in the deformed 
configuration.   
 

21.9  General Erosion Criteria for Solid Elements 

a

dc

b

Figure 21.8.  Local material directions are defined by a triad which can be
input for each solid element. 
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 Several erosion criteria are available that are independent of the material models.  
Each one is applied independently, and once any one of them is satisfied, the element is 
deleted from the calculation.  The criteria for failure are: 

• 𝑃 ≥ 𝑃min where P is the pressure (positive in compression), and 𝑃min is the 
pressure at failure. 

• 𝜎1 ≥ 𝜎max, where 𝜎1 is the maximum principal stress, and 𝜎max is the principal 
stress at failure. 

• √3
2 𝜎𝑖𝑗

′ 𝜎𝑖j
′ ≥ 𝜎̅̅̅̅̅max, where 𝜎𝑖𝑗

′  are the deviatoric stress components, and 𝜎̅̅̅̅̅max is the 
equivalent stress at failure. 

• 𝜀1 ≥ 𝜀max, where 𝜀1 is the maximum principal strain, and 𝜀max is the principal 
strain at failure. 

• 𝛾1 ≥ 𝛾max, where 𝛾1 is the shear strain, and 𝛾max is the shear strain at failure. 

• The Tuler-Butcher criterion,  

∫ [max(0, 𝜎1 − 𝜎0)]2𝑑𝑡
𝑡

0
≥ 𝐾f, (21.53)

where 𝜎1 is the maximum principal stress, 𝜎0 is a specified threshold stress, 𝜎1 ≥ 𝜎0 ≥
0, and 𝐾f is the stress impulse for failure.  Stress values below the threshold value are 
too low to cause fracture even for very long duration loadings.  Typical constants are 
given in Table 18.2below [Rajendran, 1989]. 
 
 These failure models apply to solid elements with one point integration in 2 and 

1

2 3

4

5

6 7

8

Figure 21.9.  The orientation of the triad for the local material directions is
stored relative to the base of the solid element.  The base is defined by nodes 1-
4 of the element connectivity. 
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3 dimensions. 
 

Material 𝜎0  (Kbar)   
1020 Steel 10.0 2 12.5 
OFHC Copper 3.60 2 10.0 
C1008 14.0 2 0.38 
HY100 15.7 2 61.0 
7039-T64 8.60 2 3.00 

 
Table 18.2.  Typical constants for the Tuler-Bucher criterion. 

 

21.10  Strain Output to the LS-DYNA Database 

 The strain tensors that are output to the LS-DYNA database from the solid, shell, 
and beam elements are integrated in time.   These strains are similar to the logarithmic 
strain measure and are based on an integration of the strain rate tensor.  Admittedly, 
the shear strain components do not integrate as logarithmic strain measures, but in spite 
of this, we have found that the strains output from LS-DYNA are far more useful than 
those computed in LS-DYNA.  The time integration of the strain tensor in LS-DYNA 
maintains objectivity in the sense that rigid body motions do not cause spurious 
straining.   
 
 Recall, the spin tensor and strain rate tensor, Equations (21.3) and (21.5), 
respectively: 

𝜔𝑖𝑗 =
1
2 (

𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑣𝑗

𝜕𝑥𝑖
), (21.54)

𝜀𝑖̇𝑗 =
1
2 (

𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
). (21.55)

 
 In updating the strains from time 𝑛 to 𝑛 + 1, the following formula is used: 

𝜀𝑖𝑗
𝑛+1 = 𝜀𝑖𝑗

𝑛 + 𝜌𝑖𝑗
𝑛 + 𝜀𝑖̇𝑗

𝑛+1
2⁄ Δ𝑡𝑛+1

2⁄ , (21.56)

where 𝜌𝑖𝑗
𝑛 gives the rotational correction that transforms the strain tensor at time 𝑡𝑛 into 

the configuration at 𝑡𝑛 + 1 

𝜌𝑖𝑗
𝑛 = (𝜀𝑖𝑝

𝑛 𝜔𝑝𝑗
𝑛+1

2⁄ + 𝜀𝑗𝑝
𝑛 𝜔𝑝𝑖

𝑛+1
2⁄ ) Δ𝑡𝑛+1

2⁄ . (21.57)
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 For shell elements we integrate the strain tensor at the inner and outer 
integration points and output two tensors per element.  When the mid surface strains 
are plotted in LS-PREPOST, these are the average values. 
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21.11  Strain Rate Effects in Material Models 

In a constitutive modeling context, the term rate effects is used to indicate that the 
material response depends on the (time) rate of a certain quantity, here called 𝑒 for the 
sake of generality.  This quantity is usually some kind of strain measure, and an 
example is when the stress depends on the rate of strain.  In explicit simulations, high 
frequency strain content yields a very noisy strain rate and calls for some kind of 
smoothing before being used in the stress calculations.  This section presents three of 
the common ways to do this averaging and that are used frequently in the material 
models. 

21.11.1  Running N-average option 

One option is to do a running average of current and previous strain rates.  With this 
option the rate 𝑒 ̇of a quantity 𝑒 is averaged according to the following algorithm 

𝑒 ̃̇ = unfiltered rate (raw data) (21.1)
 

𝑒𝑛̇ =
𝑒 ̃̇+ ∑ 𝑒𝑖̇

𝑛−1
𝑖=𝑛−𝑁+1
𝑁  (21.2)

 

𝑒 ̇ = 𝑒𝑛̇ = rate used in material routine (21.3)
 

In these equations, the subscript denotes stored history variables necessary for 
computing the running average strain rates and n denotes the current cycle number.  
This requires storage of 𝑁 − 1 history variables, for most materials 𝑁 = 12. 

21.11.2  Last N-average option 

The second option is to compute the rate as the average of the last 𝑁 computed rates.  
Here the rate is evaluated according to 

𝑒 ̃̇ = unfiltered rate (raw data) (21.4)
 

𝑒𝑛̇ = 𝑒 ̃ ̇ (21.5)
 

𝑒 ̇ =
∑ 𝑒𝑖̇

𝑛
𝑖=𝑛−𝑁+1

𝑁 = rate used in material routine (21.6)
 

As for the running average option, the subscript denotes stored history variables 
necessary for computing the running average strain rates and n is the cycle number.  
This also requires storage of 𝑁 − 1 history variables, for most materials 𝑁 = 12. 



LS-DYNA Theory Manual Stress Update Overview 

18.19 

21.11.3  Averaging over a fixed amount of time 𝑻  

This option was introduced in an attempt to suppress the time step dependence as 
much as possible.  With this option we use 𝑁 history variables to store the approximate 
values of the quantity of interest from the time 𝑡𝑛 − 𝑇 to current time 𝑡𝑛. That is, we set 

𝑒𝑛−𝑖 = 𝑒𝑛 (𝑡𝑛 −
𝑖𝑇

𝑁 − 1) , 𝑖 = 0,… , 𝑁 − 1 (21.7)
 

Here 𝑒𝑛(𝑡) is an approximate function of the function of interest, 𝑒(𝑡), and will be given 
more specifically below.  Assuming 𝑒𝑛(𝑡) is known, the rate used in the material routine 
in cycle 𝑛 is simply 

𝑒 ̇ =
𝑒𝑛 − 𝑒𝑛−𝑁+1

𝑇 = rate used in material routine (21.8)
 

For the update of history variables we assume that the 𝑁 points in (21.7) together with 
the newly calculated quantity (raw data) at 𝑡𝑛+1 = 𝑡 + ∆𝑡, 

𝑒𝑛+1 = 𝑒(𝑡𝑛+1), (21.9)
 

completely define the function 𝑒𝑛(𝑡) from time 𝑡𝑛 − 𝑇 to time 𝑡𝑛+1 by linear interpolation 
between each control point.  That is, the function 𝑒𝑛(𝑡) is extended to time 𝑡𝑛+1 by the 
new value, 

𝑒𝑛(𝑡𝑛+1) = 𝑒𝑛+1. (21.10)
 

This function is illustrated in the figure below by the dashed line and red control points.  
The updated set of history variables are 

𝑒𝑛+1−𝑖 = 𝑒𝑛 (𝑡𝑛+1 −
𝑖𝑇

𝑁 − 1) , 𝑖 = 0,… , 𝑁 − 1, (21.11)
 

and these updated points define a new approximate function 𝑒𝑛+1(𝑡), again by linear 
interpolation between the control points.  In Figure 2119-1, the updated function is 
illustrated by the solid line and blue control points, note that the last point is in fact both 
red and blue since 𝑒𝑛(𝑡𝑛+1) = 𝑒𝑛+1(𝑡𝑛+1) = 𝑒𝑛+1. In sum, the function used for calculated 
the effective rate is completely redefined between steps. 
For a time step ∆𝑡 that is greater than or approximately equal to 𝑇/(𝑁 − 1), this option 
is more or less exactly the average rate from 𝑡 − 𝑇 to 𝑡. For smaller time steps (which is 
usually the case in explicit analysis) the previous values are in practice smoothed out 
since only 𝑁 variables are available for storing this time history.  That is, the high 
frequency content of the history is lost and this could be an interesting alternative to the 
previous two options that are otherwise commonly used for these types of situations. 
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21.12  Algorithmic Consistent Tangent Modulus for Plasticity 

For materials used in implicit analysis, the tangent modulus is needed for global 
assembly of the stiffness matrix.  In particular, the softening effect in elastic-plastic 
materials must be predicted when in a plastic state.  The following is a derivation of the 
tangent modulus that is consistent with the algorithmic stress update, meaning that it 
provides the exact variation of the stress with respect to the rate of deformation.  We 
restrict ourselves to the plane stress update, as the full 3D situation is less complicated. 
 
As a prerequisite, the algorithmic stress update must be established mathematically.  
For this, and the rest of this section, we introduce the variables 
 

Δ𝝈 −  stress increment, excluding through thickness stress ∆𝜎3 
∆𝜀3 − through thickness strain increment 

∆𝜀𝑝 − plastic strain increment 
 
to be sought, the parameters 
 

𝑪 − 3𝐷 elastic tensor 
Δ𝜺 −  strain increment, excluding through thickness strain ∆𝜀3 

𝑷 − projection from 3D to plane stress space 
𝒑𝑇 − projection from 3D to out of plane space 

 
that are given, and the functions 

𝑒𝑛+1 = 𝑒(𝑡𝑛+1) 

𝑒 

𝑡𝑛 𝑡𝑛+1

𝑡 

𝑡𝑛 − 𝑇 

Control points and function 𝑒𝑛(𝑡) 
 
Control points and function 𝑒𝑛+1(𝑡) 

Figure 2119-1 Illustration of control point update for 𝑁 = 4 
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𝑓 (𝑷𝑇Δ𝝈, ∆𝜀𝑝) − yield function 

𝑔(𝑷𝑇Δ𝝈, ∆𝜀𝑝) − plastic flow function 
 
that define the plasticity.  This theory thus incorporates full anisotropy as well as non-
associative plasticity.  The stress update can be summarized by the combination of three 
equations; the stress update 
 

Δ𝝈 = 𝑷𝑪
⎝
⎜⎛𝑷𝑇∆𝜺 + 𝒑∆𝜀3 − {

𝜕𝑔
𝜕𝝈}

𝑇
∆𝜀𝑝

⎠
⎟⎞, (21.12)

 
the yield condition 
 

𝑓 = 𝜎(𝑷𝑇(𝝈0 + Δ𝝈)) − 𝜎𝑌(𝜀0 + ∆𝜀𝑝) = 0, (21.13)
 
and the plane stress condition 
 

∆𝜎3 = 𝒑𝑇𝑪
⎝
⎜⎛𝑷𝑇∆𝜺 + 𝒑∆𝜀3 − {

𝜕𝑔
𝜕𝝈}

𝑇
∆𝜀𝑝

⎠
⎟⎞ = 0. (21.14)

 
The expression for 𝑓  in (21.13) is in terms of effective stress 𝜎  equals the yield stress 𝜎𝑌, but 
the theory is not restricted to this setting.  It is assumed that the stress 𝝈0 and the plastic 
strain 𝜀0 in the previous step fulfils the corresponding conditions (21.12), (21.13) and 
(21.14) with respect to the state at that time, possibly with inequality in (21.13). 
 
Taking the variation of these three equations results in  
 

δΔ𝝈 = 𝑷𝑪
⎝
⎜⎛𝑷𝑇δ∆𝜺 + 𝒑δ∆𝜀3 − {

𝜕𝑔
𝜕𝝈}

𝑇
δ∆𝜀𝑝 −

𝜕2𝑔
𝜕𝝈2 𝑷

𝑇δΔ𝝈∆𝜀𝑝 −
𝜕2𝑔

𝜕𝝈𝜕𝜀𝑝
δΔ𝜀𝑝∆𝜀𝑝

⎠
⎟⎞, (21.15)

 
𝜕𝑓
𝜕𝝈 𝑷

𝑇δΔ𝝈 +
𝜕𝑓
𝜕𝜀𝑝
δΔ𝜀𝑝 = 0, (21.16)

 

𝒑𝑇𝑪
⎝
⎜⎛𝑷𝑇δ∆𝜺 + 𝒑δ∆𝜀3 − {

𝜕𝑔
𝜕𝝈}

𝑇
δ∆𝜀𝑝 −

𝜕2𝑔
𝜕𝝈2 𝑷

𝑇δΔ𝝈∆𝜀𝑝 −
𝜕2𝑔

𝜕𝝈𝜕𝜀𝑝
δΔ𝜀𝑝∆𝜀𝑝

⎠
⎟⎞ = 0. (21.17)

 
Solving (21.15) for δΔ𝝈 results in 
 

δΔ𝝈 = 𝑨−1𝑷𝑪(𝑷𝑇δ∆𝜺 + 𝒑δ∆𝜀3 − 𝑮δ∆𝜀𝑝), (21.18)
 
where  
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𝑮 = {
𝜕𝑔
𝜕𝝈}

𝑇
+

𝜕2𝑔
𝜕𝝈𝜕𝜀𝑝

∆𝜀𝑝

𝑨 = 𝑰 + ∆𝜀𝑝𝑷𝑪
𝜕2𝑔
𝜕𝝈2 𝑷

𝑇

. (21.19)

 
Inserting (21.18) into (21.16) and (21.17) results in a system of equations 
 

⎝
⎜⎜⎜
⎜⎛

𝒑𝑇𝑪𝑬𝒑 −𝒑𝑇𝑪𝑬𝑮
𝜕𝑓
𝜕𝝈 𝑷

𝑇𝑨−1𝑷𝑪𝒑
𝜕𝑓
𝜕𝝈 𝑷

𝑇𝑨−1𝑷𝑪𝑮 −
𝜕𝑓
𝜕𝜀𝑝⎠

⎟⎟⎟
⎟⎞ (
δ∆𝜀3
δ∆𝜀𝑝

)

=

⎝
⎜⎜⎜
⎜⎜⎜
⎛𝒑𝑇𝑪

𝜕2𝑔
𝜕𝝈2 𝑷

𝑇𝑨−1𝑷 − 𝒑𝑇

𝜕𝑓
𝜕𝝈 𝑷

𝑇𝑨−1𝑷 ⎠
⎟⎟⎟
⎟⎟⎟
⎞
𝑪𝑷𝑇δ∆𝜺. 

(21.20)

 
where 

𝑬 = 𝑰 −
𝜕2𝑔
𝜕𝝈2 𝑷

𝑇𝑨−1𝑷𝑪∆𝜀𝑝. (21.21)

 
Solving (21.20) results in 
 

δ∆𝜀3 = 𝒂3
𝑇𝑩𝑪𝑷𝑇δ∆𝜺 (21.22)

  
and 
 

δ∆𝜀𝑝 = 𝒂𝑝
𝑇𝑩𝑪𝑷𝑇δ∆𝜺 (21.23)

 
where 𝒂3

𝑇 and 𝒂𝑝
𝑇 are rows in the inverse of the system matrix in (21.20) and 𝑩 can be 

identified on the right-hand side of the same equation.  Inserting (21.22) and (21.23) into 
(21.18) results in 
 

δΔ𝝈 = 𝑨−1𝑷(𝑰 + 𝑪𝒑𝒂3
𝑇𝑩 − 𝑪𝑮𝒂𝑝

𝑇𝑩)𝑪𝑷𝑇δ∆𝜺, (21.24)
 
from which the consistent tangent matrix can be identified as 
 

𝑫 = 𝑨−1𝑷(𝑰 + 𝑪𝒑𝒂3
𝑇𝑩 − 𝑪𝑮𝒂𝑝

𝑇𝑩)𝑪𝑷𝑇. (21.25)
 
Even though the involved expressions seem complicated, many expressions are 
repeated, and they simplify quite a bit when considering special cases.  As an example, 
consider isotropic von Mises plasticity with linear hardening for which we have 
 

𝑓 = 𝑔 = 𝜎 − 𝜎𝑌 − 𝐻𝜀𝑝 (21.26)
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where 𝜎 = √3
2 𝒔𝑇𝒔 and 𝒔 is the deviatoric stress.  Then 

𝜕𝑓
𝜕𝝈 =

𝜕𝑔
𝜕𝝈 =

3
2𝜎 𝒔

𝑇 (21.27)

and 
𝜕2𝑔
𝜕𝝈2 =

3
2𝜎 (𝑰𝑑𝑒𝑣 −

3
2𝜎2 𝒔𝒔

𝑇). 
 

(21.28)

If the elastic matrix 𝑪 is isotropic, then we have 
 

𝑪
𝜕𝑓
𝜕𝝈 =

3𝐺
𝜎 𝒔𝑇 (21.29)

and 

𝑪
𝜕2𝑔
𝜕𝝈2 =

3𝐺
𝜎 (𝑰𝑑𝑒𝑣 −

3
2𝜎2 𝒔𝒔

𝑇) (21.30)
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22    
Material Models 

 
 LS-DYNA accepts a wide range of material and equation of state models, each 
with a unique number of history variables.  Approximately 150 material models are 
implemented, and space has been allotted for up to 10 user-specified models. 
 
 1  Elastic  
 2  Orthotropic Elastic 
 3  Kinematic/Isotropic Elastic-Plastic 
 4  Thermo-Elastic-Plastic 
 5  Soil and Crushable/Non-crushable Foam 
 6  Viscoelastic 
 7  Blatz - Ko Rubber 
 8  High Explosive Burn 
 9  Null Hydrodynamics 
 10  Isotropic-Elastic-Plastic-Hydrodynamic 
 11  Temperature Dependent, Elastoplastic, Hydrodynamic 
 12  Isotropic-Elastic-Plastic 
 13  Elastic-Plastic with Failure Model 
 14  Soil and Crushable Foam with Failure Model 
 15  Johnson/Cook Strain and Temperature Sensitive Plasticity 
 16  Pseudo TENSOR Concrete/Geological Model 
 17  Isotropic Elastic-Plastic Oriented Crack Model 
 18  Power Law Isotropic Plasticity 
 19  Strain Rate Dependent Isotropic Plasticity 
 20  Rigid 
 21  Thermal Orthotropic Elastic 
 22  Composite Damage Model 
 23  Thermal Orthotropic Elastic with 12 Curves 
 24  Piecewise Linear Isotropic Plasticity 
 25  Inviscid Two Invariant Geologic Cap Model 
 26  Metallic Honeycomb 
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 27  Compressible Mooney-Rivlin Rubber 
 28  Resultant Plasticity 
 29  Force Limited Resultant Formulation 
 30  Closed-Form Update Shell Plasticity 
 31  Slightly Compressible Rubber Model 
 32  Laminated Glass Model 
 33  Barlat’s Anisotropic Plasticity Model 
 34  Fabric 
 35  Kinematic/Isotropic Elastic-Plastic Green-Naghdi Rate 
 36  Barlat’s 3-Parameter Plasticity Model 
 37  Transversely Anisotropic Elastic-Plastic 
 38  Blatz-Ko Compressible Foam 
 39  Transversely Anisotropic Elastic-Plastic with FLD 
 40  Nonlinear Elastic Orthotropic Material 
 41-50 User Defined Material Models 
 42  Planar Anisotropic Plasticity Model 
 48 Strain Rate Dependent Plasticity with Size Dependent Failure 
 51  Temperature and Rate Dependent Plasticity 
 52  Sandia’s Damage Model 
 53  Low Density Closed Cell Polyurethane Foam 
 54-55  Composite Damage Model 
 57 Low Density Urethane Foam 
 58 Laminated Composite Fabric 
 59 Composite Failure 
 60  Elastic with Viscosity 
 61  Maxwell/Kelvin Viscoelastic 
 62  Viscous Foam 
 63  Isotropic Crushable Foam 
 64  Strain Rate Sensitive Power-Law Plasticity 
 65  Modified Zerilli/Armstrong 
 66  Linear Stiffness/Linear Viscous 3D Discrete Beam 
 67  Nonlinear Stiffness/Viscous 3D Discrete Beam 
 68  Nonlinear Plastic/Linear Viscous 3D Discrete Beam 
 69  Side Impact Dummy Damper, SID Damper 
 70  Hydraulic/Gas Damper 
 71  Cable 
 72  Concrete Damage Model 
 73 Low Density Viscoelastic Foam 
 74 Elastic Spring for the Discrete Beam 
 75 Bilkhu/Dubois Foam Model  
 76  General Viscoelastic 
 77  Hyperviscoelastic Rubber 
 78  Soil/Concrete 
 79  Hysteretic Soil 
 80  Ramberg-Osgood Plasticity 
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 81  Plastic with Damage 
 82 Isotropic Elastic-Plastic with Anisotropic Damage 
 83 Fu-Chang’s Foam with Rate Effects 
 84-85 Winfrith Concrete 
 84 Winfrith Concrete Reinforcement 
 86  Orthotropic-Viscoelastic 
 87  Cellular Rubber 
 88 MTS Model 
 89 Plasticity Polymer 
 90  Acoustic 
 91 Soft Tissue 
 93 Elastic 6DOF Spring Discrete Beam 
 94 Inelastic Spring Discrete Beam 
 95 Inelastic 6DOF Spring Discrete Beam 
 96 Brittle Damage Model 
 97  General Joint Discrete Beam 
 100  Spot weld 
 101 GE Thermoplastics 
 102 Hyperbolic Sin  
 103 Anisotropic Viscoplastic 
 104 Damage 1 
 105 Damage 2 
 106 Elastic Viscoplastic Thermal 
 110  Johnson-Holmquist Ceramic Model 
 111  Johnson-Holmquist Concrete Model 
 112 Finite Elastic Strain Plasticity 
 113 Transformation Induced Plasticity 
 114 Layered Linear Plasticity 
 115  Elastic Creep Model  
 116  Composite Lay-Up Model 
 117-118 Composite Matrix 
 119 General Spring and Damper Model 
 120  Gurson Dilational-Plastic Model 
 120 Gurson Model with Rc-Dc 
 121 Generalized Nonlinear 1DOF Discrete Beam 
 122 Hill 3RC 
 123 Modified Piecewise Linear Plasticity 
 124 Tension-Compression Plasticity 
 126  Metallic Honeycomb 
 127 Arruda-Boyce rubber 
 128 Anisotropic heart tissue 
 129 Lung tissue 
 130  Special Orthotropic 
 131 Isotropic Smeared Crack 
 132 Orthotropic Smeared Crack 
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 133 Barlat  YLD2000 
 134  Viscoelastic Fabric 
 139 Modified Force Limited 
 140 Vacuum 
 141 Rate Sensitive Polymer 
 142  Transversely Anisotropic Crushable Foam 
 143 Wood Model 
 144 Pitzer Crushable Foam 
 145 Schwer Murray Cap Model 
 146 1DOF Generalized Spring 
 147 FHWA Soil Model 
 148 Gas Mixture  
 150 CFD 
 151 EMMI 
 154 Deshpande-Fleck Foam 
 156 Muscle 
 158 Rate Sensitive Composite Fabric 
 159 Continuous Surface Cap Model  
 161-162 Composite MSC  
 163 Modified Crushable Foam 
 164  Brain Linear Viscoelastic 
 166 Moment Curvature Beam 
 169 Arup Adhesive 
 170 Resultant Anisotropic 
 175 Viscoelastic Maxwell  
 176 Quasilinear Viscoelastic 
 177 Hill Foam 
 178 Viscoelastic Hill Foam 
 179  Low Density Synthetic Foam  
 181 Simplified Rubber/Foam 
 183 Simplified Rubber with Damage 
 184 Cohesive Elastic 
 185 Cohesive TH 
 191 Seismic Beam 
 192  Soil Brick 
 193 Drucker Prager 
 194 RC Shear Wall 
 195 Concrete Beam 
 196 General Spring Discrete Beam 
 197 Seismic Isolator 
 198 Jointed Rock 
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In the table below, a list of the available material models and the applicable element 
types are given.  Some materials include strain rate sensitivity, failure, equations of 
state, and thermal effects and this is also noted.  General applicability of the materials to 
certain kinds of behavior is suggested in the last column. 
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 Cr Ceram-
ics 
 Fl Fluids 
 Fm Foam 
 Gl Glass 
 Hy Hydro-
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 Mt Metal 
 Pl Plastic 
 Rb Rubber
 Sl
 Soil/C
onc 

1 Elastic Y Y Y Y     Gn, Fl 
2 Orthotropic Elastic (Anisotropic - 

solids) 
Y  Y Y     Cm, Mt 

3 Plastic Kinematic/Isotropic Y Y Y Y Y Y   Cm, Mt, Pl 
4 Elastic Plastic Thermal Y Y Y Y    Y Mt, Pl 
5 Soil and Foam Y        Fm, Sl 
6 Linear Viscoelastic Y Y Y  Y    Rb 
7 Blatz-Ko Rubber Y  Y      Rb, 

Polyurethane 
8 High Explosive Burn Y      Y  Hy 
9 Null Material Y     Y Y Y Fl, Hy 
10 Elastic Plastic Hydro(dynamic) Y     Y Y  Hy, Mt 
11 Steinberg: Temp.  Dependent 

Elastoplastic  
Y    Y Y Y Y Hy, Mt 

12 Isotropic  Elastic Plastic Y  Y Y     Mt 
13 Isotropic Elastic Plastic with Failure Y     Y   Mt 
14 Soil and Foam with Failure Y     Y   Fm, Sl 
15 Johnson/Cook Plasticity Model Y  Y  Y Y Y Y Hy, Mt 
16 Pseudo TENSOR Geological Model Y    Y Y Y  Sl 
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17 Oriented Crack  (Elastoplastic with 
Fracture) 

Y     Y Y  Hy, Mt, Pl 

18 Power Law Plasticity  (Isotropic) Y Y Y Y Y    Mt, Pl 
19 Strain Rate Dependent Plasticity Y  Y Y Y Y   Mt, Pl 
20 Rigid Y Y Y Y      
 
 

    
21 Orthotropic Thermal (Elastic) Y  Y Y    Y Gn 
22 Composite Damage Y  Y Y  Y   Cm 
23 Temperature Dependent Orthotropic Y  Y Y    Y Cm 
24 Piecewise Linear Plasticity  (Isotropic) Y Y Y Y Y Y   Mt, Pl 
25 Inviscid Two Invariant Geologic Cap Y        Sl 
26 Honeycomb Y    Y Y   Cm, Fm, Sl 
27 Mooney-Rivlin Rubber Y  Y      Rb 
28 Resultant Plasticity  Y Y      Mt 
29 Force Limited Resultant Formulation  Y        
30 Closed Form Update Shell Plasticity   Y Y     Mt 
31 Slightly Compressible Rubber Y        Rb 
32 Laminated Glass (Composite)   Y Y  Y   Cm, Gl 
33 Barlat Anisotropic Plasticity Y  Y Y     Cr, Mt 
34 Fabric   Y       
35 Plastic Green-Naghdi Rate Y    Y    Mt 
36 3-Parameter Barlat Plasticity   Y      Mt 
37 Transversely Anisotropic Elastic Plastic   Y Y     Mt 
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38 Blatz-Ko Foam Y  Y      Fm, Pl 
39 FLD Transversely Anisotropic   Y Y     Mt 
40 Nonlinear Orthotropic   Y   Y  Y Cm 
41-
50

User Defined Materials Y Y Y Y Y Y Y Y Gn 
42 Planar Anisotropic Plasticity Model          
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51 Bamman (Temp/Rate Dependent 
Plasticity) 

Y  Y Y Y   Y Gn 

52 Bamman Damage Y  Y Y Y Y  Y Mt 
53 Closed Cell Foam (Low Density 

Polyurethane) 
Y        Fm 

54 Composite Damage with Change 
Failure 

  Y   Y   Cm 

55 Composite Damage with Tsai-Wu 
Failure 

  Y   Y   Cm 

56           
57 Low Density Urethane Foam Y    Y Y   Fm 
58 Laminated Composite Fabric   Y       
59 Composite Failure  (Plasticity Based) Y  Y   Y   Cm, Cr 
60 Elastic with Viscosity  (Viscous Glass) Y  Y  Y   Y Gl 
61 Kelvin-Maxwell Viscoelastic Y    Y    Fm 
62 Viscous Foam  (Crash Dummy Foam) Y    Y    Fm 
63 Isotropic Crushable Foam Y    Y    Fm 
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64 Rate Sensitive Powerlaw Plasticity Y  Y Y Y    Mt 
65 Zerilli-Armstrong  (Rate/Temp 

Plasticity) 
Y  Y  Y  Y Y Mt 

66 Linear Elastic Discrete Beam  Y   Y     
67 Nonlinear Elastic Discrete Beam  Y   Y     
68 Nonlinear Plastic Discrete Beam  Y   Y Y    
69 SID Damper Discrete Beam  Y   Y     
70 Hydraulic Gas Damper Discrete Beam  Y   Y     
71 Cable Discrete Beam (Elastic)  Y        
72 Concrete Damage Y    Y Y Y  Sl 
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 Fl Fluids 
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73 Low Density Viscous Foam Y    Y Y   Fm 
74 Elastic Spring for the Discrete Beam          
75 Bilkhu/Dubois Foam (Isotropic) Y    Y    Fm 
76 General Viscoelastic (Maxwell Model) Y    Y    Rb 
77 Hyperelastic and Ogden Rubber Y        Rb 
78 Soil Concrete Y    Y    Sl 
79 Hysteretic Soil  (Elasto-Perfectly 

Plastic) 
Y     Y   Sl 

80 Ramberg Osgood Plasticity          
81 Plasticity with Damage (Elasto-

Plastic) 
Y Y Y Y Y Y   Mt, Pl 

82 Isotropic Elastic-Plastic with 
Anisotropic Damage 
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83 Fu Chang Foam Y    Y Y   Fm 
84 Winfrith Concrete Reinforcement Y         
85           
86 Orthotropic Viscoelastic   Y  Y    Rb 
87 Cellular Rubber Y    Y    Rb 
88 MTS Y  Y  Y  Y  Mt 
89 Plasticity Polymer   Y       
90 Acoustic Y        Fl 
91 Soft Tissue Y  Y       
93 Elastic 6DOF Spring Discrete Beam  Y        
94 Inelastic Spring Discrete Beam  Y        
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95 Inelastic 6DOF Spring Discrete Beam  Y        
96 Brittle Damage Y    Y Y    
97 General Joint Discrete Beam  Y        
98 Simplified Johnson Cook Y Y Y Y      
99 Simplified Johnson Cook Orthotropic 

Damage 
         

100 Spotweld  Y        
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101 GEPLASTIC Strate2000a   Y       
102 Inv Hyperbolic Sin Y         
103 Anisotropic Viscoplastic Y  Y       
104 Damage 1 Y  Y       
105 Damage 2 Y  Y       
106 Elastic Viscoplastic Thermal Y  Y     Y  
107           
108           
109           
110 Johnson Holmquist Ceramics Y         
111 Johnson Holmquist Concrete Y         
112 Finite Elastic Strain Plasticity Y         
113 TRIP   Y Y    Y Mt 
114 Layered Linear Plasticity   Y Y      
115 Unified Creep Y         
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116 Composite Layup   Y       
117 Composite Matrix   Y       
118 Composite Direct   Y       
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119 General Nonlinear 6DOF Discrete 
Beam 

 Y   Y Y    

120 Gurson   Y       
121 Generalized Nonlinear 1DOF Discrete 

Beam 
 Y        

122 Hill 3RC          
123 Modified Piecewise Linear Plasticity   Y Y      
124 Plasticity Compression Tension Y         
126 Modified Honeycomb Y         
127 Arruda Boyce Rubber Y         
128 Heart Tissue Y         
129 Lung Tissue Y         
130 Special Orthotropic   Y       
131 Isotropic Smeared Crack Y     Y   Mt, Cm 
132 Orthotropic Smeared Crack Y     Y   Mt, Cm 
133 Barlat YLD2000          
139 Modified Force Limited  Y        
140 Vacuum          
141 Rate Sensitive Polymer          
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142 Transversely Anisotropic Crushable 
Foam 

         

143 Wood          
144 Pitzer Crushable Foam          
145 Schwer Murray Cap Model          
146 1DOF Generalized Spring          
147 FHWA Soil          
147 FHWA Soil Nebraska          
148 Gas Mixture          
150 CFD          
151 EMMI Y   Y Y Y  Y Mt 
154 Deshpande Fleck Foam          
156 Muscle  Y   Y     
158 Rate Sensitive Composite Fabric   Y Y Y Y   Cm 
159 CSMC Y   Y Y Y   Sl 
161 Composite MSC Y         
163 Modified Crushable Foam          
164 Brain Linear Viscoelastic          
166 Moment Curvature Beam  Y        
169 Arup Adhesive Y   Y  Y   Pb 
170 Resultant Anisotropic   Y Y     Pl 
175 Viscoelastic Thermal Y  Y Y Y   Y Rb 
176 Quasilinear Viscoelastic          
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177 Hill Foam          
178 Viscoelastic Hill Foam          
179 Low Density Synthetic Foam          
181 Simplified Rubber          
183 Simplified Rubber with Damage Y  Y Y Y Y   Rb 
184 Cohesive Elastic Y     Y   Cm, Mt 
185 Cohesive TH Y     Y   Cm, Mt 
191 Seismic Beam  Y        
192 Soil Brick Y         
193 Drucker Prager Y         
194 RC Shear Wall   Y       
195 Concrete Beam  Y        

196 General Spring Discrete Beam  Y        
197 Seismic Isolator   Y    Y   Mt 
198 Jointed Rock Y     Y    
DS
1 

Spring Elastic (Linear)  Y        

DS
2 

Damper Viscous (Linear)  Y   Y     

DS
3 

Spring Elastoplastic (Isotropic)  Y        
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DS
4 

Spring Nonlinear Elastic  Y   Y     

DS
5 

Damper Nonlinear Elastic  Y   Y     

DS
6 

Spring General Nonlinear  Y        
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DS
7 

Spring Maxwell (Three Parameter 
Viscoelastic) 

 Y   Y     

DS
8 

Spring Inelastic (Tension or 
Compression) 

 Y        

DS
13 

Spring Trilinear Degrading          

DS
14 

Spring Squat Shearwall          

DS
15 

Spring Muscle          

SB1 Seatbelt          
T01 Thermal Isotropic Y  Y     Y  
T02 Thermal Orthotropic Y  Y     Y  
T03 Thermal Isotropic (Temp.  

Dependent) 
Y  Y     Y  

T04 Thermal Orthotropic (Temp.  
Dependent) 

Y  Y     Y  

T05 Thermal Isotropic (Phase Change) Y  Y     Y  



Material Models LS-DYNA Theory Manual 

20-38 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

T06 Thermal Isotropic (Temp Dep-Load 
Curve) 

Y  Y     Y  

T11 Thermal User Defined Y  Y     Y  
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22.1  Material Model 1:  Elastic 

 In this elastic material we compute the co-rotational rate of the deviatoric Cauchy 
stress tensor as 

𝑠𝑖𝑗
∇𝑛+1

2⁄ = 2𝐺𝜀𝑖̇𝑗
′ 𝑛+1

2⁄ , (22.1.1)

and pressure 

𝑝𝑛+1 = −𝐾ln𝑉𝑛+1, (22.1.2)

where 𝐺 and 𝐾 are the elastic shear and bulk moduli, respectively, and 𝑉 is the relative 
volume, i.e., the ratio of the current volume to the initial volume.
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22.2  Material Model 2:  Orthotropic Elastic 

 The material law that relates second Piola-Kirchhoff stress 𝐒 to the Green-St.  
Venant strain 𝐄 is 

𝐒 = 𝐂 ⋅ 𝐄 = 𝐓T𝐂l𝐓 ⋅ 𝐄, (22.2.1)

where 𝐓 is the transformation matrix [Cook 1974]. 

𝐓 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡ 𝑙12 𝑚1

2 𝑛1
2 𝑙1𝑚1 𝑚1𝑛1 𝑛1𝑙1

𝑙22 𝑚2
2 𝑛2

2 𝑙2𝑚2 𝑚2𝑛2 𝑛2𝑙2
𝑙32 𝑚3

2 𝑛3
2 𝑙3𝑚3 𝑚3𝑛3 𝑛3𝑙3

2𝑙1𝑙2 2𝑚1𝑚2 2𝑛1𝑛2 (𝑙1𝑚2 + 𝑙1𝑚1) (𝑚1𝑛2 + 𝑚2𝑛1) (𝑛1𝑙2 + 𝑛2𝑙1)
2𝑙2𝑙3 2𝑚2𝑚3 2𝑛2𝑛3 (𝑙2𝑚3 + 𝑙3𝑚2) (𝑚2𝑛3 + 𝑚3𝑛2) (𝑛2𝑙3 + 𝑛3𝑙2)
2𝑙3𝑙1 2𝑚3𝑚1 2𝑛3𝑛1 (𝑙3𝑚1 + 𝑙1𝑚3) (𝑚3𝑛1 + 𝑚1𝑛3) (𝑛3𝑙1 + 𝑛1𝑙3)⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

, (22.2.2)

𝑙𝑖, 𝑚𝑖, 𝑛𝑖 are the direction cosines 

𝑥𝑖
′ = 𝑙𝑖𝑥1 + 𝑚𝑖𝑥2 + 𝑛𝑖𝑥3, 𝑖 = 1, 2, 3, (22.2.3)

and 𝑥𝑖
′ denotes the material axes.  The constitutive matrix 𝐂l is defined in terms of the 

material axes as 

𝐂l−1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸11

−
𝜐21
𝐸22

−
𝜐31
𝐸33

0 0 0

−
𝜐12
𝐸11

1
𝐸22

−
𝜐32
𝐸33

0 0 0

−
𝜐13
𝐸11

−
𝜐23
𝐸22

1
𝐸33

0 0 0

0 0 0
1
𝐺12

0 0

0 0 0 0
1
𝐺23

0

0 0 0 0 0
1
𝐺31⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (22.2.4)

where the subscripts denote the material axes, i.e., 
𝜐𝑖𝑗 = 𝜐𝑥𝑖′𝑥𝑗′ and 𝐸𝑖𝑖 = 𝐸𝑥𝑖′. (22.2.5)

Since 𝐂l is symmetric 
𝜐12
𝐸11

=
𝜐21
𝐸22

, etc. (22.2.6)

 
 The vector of Green-St.  Venant strain components is 

𝐄T = [𝐸11 𝐸22 𝐸33 𝐸12 𝐸23 𝐸31]. (22.2.7)
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 After computing 𝑆𝑖𝑗, we use Equation (21.32) to obtain the Cauchy stress.  This 
model will predict realistic behavior for finite displacement and rotations as long as the 
strains are small.
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22.3  Material Model 3:  Elastic Plastic with Kinematic 
Hardening 

 Isotropic, kinematic, or a combination of isotropic and kinematic hardening may 
be obtained by varying a parameter, called 𝛽 between 0 and 1.  For 𝛽 equal to 0 and 1, 
respectively, kinematic and isotropic hardening are obtained as shown in Figure 22.3.1.  
Krieg and Key [1976] formulated this model and the implementation is based on their 
paper. 
 
 In isotropic hardening, the center of the yield surface is fixed but the radius is a 
function of the plastic strain.  In kinematic hardening, the radius of the yield surface is 
fixed but the center translates in the direction of the plastic strain.  Thus the yield 
condition is 

𝜙 =
1
2 𝜉𝑖𝑗𝜉𝑖𝑗 −

𝜎𝑦
2

3 = 0, (22.3.1)

where 
𝜉𝑖𝑗 = 𝑠𝑖𝑗 − 𝛼𝑖𝑗 (22.3.2)

𝜎𝑦 = 𝜎0 + 𝛽𝐸p𝜀eff
p . (22.3.3)

 
 The co-rotational rate of 𝛼𝑖𝑗 is 

𝛼𝑖𝑗
∇ = (1 − 𝛽)

2
3 𝐸p𝜀𝑖̇𝑗

p. (22.3.4)

Hence, 

𝛼𝑖𝑗
𝑛+1 = 𝛼𝑖𝑗

𝑛 + (𝛼𝑖𝑗
∇𝑛+1

2⁄ + 𝛼𝑖𝑘
𝑛 𝛺𝑘𝑗

𝑛+1
2⁄ + 𝛼𝑗𝑘

𝑛 𝛺𝑘𝑖
𝑛+1

2⁄ ) Δ𝑡𝑛+1
2⁄ . (22.3.5)

 
 Strain rate is accounted for using the Cowper-Symonds [Jones 1983] model 
which scales the yield stress by a strain rate dependent factor  

𝜎𝑦 =
⎣
⎢
⎡1 + (

𝜀 ̇
𝐶)

1
𝑝

⎦
⎥
⎤ (𝜎0 + 𝛽𝐸p𝜀eff

p ), (22.3.6)

where 𝑝 and 𝐶 are user defined input constants and 𝜀 ̇is the strain rate defined as: 

𝜀 ̇ = √𝜀𝑖̇𝑗𝜀𝑖̇𝑗. (22.3.7)
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 The current radius of the yield surface, 𝜎𝑦, is the sum of the initial yield strength, 
𝜎0, plus the growth 𝛽𝐸p𝜀eff

p ,where 𝐸p is the plastic hardening modulus 

𝐸p =
𝐸t𝐸

𝐸 − 𝐸t
, (22.3.8)

and  𝜀eff
p  is the effective plastic strain 

𝜀eff
p = ∫ (

2
3 𝜀𝑖̇𝑗
p𝜀𝑖̇𝑗
p)

1
2⁄

𝑑𝑡
𝑡

0
. (22.3.9)

 
 The plastic strain rate is the difference between the total and elastic (right 
superscript e) strain rates: 

𝜀𝑖̇𝑗
p = 𝜀𝑖̇𝑗 − 𝜀𝑖̇𝑗

e . (22.3.10)

 
 In the implementation of this material model, the deviatoric stresses are updated 
elastically, as described for model 1, but repeated here for the sake of clarity: 

𝜎𝑖𝑗
∗ = 𝜎𝑖𝑗

𝑛 + 𝐶𝑖𝑗𝑘𝑙Δ𝜀𝑘𝑙, (22.3.11)

where 
 𝜎𝑖𝑗

∗ is the trial stress tensor, 
 𝜎𝑖𝑗

𝑛 is the stress tensor from the previous time step, 
 C𝑖𝑗𝑘𝑙 is the elastic tangent modulus matrix, 

β=1, isotropic hardening

β=0, kinematic hardening

ln
l

l0

⎛
⎜
⎝

⎛
⎜
⎝

E

Yield
Stress

δx

Figure 22.3.1.  Elastic-plastic behavior with isotropic and kinematic hardening
where l0 and l are the undeformed and deformed length of uniaxial tension
specimen, respectively. 
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 Δ𝜀𝑘𝑙 is the incremental strain tensor. 
and, if the yield function is satisfied, nothing else is done.  If, however, the yield 
function is violated, an increment in plastic strain is computed, the stresses are scaled 
back to the yield surface, and the yield surface center is updated.   
 
 Let s𝑖𝑗

∗  represent the trial elastic deviatoric stress state at 𝑛 + 1  

s𝑖𝑗
∗ = σ𝑖𝑗

∗ −
1
3 σ𝑘𝑘

∗ , (22.3.12)

and 
ξ𝑖𝑗

∗ = s𝑖𝑗
∗ − α𝑖𝑗. (22.3.13)

 
 Define the yield function,  

𝜙 =
3
2 𝜉𝑖𝑗

∗𝜉𝑖𝑗
∗ − 𝜎𝑦

2 = 𝛬2 − 𝜎𝑦
2 {≤ 0 for elastic or neutral loading
> 0 for plastic harding , (22.3.14)

For plastic hardening then 

𝜀eff
p𝑛+1

= 𝜀eff
p𝑛 +

𝛬 − 𝜎𝑦

3𝐺 + 𝐸p
= 𝜀eff

p𝑛 + Δ𝜀eff
p , (22.3.15)

scale back the stress deviators  

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

∗ −
3𝐺Δ𝜀eff

p

𝛬 𝜉𝑖𝑗
∗, (22.3.16)

and update the center: 

𝛼𝑖𝑗
𝑛 + 1 = 𝛼𝑖𝑗

𝑛 +
(1 − 𝛽)𝐸pΔ𝜀eff

p

𝛬 𝜉𝑖𝑗
∗. (22.3.17)

 
Plane Stress Plasticity 
 The plane stress plasticity options apply to beams, shells, and thick shells.  Since 
the stresses and strain increments are transformed to the lamina coordinate system for 
the constitutive evaluation, the stress and strain tensors are in the local coordinate 
system.  
 
 The application of the Jaumann rate to update the stress tensor allows for the 
possibility that the normal stress, 𝜎33, will not be zero.  The first step in updating the 
stress tensor is to compute a trial plane stress update assuming that the incremental 
strains are elastic.  In the above, the normal strain increment Δ𝜀33 is replaced by the 
elastic strain increment 

Δ𝜀33 = −
𝜎33 + 𝜆(Δ𝜀11 + Δ𝜀22)

𝜆 + 2𝜇 , (22.3.18)

where 𝜆 and 𝜇 are Lamé’s constants. 
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 When the trial stress is within the yield surface, the strain increment is elastic and 
the stress update is completed.  Otherwise, for the plastic plane stress case, secant 
iteration is used to solve Equation (22.3.16)for the normal strain increment (Δ𝜀33) 
required to produce a zero normal stress: 

𝜎33
𝑖 = 𝜎33

∗ −
3𝐺Δ𝜀eff

p𝑖 𝜉33

𝛬 , (22.3.19)

Here, the superscript 𝑖 indicates the iteration number. 
 
 The secant iteration formula for Δε33 (the superscript p is dropped for clarity) is 

Δ𝜀33
𝑖+1 = Δ𝜀33

𝑖−1 −
Δ𝜀33

𝑖 − Δ𝜀33
𝑖−1

𝜎33
𝑖 − 𝜎33

𝑖−1 𝜎33
𝑖−1, (22.3.20)

where the two starting values are obtained from the initial elastic estimate and by 
assuming a purely plastic increment, i.e., 

Δ𝜀33
1 = −(Δ𝜀11 − Δ𝜀22). (22.3.21)

These starting values should bound the actual values of the normal strain increment. 
 
 The iteration procedure uses the updated normal stain increment to update first 
the deviatoric stress and then the other quantities needed to compute the next estimate 
of the normal stress in Equation (22.3.19).  The iterations proceed until the normal stress 
𝜎33

𝑖  is sufficiently small.  The convergence criterion requires convergence of the normal 
strains: 

∣Δ𝜀33
𝑖 − Δ𝜀33

𝑖−1∣
∣Δ𝜀33

𝑖+1∣
< 10−4. (22.3.22)

After convergence, the stress update is completed using the relationships given in 
Equations (22.3.16) and (22.3.17)
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22.4  Material Model 4:  Thermo-Elastic-Plastic 

 This model was adapted from the NIKE2D [Hallquist 1979] code.  A more 
complete description of its formulation is given in the NIKE2D user’s manual. 
 
 Letting 𝑇 represent the temperature, we compute the elastic co-rotational stress 
rate as 

𝜎𝑖𝑗
∇ = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘̇𝑙 − ε𝑘̇𝑙

T ) + 𝜃𝑖̇𝑗𝑑𝑇, (22.4.1)

where 

𝜃𝑖̇𝑗 =
𝑑𝐶𝑖𝑗𝑘𝑙

𝑑𝑇 𝐶𝑘𝑙𝑚𝑛
−1 𝜎̇𝑚𝑛, (22.4.2)

and 𝐶𝑖𝑗𝑘𝑙 is the temperature dependent elastic constitutive matrix: 

𝐶𝑖𝑗𝑘𝑙 =
𝐸

(1 + 𝜐)(1 − 2𝜐) 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 − 𝜐 𝜐 𝜐 0 0 0

𝜐 1 − 𝜐 𝜐 0 0 0

𝜐 𝜐 1 − 𝜐 0 0 0

0 0 0
1 − 2𝜐

2 0 0

0 0 0 0
1 − 2𝜐

2 0

0 0 0 0 0
1 − 2𝜐

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (22.4.3)

where 𝜐 is Poisson’s ratio.  The thermal strain rate can be written in terms of the 
coefficient of thermal expansion 𝛼 as: 

𝜀𝑖̇𝑗
T = 𝛼𝑇̇𝛿𝑖𝑗, (22.4.4)

 
 When treating plasticity, we use a procedure analogous to that for material 3.  
We update the stresses elastically and check to see if we violate the isotropic yield 
function 

𝜙 =
1
2 𝑠𝑖𝑗𝑠𝑖𝑗 −

𝜎𝑦(𝑇)2

3 , (22.4.5)

where 

𝜎𝑦(𝑇) = 𝜎𝑜(𝑇) + 𝐸p(𝑇)𝜀eff
p . (22.4.6)
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 The initial yield, 𝜎o, and plastic hardening modulus, 𝐸p, are temperature 
dependent.  If the behavior is elastic we do nothing; otherwise, we scale back the stress 
deviators by the factor 𝑓s: 

𝑠𝑖𝑗
𝑛+1 = 𝑓s𝑠𝑖𝑗

∗ , (22.4.7)

where 

𝑓s =
𝜎𝑦

(3
2 𝑠𝑖𝑗

∗ 𝑠𝑖𝑗
∗ )

1
2⁄
, (22.4.8)

and update the plastic strain by the increment 

Δ𝜀eff
p =

(1 − 𝑓s)(3
2 𝑠𝑖𝑗

∗ 𝑠𝑖𝑗
∗ )

1
2⁄

𝐺 + 3𝐸p
. (22.4.9)
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22.5  Material Model 5:  Soil and Crushable Foam 

 This model, due to Krieg [1972], provides a simple model for foam and soils 
whose material properties are not well characterized.  We believe the other foam 
models in LS-DYNA are superior in their performance and are recommended over this 
model which simulates the crushing through the volumetric deformations.  If the yield 
stress is too low, this foam model gives nearly fluid like behavior. 
 
 A pressure-dependent flow rule governs the deviatoric behavior: 

𝜙s =
1
2 s𝑖𝑗s𝑖𝑗 − (𝑎0 + 𝑎1𝑝 + 𝑎2𝑝2), (22.5.1)

where 𝑎0, 𝑎1, and 𝑎2 are user-defined constants.  Volumetric yielding is determined by a 
tabulated curve of pressure versus volumetric strain.  Elastic unloading from this curve 
is assumed to a tensile cutoff as illustrated in Figure 22.5.1. 
 
 Implementation of this model is straightforward.  One history variable, the 
maximum volumetric strain in compression, is stored.  If the new compressive 
volumetric strain exceeds the stored value, loading is indicated.  When the yield 
condition is violated, the updated trial stresses, 𝑠𝑖𝑗

∗ , are scaled back using a simple radial 

return algorithm: 

The bulk unloading modulus is used

if the volumetric crushing option is on 

(VCR = 0).  In thiscase the aterial's response

follows the black arrows.

Loading and unloading (along the 

grey arows) follows the input curve 

when the volumetric crushing option 

is off (VCR = 1.0)

Volumetric Strain,

Pressure Cutoff Value

P
r
e
s
s
u

r
e

ln
V
V0

⎛
⎜
⎝

⎛
⎜
⎝

tension compression

Figure 22.5.1.  Volumetric strain versus pressure curve for soil and crushable
foam model. 
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s𝑖𝑗
𝑛+1 =

⎝
⎜⎜
⎜⎛𝑎0 + 𝑎1𝑝 + a2𝑝2

1
2 s𝑖𝑗s𝑖𝑗 ⎠

⎟⎟
⎟⎞

1
2⁄

s𝑖𝑗
∗ . (22.5.2)

 
 If the hydrostatic tension exceeds the cutoff value, the pressure is set to the cutoff 
value and the deviatoric stress tensor is zeroed.
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22.6  Material Model 6:  Viscoelastic 

 In this model, linear viscoelasticity is assumed for the deviatoric stress tensor 
[Herrmann and Peterson 1968]: 

𝑠𝑖𝑗 = 2 ∫ 𝜙(𝑡 − 𝜏)
∂𝜀𝑖𝑗

′ (𝜏)
∂𝜏 𝑑𝜏

𝑡

0
, (22.6.1)

where 

𝜙(𝑡) = G∞ + (G0 − G∞)𝑒−𝛽𝑡, (22.6.2)

is the shear relaxation modulus.  A recursion formula is used to compute the new value 
of the hereditary integral at time 𝑡𝑛+1 from its value at time 𝑡𝑛.  Elastic bulk behavior is 
assumed: 

𝑝 = 𝐾ln𝑉, (22.6.3)
where pressure is integrated incrementally.
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22.7  Material Model 7:  Continuum Rubber 

 The hyperelastic continuum rubber model was studied by Blatz and Ko [1962].  
In this model, the second Piola-Kirchhoff stress is given by 

𝑆𝑖𝑗 = 𝐺(𝑉 −1𝐶𝑖𝑗 − 𝑉 − 1
1−2𝜐𝛿𝑖𝑗), (22.7.1)

where 𝐺 is the shear modulus, 𝑉 is the relative volume, 𝜐 is Poisson’s ratio, and 𝐶𝑖𝑗 is 
the right Cauchy-Green strain: 

C𝑖𝑗 =
𝜕𝑥𝑘
𝜕𝑋𝑖

𝜕𝑥𝑘
𝜕𝑋𝑗

, (22.7.2)

after determining 𝑆𝑖𝑗, it is transformed into the Cauchy stress tensor, 𝜎𝑖𝑗: 

𝜎𝑖𝑗 =
𝜌
𝜌0

𝜕𝑥𝑖
𝜕𝑋𝑘

𝜕𝑥𝑗

𝜕𝑋𝑙
𝑆𝑘𝑙, (22.7.3)

where 𝜌0 and 𝜌 are the initial and current density, respectively.  The default value of υ is 
0.463.
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22.8  Material Model 8:  Explosive Burn 

 Burn fractions, which multiply the equations of states for high explosives, control 
the release of chemical energy for simulating detonations.  In the initialization phase, a 
lighting time 𝑡1  is computed for each element by dividing the distance from the 
detonation point to the center of the element by the detonation velocity 𝐷.  If multiple 
detonation points are defined, the closest point determines 𝑡1. The burn fraction 𝐹 is 
taken as the maximum 

𝐹 = max(𝐹1, 𝐹2), (22.8.1)
where 

𝐹1 =

⎩{
{{
{{
⎨
{{
{{
{⎧

2 (𝑡 − 𝑡𝑙)𝐷

3  ( 𝑣e
𝐴emax

)
𝑡 > 𝑡l

 0  𝑡 ≤ 𝑡l
 (22.8.2)

𝐹2 =
1 − 𝑉

1 − 𝑉CJ
, (22.8.3)

where 𝑉CJ is the Chapman-Jouguet relative volume and 𝑡 is current time.  If 𝐹 exceeds 1, 
it is reset to 1.  This calculation of the burn fraction usually requires several time steps 
for 𝐹 to reach unity, thereby spreading the burn front over several elements.  After 
reaching unity, 𝐹 is held constant.  This burn fraction calculation is based on work by 
Wilkins [1964] and is also discussed by Giroux [1973]. 
 
 As an option, the high explosive material can behave as an elastic perfectly-
plastic solid prior to detonation.  In this case we update the stress tensor, to an elastic 
trial stress, 𝑠𝑖𝑗

∗𝑛+1,  

𝑠𝑖𝑗
∗𝑛+1 = 𝑠𝑖𝑗

𝑛 + 𝑠𝑖𝑝𝛺𝑝𝑗 + 𝑠𝑗𝑝𝛺𝑝𝑖 + 2𝐺𝜀𝑖̇𝑗
′ 𝑑𝑡, (22.8.4)

where 𝐺 is the shear modulus, and 𝜀𝑖̇𝑗
′  is the deviatoric strain rate.  The von Mises yield 

condition is given by: 

𝜙 = 𝐽2 −
𝜎𝑦

2

3 , (22.8.5)

where the second stress invariant, 𝐽2, is defined in terms of the deviatoric stress 
components as 

𝐽2 =
1
2 𝑠𝑖𝑗𝑠𝑖𝑗, (22.8.6)
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and the yield stress is 𝜎𝑦.  If yielding has occurred, i.e., 𝜙 > 0, the deviatoric trial stress 
is scaled to obtain the final deviatoric stress at time 𝑛 + 1: 

𝑠𝑖𝑗
𝑛+1 =

𝜎𝑦

√3𝐽2
𝑠𝑖𝑗

∗𝑛+1, (22.8.7)

 If 𝜙 ≤ 0, then 

𝑠𝑖𝑗
𝑛+1 = 𝑠𝑖𝑗

∗𝑛+1. (22.8.8)

 Before detonation pressure is given by the expression 

𝑝𝑛+1 = 𝐾 (
1

𝑉𝑛+1 − 1). (22.8.9)

where K is the bulk modulus.  Once the explosive material detonates: 

𝑠𝑖𝑗
𝑛+1 = 0. (22.8.10)

and the material behaves like a gas. 
 
 The shadow burn option should be active when computing the lighting time if 
there exist elements within the mesh for which there is no direct line of sight from the 
detonation points.  The shadow burn option is activated in the control section.  The 
lighting time is based on the shortest distance through the explosive material.  If inert 
obstacles exist within the explosive material, the lighting time will account for the extra 
time required for the detonation wave to travel around the obstacles.  The lighting times 
also automatically accounts for variations in the detonation velocity if different 
explosives are used.  No additional input is required for the shadow option but care 
must be taken when setting up the input.  This option works for two and three-
dimensional solid elements.  It is recommended that for best results: 

1. Keep the explosive mesh as uniform as possible with elements of roughly the 
same dimensions.   

2. Inert obstacle such as wave shapers within the explosive must be somewhat 
larger than the characteristic element dimension for the automatic tracking to 
function properly.  Generally, a factor of two should suffice.  The characteristic 
element dimension is found by checking all explosive elements for the largest 
diagonal  

3. The detonation points should be either within or on the boundary of the 
explosive.  Offset points may fail to initiate the explosive. 

4. Check the computed lighting times in the post processor LS-PrePost.  The 
lighting times may be displayed at time = 0, state 1, by plotting component 7 (a 
component normally reserved for plastic strain) for the explosive material.  The 
lighting times are stored as negative numbers.  The negative lighting time is 
replaced by the burn fraction when the element ignites. 
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5.  Line detonations may be approximated by using a sufficient number of 
detonation points to define the line.  Too many detonation points may result in 
significant initialization cost.
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22.9  Material Model 9:  Null Material 

 For solid elements equations of state can be called through this model to avoid 
deviatoric stress calculations.  A pressure cutoff may be specified to set a lower bound 
on the pressure.  This model has been very useful when combined with the reactive 
high explosive model where material strength is often neglected.  The null material 
should not be used to delete solid elements.   
 
 An optional viscous stress of the form 

𝜎𝑖𝑗 = 𝜇𝜀𝑖̇𝑗
′ , (22.9.1)

is computed for nonzero 𝜇 where 𝜀𝑖̇𝑗
′  is the deviatoric strain rate.   

 
 Sometimes it is advantageous to model contact surfaces via shell elements which 
are not part of the structure, but are necessary to define areas of contact within nodal 
rigid bodies or between nodal rigid bodies.  Beams and shells that use this material type 
are completely bypassed in the element processing.  The Young’s modulus and 
Poisson’s ratio are used only for setting the contact interface stiffnesses, and it is 
recommended that reasonable values be input.
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22.10  Material Model 10:  Elastic-Plastic-Hydrodynamic 

 For completeness we give the entire derivation of this constitutive model based 
on radial return plasticity.   
 
 The pressure, 𝑝, deviatoric strain rate, 𝜀𝑖̇𝑗

′ , deviatoric stress rate, 𝑠𝑖̇𝑗, volumetric 
strain rate, and 𝜀v̇, are defined in Equation (1.1.1): 

𝑝 = −
1
3 𝜎𝑖𝑗𝛿𝑖𝑗 𝜀𝑖̇𝑗

′ = 𝜀𝑖̇𝑗 −
1
3 𝜀v̇

𝑠𝑖𝑗 = 𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗 𝜀v̇ = 𝜀𝑖̇𝑗𝛿𝑖𝑗 
𝑠𝑖𝑗
∇ = 2𝜇𝜀𝑖̇𝑗

′ = 2𝐺𝜀𝑖̇𝑗
′ .

(22.10.1)

The Jaumann rate of the deviatoric stress, 𝑠𝑖𝑗
∇, is given by: 

𝑠𝑖𝑗
∇ = 𝑠𝑖̇𝑗 − 𝑠𝑖𝑝𝛺𝑝𝑗 − 𝑠𝑗𝑝𝛺𝑝𝑖. (22.10.2)

 
 First we update s𝑖𝑗

𝑛 to s𝑖𝑗
𝑛+1 elastically 

𝑠 ∗ 𝑖𝑗
𝑛+1 = 𝑠𝑖𝑗

𝑛 + 𝑠𝑖𝑝𝛺𝑝𝑗 + 𝑠𝑗𝑝𝛺𝑝𝑖 + 2𝐺𝜀𝑖̇𝑗
′ 𝑑𝑡 = 𝑠𝑖𝑗

𝑛 + 𝑅𝑖𝑗⏟
𝑠𝑖𝑗𝑅
𝑛

+ 2𝐺𝜀𝑖̇𝑗
′ 𝑑𝑡⏟

2𝐺Δ𝜀𝑖𝑗′
, 

(22.10.3)

where the left superscript, *, denotes a trial stress value.  The effective trial stress is 
defined by 

𝑠∗ = (
3
2 𝑠∗

𝑖𝑗
𝑛+1 𝑠∗

𝑖𝑗
𝑛+1)

1
2⁄

, (22.10.4)

and if 𝑠∗ exceeds yield stress 𝜎y, the Von Mises flow rule: 

𝜙 =
1
2 𝑠𝑖𝑗𝑠𝑖𝑗 −

𝜎y2

3 ≤ 0, (22.10.5)

is violated and we scale the trial stresses back to the yield surface, i.e., a radial return 

𝑠𝑖𝑗
𝑛+1 =

𝜎𝑦

𝑠∗ 𝑠∗
𝑖𝑗
𝑛+1 = 𝑚 𝑠∗

𝑖𝑗
𝑛+1. (22.10.6)

 
 The plastic strain increment can be found by subtracting the deviatoric part of 
the strain increment that is elastic, 1

2𝐺 (𝑠𝑖𝑗
𝑛+1 − 𝑠𝑖𝑗

R𝑛), from the total deviatoric increment, 
Δε𝑖𝑗

′ , i.e., 

Δ𝜀𝑖𝑗
p = Δ𝜀𝑖𝑗

′ −
1

2𝐺 (𝑠𝑖𝑗
𝑛+1 − 𝑠𝑖𝑗

 R𝑛). (22.10.7)
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 Recalling that,  

Δ𝜀𝑖𝑗
′ =

( 𝑠 ∗ 𝑖𝑗
𝑛+1 − 𝑠𝑖𝑗

R𝑛)
2𝐺 , (22.10.8)

and substituting Equation (22.10.8) into (22.10.7) we obtain, 

Δ𝜀𝑖𝑗
p =

( 𝑠 ∗ 𝑖𝑗
𝑛+1 − 𝑠𝑖𝑗

𝑛+1)
2𝐺 . (22.10.9)

Substituting Equation (22.10.6)  

𝑠𝑖𝑗
𝑛+1 = 𝑚 𝑠∗

𝑖𝑗
𝑛+1, (22.10.10)

into Equation (22.10.9) gives, 

Δ𝜀𝑖𝑗
p = (

1 − 𝑚
2𝐺 ) 𝑠∗

𝑖𝑗
𝑛+1 =

1 − 𝑚
2𝐺𝑚 𝑠𝑖𝑗

𝑛+1 = 𝑑λ𝑠𝑖𝑗
𝑛+1. (22.10.11)

By definition an increment in effective plastic strain is 

Δ𝜀p = (
2
3 Δ𝜀𝑖𝑗

pΔ𝜀𝑖𝑗
p)

1
2⁄
. (22.10.12)

Squaring both sides of Equation (22.10.11) leads to: 

Δ𝜀𝑖𝑗
pΔ𝜀𝑖𝑗

p  = (
1 − 𝑚

2𝐺 )
2

𝑠∗
𝑖𝑗
𝑛+1 𝑠∗

𝑖𝑗
𝑛+1 (22.10.13)

or from Equations (22.10.4) and (22.10.12): 

3
2 Δ𝜀p

2
= (

1 − 𝑚
2𝐺 )

2 2
3 𝑠∗2 (22.10.14)

Hence, 

Δ𝜀p =
1 − 𝑚

3𝐺 𝑠∗ =
𝑠∗ − 𝜎y

3𝐺
(22.10.15)

where we have substituted for m from Equation (22.10.6) 

𝑚 =
𝜎y
𝑠∗ (22.10.16)

 
 If isotropic hardening is assumed then: 

𝜎y𝑛+1 = 𝜎y𝑛 + 𝐸pΔ𝜀p (22.10.17)

and from Equation (22.10.15) 

Δ𝜀p =
(𝑠∗ − 𝜎y𝑛+1)

3𝐺 =
(𝑠∗ − 𝜎y𝑛 − 𝐸pΔ𝜀p)

3𝐺 . (22.10.18)

 
 Thus, 
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(3𝐺 + 𝐸p)Δ𝜀p = (𝑠∗ − 𝜎y𝑛), (22.10.19)

and solving for the incremental plastic strain gives 

Δ𝜀p =
(𝑠∗ − 𝜎y𝑛)
(3𝐺 + 𝐸p). (22.10.20)

 
 The algorithm for plastic loading can now be outlined in five simple stress.  If the 
effective trial stress exceeds the yield stress then 

1. Solve for the plastic strain increment: 

Δ𝜀p =
(𝑠∗ − σy𝑛)
(3𝐺 + 𝐸p). (22.10.21)

2. Update the plastic strain: 

𝜀p
𝑛+1

= 𝜀p
𝑛

+ Δ𝜀p. (22.10.22)

3. Update the yield stress: 

𝜎y𝑛+1 = 𝜎y𝑛 + 𝐸pΔ𝜀p. (22.10.23)

4. Compute the scale factor using the yield strength at time 𝑛 + 1: 

𝑚 =
𝜎y𝑛+1

𝑠∗ . (22.10.24)

5. Radial return the deviatoric stresses to the yield surface: 

𝑠𝑖𝑗
𝑛+1 = 𝑚 𝑠∗

𝑖𝑗
𝑛+1. (22.10.25)
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22.11  Material Model 11:  Elastic-Plastic With Thermal 
Softening 

 Steinberg and Guinan [1978] developed this model for treating plasticity at high 
strain rates (105 s-1) where enhancement of the yield strength due to strain rate effects is 
saturated out. 
 
 Both the shear modulus 𝐺 and yield strength 𝜎y increase with pressure but 
decrease with temperature.  As a melt temperature is reached, these quantities 
approach zero.  We define the shear modulus before the material melts as 

𝐺 = 𝐺0 [1 + 𝑏𝑝𝑉
1

3⁄ − ℎ (
𝐸 − 𝐸c

3𝑅′
− 300)] 𝑒

− 𝑓𝐸
𝐸m−𝐸, (22.11.1)

where 𝐺0, 𝑏, ℎ, and 𝑓  are input parameters, 𝐸c is the cold compression energy: 

𝐸c(𝑋) = ∫ 𝑝𝑑𝑥
𝑥

0
−
900𝑅′exp(𝑎𝑥)

(1 − 𝑋)2(𝛾𝑜−𝑎−1
2)

, (22.11.2)

where, 
𝑋 = 1 − 𝑉, (22.11.3)

and 𝐸m is the melting energy: 

𝐸m(𝑋) = 𝐸c(𝑋) + 3𝑅′𝑇m(𝑋), (22.11.4)

which is a function of the melting temperature 𝑇m(𝑋): 

𝑇m(𝑋) =
𝑇moexp(2𝑎𝑋)

(1 − 𝑋)2(𝛾𝑜−𝑎−
1
3)

, (22.11.5)

and the melting temperature 𝑇mo at 𝜌 = 𝜌0.  The constants 𝛾0 and a are input 
parameters.  In the above equation, 𝑅′ is defined by 

𝑅′ =
𝑅𝜌0
𝐴 , (22.11.6)

where 𝑅 is the gas constant and A is the atomic weight.  The yield strength 𝜎y is given 
by: 

𝜎y = 𝜎0
′ [1 + 𝑏′𝑝𝑉

1
3 − ℎ (

𝐸 − 𝐸c
3𝑅′

− 300)] 𝑒
− 𝑓𝐸
𝐸m−𝐸. (22.11.7)

 
 If 𝐸m exceeds 𝐸𝑖.  Here, 𝜎0

′   is given by: 

𝜎0
′ = 𝜎0[1 + 𝛽(𝛾𝑖 + 𝜀𝑝̅)]𝑛. (22.11.8)
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where 𝛾1 is the initial plastic strain, and 𝑏′ and 𝜎0
′  are input parameters.  Where 𝜎0

′  
exceeds 𝜎max, the maximum permitted yield strength, 𝜎0

′  is set to equal to 𝜎max.  After 
the material melts, 𝜎y and 𝐺 are set to zero. 
 
 LS-DYNA fits the cold compression energy to a ten-term polynomial expansion: 

𝐸c = ∑ 𝐸𝐶𝑖

9

𝑖=0
𝜂𝑖, (22.11.9)

where 𝐸𝐶𝑖 is the ith coefficient and 𝜂 = 𝜌
𝜌0.  The least squares method is used to perform 

the fit [Kreyszig 1972].  The ten coefficients may also be specified in the input. 
 
 Once the yield strength and shear modulus are known, the numerical treatment 
is similar to that for material model 10.
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22.12  Material Model 12:  Isotropic Elastic-Plastic 

 The von Mises yield condition is given by: 

𝜙 = 𝐽2 −
𝜎y2

3 , (22.12.1)

where the second stress invariant, 𝐽2, is defined in terms of the deviatoric stress 
components as 

𝐽2 =
1
2 𝑠𝑖𝑗𝑠𝑖𝑗, (22.12.2)

and the yield stress, 𝜎y, is a function of the effective plastic strain, 𝜀eff
p , and the plastic 

hardening modulus, 𝐸p: 

𝜎y = 𝜎0 + 𝐸p𝜀eff
p . (22.12.3)

 
 The effective plastic strain is defined as 

𝜀eff
p = ∫ 𝑑𝜀eff

p
𝑡

0
, (22.12.4)

where 𝑑𝜀eff
p = √2

3 𝑑𝜀𝑖𝑗
p𝑑𝜀𝑖𝑗

p, and the plastic tangent modulus is defined in terms of the 
input tangent modulus, 𝐸t, as 

𝐸p =
𝐸𝐸t

𝐸 − 𝐸t
. (22.12.5)

 
 Pressure is given by the expression 

𝑝𝑛+1 = 𝐾 (
1

𝑉𝑛+1 − 1), (22.12.6)

where 𝐾 is the bulk modulus.  This is perhaps the most cost effective plasticity model.  
Only one history variable, 𝜀eff

p , is stored with this model. 
 
 This model is not recommended for shell elements.  In the plane stress 
implementation, a one-step radial return approach is used to scale the Cauchy stress 
tensor to if the state of stress exceeds the yield surface.  This approach to plasticity leads 
to inaccurate shell thickness updates and stresses after yielding.  This is the only model 
in LS-DYNA for plane stress that does not default to an iterative approach.
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22.13  Material Model 13:  Isotropic Elastic-Plastic with 
Failure 

 This highly simplistic failure model is occasionally useful.  Material model 12 is 
called to update the stress tensor.  Failure is initially assumed to occur if either  

𝑝𝑛+1 < 𝑝min, (22.13.1)

or 

𝜀eff
p > 𝜀max

p , (22.13.2)

where 𝑝min and 𝜀max
p  are user-defined parameters.  Once failure has occurred, pressure 

may never be negative and the deviatoric components are set to zero: 
𝑠𝑖𝑗 = 0 (22.13.3)

for all time.  The failed element can only carry loads in compression.
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22.14  Material Model 14:  Soil and Crushable Foam With 
Failure 

This material model provides the same stress update as model 5.  However, if pressure 
ever reaches its cutoff value, failure occurs and pressure can never again go negative.  
In material model 5, the pressure is limited to its cutoff value in tension.
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22.15  Material Model 15:  Johnson and Cook Plasticity Model 

 Johnson and Cook express the flow stress as 

𝜎𝑦 = (𝐴 + 𝐵𝜀p̅
𝑛
)(1 + 𝑐ln𝜀∗̇)(1 − 𝑇∗𝑚), (22.15.1)

where 𝐴, 𝐵, 𝐶, 𝑛,  and  𝑚 are user defined input constants, and: 

𝜀𝑝̅ = effective plastic strain 

𝜀∗̇ =
𝜀 ̅𝑝̇

𝜀0̇
= effective plastic strain rate for 𝜀0̇, in units of 

1
[time] 

𝑇∗ =
𝑇 − 𝑇room
𝑇melt − 𝑇room

 

Constants for a variety of materials are provided in Johnson and Cook [1983]. 
 
 Due to the nonlinearity in the dependence of flow stress on plastic strain, an 
accurate value of the flow stress requires iteration for the increment in plastic strain.  
However, by using a Taylor series expansion with linearization about the current time, 
we can solve for 𝜎𝑦 with sufficient accuracy to avoid iteration. 
 The strain at fracture is given by 

𝜀f = [𝐷1 + 𝐷2exp (𝐷3𝜎∗)][1 + 𝐷4ln𝜀∗][1 + 𝐷5𝑇∗], (22.15.2)

where 𝐷𝑖, 𝑖 = 1, . . . ,5 are input constants and 𝜎∗ is the ratio of pressure divided by 
effective stress: 

𝜎∗ =
𝑝

𝜎eff
. (22.15.3)

 
 Fracture occurs when the damage parameter 

𝐷 = ∑
Δ𝜀p̅

𝜀f
(22.15.4)

reaches the value 1. 
 
 A choice of three spall models is offered to represent material splitting, cracking, 
and failure under tensile loads.  The pressure limit model limits the minimum 
hydrostatic pressure to the specified value, 𝑝 ≥ 𝑝min.  If pressures more tensile than this 
limit are calculated, the pressure is reset to 𝑝min.  This option is not strictly a spall model 
since the deviatoric stresses are unaffected by the pressure reaching the tensile cutoff 
and the pressure cutoff value 𝑝min remains unchanged throughout the analysis.  The 
maximum principal stress spall model detects spall if the maximum principal stress, 
𝜎max, exceeds the limiting value 𝜎p.  Once spall is detected with this model, the 
deviatoric stresses are reset to zero and no hydrostatic tension is permitted.  If tensile 
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pressures are calculated, they are reset to 0 in the spalled material.  Thus, the spalled 
material behaves as rubble.  The hydrostatic tension spall model detects spall if the 
pressure becomes more tensile than the specified limit, 𝑝min.  Once spall is detected, the 
deviatoric stresses are set to zero and the pressure is required to be compressive.  If 
hydrostatic tension is calculated then the pressure is reset to 0 for that element. 
 
 In addition to the above failure criterion, this material model also supports a 
shell element deletion criterion based on the maximum stable time step size for the 
element, Δ𝑡max.  Generally, Δ𝑡max goes down as the element becomes more distorted.  
To assure stability of time integration, the global LS-DYNA time step is the minimum of 
the Δ𝑡max values calculated for all elements in the model.  Using this option allows the 
selective deletion of elements whose time step Δ𝑡max has fallen below the specified 
minimum time step, Δ𝑡crit.  Elements which are severely distorted often indicate that 
material has failed and supports little load, but these same elements may have very 
small time steps and therefore control the cost of the analysis.  This option allows these 
highly distorted elements to be deleted from the calculation, and, therefore, the analysis 
can proceed at a larger time step, and, thus, at a reduced cost.  Deleted elements do not 
carry any load, and are deleted from all applicable slide surface definitions.  Clearly, 
this option must be judiciously used to obtain accurate results at a minimum cost. 
 
 Material type 15 is applicable to the high rate deformation of many materials 
including most metals.  Unlike the Steinberg-Guinan model, the Johnson-Cook model 
remains valid down to lower strain rates and even into the quasistatic regime.  Typical 
applications include explosive metal forming, ballistic penetration, and impact.
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22.16  Material Model 16:  Pseudo Tensor 

 This model can be used in two major modes - a simple tabular pressure-
dependent yield surface, and a potentially complex model featuring two yield versus 
pressure functions with the means of migrating from one curve to the other.  For both 
modes, load curve N1 is taken to be a strain rate multiplier for the yield strength.  Note 
that this model must be used with equation-of-state type 8 or 9. 
 
Response Mode I.  Tabulated Yield Stress Versus Pressure 
 
 This model is well suited for implementing standard geologic models like the 
Mohr-Coulomb yield surface with a Tresca limit, as shown in Figure 22.16.1.  Examples 
of converting conventional triaxial compression data to this type of model are found in 
(Desai and Siriwardane, 1984).  Note that under conventional triaxial compression 
conditions, the LS-DYNA input corresponds to an ordinate of 𝜎1 − 𝜎3 rather than the 
more widely used 𝜎1−𝜎3

2 , where 𝜎1 is the maximum principal stress and 𝜎3 is the 
minimum principal stress. 
 
 This material combined with equation-of-state type 9 (saturated) has been used 
very successfully to model ground shocks and soil-structure interactions at pressures 
up to 100kbar. 
 
 To invoke Mode I of this model, set 𝑎0, 𝑎1, 𝑎2, 𝑎0f, and 𝑎1f to zero, The tabulated 

Tresca

Mohr-Coulomb

Friction Angle

Cohesion

 Figure 22.16.1.  Mohr-Coulomb surface with a Tresca limit. 
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values of pressure should then be specified on cards 4 and 5, and the corresponding 
values of yield stress should be specified on cards 6 and 7.  The parameters relating to 
reinforcement properties, initial yield stress, and tangent modulus are not used in this 
response mode, and should be set to zero. 
 
Simple tensile failure 
 Note that a1f is reset internally to 1/3 even though it is input as zero; this defines 
a material failure curve of slope 3𝑝, where p denotes pressure (positive in compression).  
In this case the yield strength is taken from the tabulated yield vs.  pressure curve until 
the maximum principal stress (𝜎1) in the element exceeds the tensile cut-off (𝜎cut).  For 
every time step that 𝜎1 > 𝜎cut the yield strength is scaled back by a fraction of the 
distance between the two curves until after 20 time steps the yield strength is defined by 
the failure curve.  The only way to inhibit this feature is to set σcut arbitrarily large. 
 
Response Mode II.  Two-Curve Model with Damage and Failure 
 This approach uses two yield versus pressure curves of the form  

𝜎y = 𝑎0 +
𝑝

𝑎1 + 𝑎2𝑝. (22.16.1)

 
 The upper curve is best described as the maximum yield strength curve and the 
lower curve is the material failure curve.  There are a variety of ways of moving 
between the two curves and each is discussed below. 
 
MODE II.A: Simple tensile failure 
 Define 𝑎0, 𝑎1, 𝑎2, 𝑎0f and 𝑎1f, set 𝑏1 to zero, and leave cards 4 through 7 blank.  In 
this case the yield strength is taken from the maximum yield curve until the maximum 
principal stress (𝜎1) in the element exceeds the tensile cut-off (𝜎cut).  For every time 

Pressure

Y
ie

ld

 Figure 22.2.  Two-curve concrete model with damage and failure. 



Material Models LS-DYNA Theory Manual 

20-68 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

step that 𝜎1 > 𝜎cut the yield strength is scaled back by a fraction of the distance between 
the two curves until after 20 time steps the yield strength is defined by the failure curve. 
 
Mode II.B: Tensile failure plus plastic strain scaling 
 Define 𝑎0, 𝑎1, 𝑎2, 𝑎0f and 𝑎1f, set 𝑏1 to zero, and user cards 4 through 7 to define a 
scale factor, , versus effective plastic strain.  LS-DYNA evaluates  at the current 
effective plastic strain and then calculated the yield stress as 

𝜎yield = 𝜎failed + 𝜂(𝜎max − 𝜎failed), (22.16.2)

where 𝜎max and 𝜎failed are found as shown in Figure 19.16.2.  This yield strength is then 
subject to scaling for tensile failure as described above.  This type of model allows the 
description of a strain hardening or softening material such as concrete. 
 
 
Mode II.C: Tensile failure plus damage scaling 
 The change in yield stress as a function of plastic strain arises from the physical 
mechanisms such as internal cracking, and the extent of this cracking is affected by the 
hydrostatic pressure when the cracking occurs.  This mechanism gives rise to the 
"confinement" effect on concrete behavior.  To account for this phenomenon, a 
"damage" function was defined and incorporated.  This damage function is given the 
form: 

𝜆 = ∫ (1 +
𝑝

𝜎cut
)

−𝑏1
𝑑𝜀p

𝜀p

0
. (22.16.3)

 
 Define 𝑎0, 𝑎1, 𝑎2, 𝑎0f and 𝑎1f, and 𝑏1.  Cards 4 through 7 now give 𝜂 as a function 
of 𝜆 and scale the yield stress as 

𝜎yield = 𝜎failed + 𝜂(𝜎max − 𝜎failed), (22.16.4)

and then apply any tensile failure criteria. 
 
 
Mode II Concrete Model Options 
 Material Type 16 Mode II provides the option of automatic internal generation of 
a simple "generic" model for concrete.  If 𝑎0 is negative, then 𝜎cut is assumed to be the 
unconfined concrete compressive strength, 𝑓c′ and −𝑎0 is assumed to be a conversion 
factor from LS-DYNA pressure units to psi.  (For example, if the model stress units are 
MPa, 𝑎0 should be set to –145.) In this case the parameter values generated internally are  
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𝜎cut = 1.7
⎝
⎜⎛ 𝑓c′

2

−𝑎0⎠
⎟⎞

1
3
 

𝑎0 =
𝑓c′

4  

𝑎1 =
1
3 

𝑎2 =
1

3𝑓c′
 

𝑎0f = 0 
𝑎1f = 0.385 

(22.16.5) 

 
 Note that these 𝑎0f and 𝑎1f defaults will be overwritten by non-zero entries on 
Card 3.  If plastic strain or damage scaling is desired, Cards 5 through 8 and b1 should 
be specified in the input.  When 𝑎0 is input as a negative quantity, the equation-of-state 
can be given as 0 and a trilinear EOS Type 8 model will be automatically generated 
from the unconfined compressive strength and Poisson's ratio.  The EOS 8 model is a 
simple pressure versus volumetric strain model with no internal energy terms, and 
should give reasonable results for pressures up to 5kbar (approximately 72,500 psi). 
 
Mixture model 
 A reinforcement fraction, 𝑓r, can be defined along with properties of the 
reinforcing material.  The bulk modulus, shear modulus, and yield strength are then 
calculated from a simple mixture rule, i.e., for the bulk modulus the rule gives: 

𝐾 = (1 − 𝑓r)𝐾m + 𝑓r𝐾r, (22.16.6)
where 𝐾m and 𝐾r are the bulk moduli for the geologic material and the reinforcing 
material, respectively.  This feature should be used with caution.  It gives an isotropic 
effect in the material instead of the true anisotropic material behavior.  A reasonable 
approach would be to use the mixture elements only where reinforcing material exists 
and plain elements elsewhere.  When the mixture model is being used, the strain rate 
multiplier for the principal material is taken from load curve N1 and the multiplier for 
the reinforcement is taken from load curve N2.



Material Models LS-DYNA Theory Manual 

20-70 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

22.17  Material Model 17:  Isotropic Elastic-Plastic With 
Oriented Cracks 

 This is an isotropic elastic-plastic material which includes a failure model with an 
oriented crack.  The von Mises yield condition is given by: 

𝜙 = 𝐽2 −
𝜎y2

3 , (22.17.1)

where the second stress invariant, 𝐽2, is defined in terms of the deviatoric stress 
components as 

𝐽2 =
1
2 𝑠𝑖𝑗𝑠𝑖𝑗, (22.17.2)

and the yield stress, 𝜎y, is a function of the effective plastic strain, 𝜀eff
p , and the plastic 

hardening modulus, 𝐸p: 

𝜎y = 𝜎0 + 𝐸p𝜀eff
p . (22.17.3)

 
 The effective plastic strain is defined as: 

𝜀eff
p = ∫ 𝑑𝜀eff

p
𝑡

0
, (22.17.4)

where 𝑑𝜀eff
p = √2

3 𝑑𝜀𝑖𝑗
p𝑑𝜀𝑖𝑗

p, and the plastic tangent modulus is defined in terms of the 
input tangent modulus, 𝐸t, as 

𝐸p =
𝐸𝐸t

𝐸 − 𝐸t
. (22.17.5)

 
 Pressure in this model is found from evaluating an equation of state.  A pressure 
cutoff can be defined such that the pressure is not allowed to fall below the cutoff value. 
 
 The oriented crack fracture model is based on a maximum principal stress 
criterion.  When the maximum principal stress exceeds the fracture stress, 𝜎f, the 
element fails on a plane perpendicular to the direction of the maximum principal stress.  
The normal stress and the two shear stresses on that plane are then reduced to zero.  
This stress reduction is done according to a delay function that reduces the stresses 
gradually to zero over a small number of time steps.  This delay function procedure is 
used to reduce the ringing that may otherwise be introduced into the system by the 
sudden fracture.   
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 After a tensile fracture, the element will not support tensile stress on the fracture 
plane, but in compression will support both normal and shear stresses.  The orientation 
of this fracture surface is tracked throughout the deformation, and is updated to 
properly model finite deformation effects.  If the maximum principal stress 
subsequently exceeds the fracture stress in another direction, the element fails 
isotropically.  In this case the element completely loses its ability to support any shear 
stress or hydrostatic tension, and only compressive hydrostatic stress states are 
possible.  Thus, once isotropic failure has occurred, the material behaves like a fluid. 
 
 This model is applicable to elastic or elastoplastic materials under significant 
tensile or shear loading when fracture is expected.  Potential applications include brittle 
materials such as ceramics as well as porous materials such as concrete in cases where 
pressure hardening effects are not significant.
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22.18  Material Model 18:  Power Law Isotropic Plasticity 

 Elastoplastic behavior with isotropic hardening is provided by this model.  The 
yield stress, 𝜎y, is a function of plastic strain and obeys the equation: 

𝜎y = 𝑘𝜀𝑛 = 𝑘(𝜀yp + 𝜀p̅)𝑛, (22.18.1)

where 𝜀yp is the elastic strain to yield and 𝜀p̅ is the effective plastic strain (logarithmic).   
 
 A parameter, SIGY, in the input governs how the strain to yield is identified.  If 
SIGY is set to zero, the strain to yield if found by solving for the intersection of the 
linearly elastic loading equation with the strain hardening equation: 

𝜎 = 𝐸𝜀,
𝜎 = 𝑘𝜀𝑛, (22.18.2)

which gives the elastic strain at yield as: 

𝜀yp = (
𝐸
𝑘)

1
𝑛−1

. (22.18.3)

 
 If SIGY yield is nonzero and greater than 0.02 then: 

𝜀yp = (
𝜎y
𝑘 )

1
𝑛
. (22.18.4)

 
 Strain rate is accounted for using the Cowper-Symonds model which scales the 
yield stress with the factor 

1 + (
𝜀 ̇
𝐶)

1
P⁄

, (22.18.5)

where 𝜀 ̇ is the strain rate.  A fully viscoplastic formulation is optional with this model 
which incorporates the Cowper-Symonds formulation within the yield surface.  An 
additional cost is incurred but the improvement allows for dramatic results.
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22.19  Material Model 19:  Strain Rate Dependent Isotropic 
Plasticity 

 In this model, a load curve is used to describe the yield strength 𝜎0 as a function 
of effective strain rate 𝜀 ̅ ̇where 

𝜀 ̅̇ = (
2
3 𝜀𝑖̇𝑗

′ 𝜀𝑖̇𝑗
′ )

1
2⁄
, (22.19.1)

and the prime denotes the deviatoric component.  The yield stress is defined as 

𝜎y = 𝜎0(𝜀 ̅̇ ) + 𝐸p𝜀p̅. (22.19.2)

where 𝜀p̅ is the effective plastic strain and 𝐸p is given in terms of Young’s modulus and 
the tangent modulus by 

𝐸p =
𝐸𝐸t

𝐸 − 𝐸t
. (22.19.3)

 
 Both Young's modulus and the tangent modulus may optionally be made 
functions of strain rate by specifying a load curve ID giving their values as a function of 
strain rate.  If these load curve ID's are input as 0, then the constant values specified in 
the input are used. 
 
 Note that all load curves used to define quantities as a function of strain rate 
must have the same number of points at the same strain rate values.  This requirement 
is used to allow vectorized interpolation to enhance the execution speed of this 
constitutive model. 
 
 This model also contains a simple mechanism for modeling material failure.  This 
option is activated by specifying a load curve ID defining the effective stress at failure 
as a function of strain rate.  For solid elements, once the effective stress exceeds the 
failure stress the element is deemed to have failed and is removed from the solution.  
For shell elements the entire shell element is deemed to have failed if all integration 
points through the thickness have an effective stress that exceeds the failure stress.  
After failure the shell element is removed from the solution. 
 
 In addition to the above failure criterion, this material model also supports a 
shell element deletion criterion based on the maximum stable time step size for the 
element, Δ𝑡max.  Generally, Δ𝑡max goes down as the element becomes more distorted.  
To assure stability of time integration, the global LS-DYNA time step is the minimum of 
the Δ𝑡max values calculated for all elements in the model.  Using this option allows the 
selective deletion of elements whose time step Δ𝑡max has fallen below the specified 
minimum time step, Δ𝑡crit.  Elements which are severely distorted often indicate that 
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material has failed and supports little load, but these same elements may have very 
small time steps and therefore control the cost of the analysis.  This option allows these 
highly distorted elements to be deleted from the calculation, and, therefore, the analysis 
can proceed at a larger time step, and, thus, at a reduced cost.  Deleted elements do not 
carry any load, and are deleted from all applicable slide surface definitions.  Clearly, 
this option must be judiciously used to obtain accurate results at a minimum cost.
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22.20  Material Model 20:  Rigid 

 The rigid material type 20 provides a convenient way of turning one or more 
parts comprised of beams, shells, or solid elements into a rigid body.  Approximating a 
deformable body as rigid is a preferred modeling technique in many real world 
applications.  For example, in sheet metal forming problems the tooling can properly 
and accurately be treated as rigid.  In the design of restraint systems the occupant can, 
for the purposes of early design studies, also be treated as rigid.  Elements which are 
rigid are bypassed in the element processing and no storage is allocated for storing 
history variables; consequently, the rigid material type is very cost efficient. 
 
 Two unique rigid part IDs may not share common nodes unless they are merged 
together using the rigid body merge option.  A rigid body may be made up of disjoint 
finite element meshes, however.  LS-DYNA assumes this is the case since this is a 
common practice in setting up tooling meshes in forming problems. 
 
 All elements which reference a given part ID corresponding to the rigid material 
should be contiguous, but this is not a requirement.  If two disjoint groups of elements 
on opposite sides of a model are modeled as rigid, separate part ID's should be created 
for each of the contiguous element groups if each group is to move independently.  This 
requirement arises from the fact that LS-DYNA internally computes the six rigid body 
degrees-of-freedom for each rigid body (rigid material or set of merged materials), and 
if disjoint groups of rigid elements use the same part ID, the disjoint groups will move 
together as one rigid body.   
 
 Inertial properties for rigid materials may be defined in either of two ways.  By 
default, the inertial properties are calculated from the geometry of the constituent 
elements of the rigid material and the density specified for the part ID.  Alternatively, 
the inertial properties and initial velocities for a rigid body may be directly defined, and 
this overrides data calculated from the material property definition and nodal initial 
velocity definitions. 
 
 Young's modulus, E, and Poisson's ratio, υ are used for determining sliding 
interface parameters if the rigid body interacts in a contact definition.  Realistic values 
for these constants should be defined since unrealistic values may contribute to 
numerical problem in contact.
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22.21  Material Model 21:  Thermal Orthotropic Elastic 

 In the implementation for three-dimensional continua a total Lagrangian 
formulation is used.  In this approach the material law that relates second Piola-
Kirchhoff stress 𝐒 to the Green-St.  Venant strain 𝐄 is 

𝐒 = 𝐂 ⋅ 𝐄 = 𝐓T𝐂l𝐓 ⋅ 𝐄, (22.21.1)

where 𝐓 is the transformation matrix [Cook 1974]. 

𝐓 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡ 𝑙12 𝑚1

2 𝑛1
2 𝑙1𝑚1 𝑚1𝑛1 𝑛1𝑙1

𝑙22 𝑚2
2 𝑛2

2 𝑙2𝑚2 𝑚2𝑛2 𝑛2𝑙2
𝑙32 𝑚3

2 𝑛3
2 𝑙3𝑚3 𝑚3𝑛3 𝑛3𝑙3

2𝑙1𝑙2 2𝑚1𝑚2 2𝑛1𝑛2 (𝑙1𝑚2 + 𝑙2𝑚1) (𝑚1𝑛2 + 𝑚2𝑛1) (𝑛1𝑙2 + 𝑛2𝑙1)
2𝑙2𝑙3 2𝑚2𝑚3 2𝑛2𝑛3 (𝑙2𝑚3 + 𝑙3𝑚2) (𝑚2𝑛3 + 𝑚3𝑛2) (𝑛2𝑙3 + 𝑛3𝑙2)
2𝑙3𝑙1 2𝑚3𝑚1 2𝑛3𝑛1 (𝑙3𝑚1 + 𝑙1𝑚3) (𝑚3𝑛1 + 𝑚1𝑛3) (𝑛3𝑙1 + 𝑛1𝑙3)⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

, (22.21.2)

𝑙𝑖, 𝑚𝑖, 𝑛𝑖 are the direction cosines 

𝑥𝑖
′ = 𝑙𝑖𝑥1 + 𝑚𝑖𝑥2 + 𝑛𝑖𝑥3       for  𝑖 = 1, 2, 3, (22.21.3)

and 𝑥𝑖
′ denotes the material axes.  The constitutive matrix 𝐂l is defined in terms of the 

material axes as 

𝐂l−1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸11

−
𝜐21
𝐸22

−
𝜐31
𝐸33

0 0 0

−
𝜐12
𝐸 11

1
𝐸22

−
𝜐32
𝐸33

0 0 0

−
𝜐13
𝐸11

−
𝜐23
𝐸22

1
𝐸33

0 0 0

0 0 0
1
𝐺12

0 0

0 0 0 0
1
𝐺23

0

0 0 0 0 0
1
𝐺31⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (22.21.4)

where the subscripts denote the material axes, i.e., 
υ𝑖𝑗 = υ𝑥′𝑖 𝑥′𝑗 and 𝐸𝑖𝑖 = 𝐸𝑥′𝑖. (22.21.5)

 
 Since 𝐂l is symmetric 

υ12
𝐸11

=
υ21
𝐸22

, etc. (22.21.6)
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 The vector of Green-St.  Venant strain components is 

𝐄T = [𝐸11 𝐸22 𝐸33 𝐸12 𝐸23 𝐸31], (22.21.7)

which include the local thermal strains which are integrated in time: 

𝜀𝑎𝑎𝑛+1 = 𝜀𝑎𝑎𝑛 + 𝛼𝑎(𝑇𝑛+1 − 𝑇𝑛),
𝜀𝑏𝑏

𝑛+1 = 𝜀𝑏𝑏
𝑛 + 𝛼𝑏(𝑇𝑛+1 − 𝑇𝑛), 

𝜀𝑐𝑐𝑛+1 = 𝜀𝑐𝑐𝑛 + 𝛼𝑐(𝑇𝑛+1 − 𝑇𝑛).
(22.21.8)

 
 After computing 𝑆𝑖𝑗 we use Equation (18.32) to obtain the Cauchy stress.  This 
model will predict realistic behavior for finite displacement and rotations as long as the 
strains are small. 
 
 For shell elements, the stresses are integrated in time and are updated in the 
corotational coordinate system.  In this procedure the local material axes are assumed to 
remain orthogonal in the deformed configuration.  This assumption is valid if the 
strains remain small.
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22.22  Material Model 22:  Chang-Chang Composite Failure 
Model 

 For shells, five material parameters are used in the three failure criteria.  These 
are [Chang and Chang 1987a, 1987b]: 

• 𝑆1, longitudinal tensile strength 

• 𝑆2, transverse tensile strength 

• 𝑆12, shear strength 

• 𝐶2, transverse compressive strength 

• 𝛼, nonlinear shear stress parameter. 

𝑆1, 𝑆2, 𝑆12, and 𝐶2 are obtained from material strength measurement.  𝛼 is defined by 
material shear stress-strain measurements.  In plane stress, the strain is given in terms 
of the stress as 

𝜀1 =
1

𝐸1
(𝜎1 − 𝜐1𝜎2),

𝜀2 =
1

𝐸2
(𝜎2 − 𝜐2𝜎1), 

2𝜀12 =
1
𝐺12
𝜏12 + 𝛼𝜏12

3 .

(22.22.1)

 
 The third equation defines the nonlinear shear stress parameter 𝛼.  A fiber matrix 
shearing term augments each damage mode: 

𝜏̅ =

𝜏12
2

2𝐺12
+ 3

4 𝛼𝜏12
4

𝑆12
2

2𝐺12
+ 3

4 𝛼𝑆12
4

, (22.22.2)

which is the ratio of the shear stress to the shear strength. 
 
 The matrix cracking failure criteria is determined from 

𝐹matrix = (
𝜎2
𝑆2

)
2

+ 𝜏̅, (22.22.3)

where failure is assumed whenever 𝐹matrix > 1.  If 𝐹matrix > 1, then the material 
constants 𝐸2, 𝐺12, 𝜐1, and 𝜐2 are set to zero. 
 
 The compression failure criteria is given as 
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𝐹comp = (
𝜎2

2𝑆12
)

2
+

⎣
⎢⎡(
𝐶2

2𝑆12
)

2
− 1

⎦
⎥⎤

𝜎2
𝐶2

+ 𝜏̅, (22.22.4)

where failure is assumed whenever 𝐹comb > 1.  If 𝐹comb > 1, then the material constants 
𝐸2, 𝜐1, and 𝜐2 are set to zero. 
 
 The final failure mode is due to fiber breakage. 

𝐹fiber = (
𝜎1
S1

)
2

+ 𝜏̅, (22.22.5)

Failure is assumed whenever 𝐹fiber > 1.  If 𝐹fiber > 1, then the constants 𝐸1, 𝐸2, 𝐺12 𝜐1 
and 𝜐2 are set to zero. 
 
For solids, a fourth failure mode corresponding to delamination is computed as    

𝐹delam = (
max (0.0, 𝜎3)

S3
)

2
+ (
𝜏23
S23

)
2

+ (
𝜏31
S31

)
2
 

This involves three additional material parameters. 

• 𝑆3, normal tensile strength 

• 𝑆23, transverse shear strength 

• 𝑆31, transverse shear strength 

 

(22.22.140)
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22.23  Material Model 23:  Thermal Orthotropic Elastic with 
12 Curves 

 In the implementation for three-dimensional continua a total Lagrangian 
formulation is used.  In this approach the material law that relates second Piola-
Kirchhoff stress 𝐒 to the Green-St.  Venant strain 𝐄 is 

𝐒 = 𝐂 ⋅ 𝐄 = 𝐓T𝐂l𝐓 ⋅ 𝐄, (22.23.1)

where 𝐓 is the transformation matrix [Cook 1974]. 

𝐓 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎢
⎡ 𝑙12 𝑚1

2 𝑛1
2 𝑙1𝑚1 𝑚1𝑛1 𝑛1𝑙1

𝑙22 𝑚2
2 𝑛2

2 𝑙2𝑚2 𝑚2𝑛2 𝑛2𝑙2
𝑙32 𝑚3

2 𝑛3
2 𝑙3𝑚3 𝑚3𝑛3 𝑛3𝑙3

2𝑙1𝑙2 2𝑚1𝑚2 2𝑛1𝑛2 (𝑙1𝑚2 + 𝑙1𝑚1) (𝑚1𝑛2 + 𝑚2𝑛1) (𝑛1𝑙2 + 𝑛2𝑙1)
2𝑙2𝑙3 2𝑚2𝑚3 2𝑛2𝑛3 (𝑙2𝑚3 + 𝑙3𝑚2) (𝑚2𝑛3 + 𝑚3𝑛2) (𝑛2𝑙3 + 𝑛3𝑙2)
2𝑙3𝑙1 2𝑚3𝑚1 2𝑛3𝑛1 (𝑙3𝑚1 + 𝑙1𝑚3) (𝑚3𝑛1 + 𝑚1𝑛3) (𝑛3𝑙1 + 𝑛1𝑙3)⎦

⎥⎥
⎥⎥
⎥⎥
⎥
⎤

, (22.23.2)

𝑙𝑖, 𝑚𝑖, 𝑛𝑖 are the direction cosines 

𝑥𝑖
′ = 𝑙𝑖𝑥1 + 𝑚𝑖𝑥2 + 𝑛𝑖𝑥3 for 𝑖 = 1, 2, 3, (22.23.3)

and 𝑥𝑖
′ denotes the material axes.  The temperature dependent constitutive matrix 𝐂l is 

defined in terms of the material axes as 

𝐂l−1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸11(𝑇) −

𝜐21(𝑇)
𝐸22(𝑇) −

𝜐31(𝑇)
𝐸33(𝑇) 0 0 0

−
𝜐12(𝑇)
𝐸11(𝑇)

1
𝐸22(𝑇) −

𝜐32(𝑇)
𝐸33(𝑇) 0 0 0

−
𝜐13(𝑇)
𝐸11(𝑇) −

𝜐23(𝑇)
𝐸 22(𝑇)

1
𝐸33(𝑇) 0 0 0

0 0 0
1

𝐺12(𝑇) 0 0

0 0 0 0
1

𝐺23(𝑇) 0

0 0 0 0 0
1

𝐺31(𝑇)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (22.23.4)

where the subscripts denote the material axes, i.e., 
𝜐𝑖𝑗 = υ𝑥′𝑖 𝑥′𝑗 and 𝐸𝑖𝑖 = 𝐸𝑥′𝑖. (22.23.5)

 
 Since 𝐂l is symmetric 

𝜐12
𝐸11

=
𝜐21
𝐸22

, etc. (22.23.6)
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 The vector of Green-St.  Venant strain components is 

𝐄T = [𝐸11 𝐸22 𝐸33 𝐸12 𝐸23 𝐸31], (22.23.7)

which include the local thermal strains which are integrated in time: 

𝜀𝑎𝑎𝑛+1 = 𝜀𝑎𝑎𝑛 + 𝛼𝑎 (𝑇𝑛+1
2) [𝑇𝑛+1 − 𝑇𝑛],

𝜀𝑏𝑏
𝑛+1 = 𝜀𝑏𝑏

𝑛 + 𝛼𝑏 (𝑇𝑛+1
2) [𝑇𝑛+1 − 𝑇𝑛], 

𝜀𝑐𝑐𝑛+1 = 𝜀𝑐𝑐𝑛 + 𝛼𝑐 (𝑇𝑛+1
2) [𝑇𝑛+1 − 𝑇𝑛].

(22.23.8)

 
 After computing 𝑆𝑖𝑗 we use Equation (16.32) to obtain the Cauchy stress.  This 
model will predict realistic behavior for finite displacement and rotations as long as the 
strains are small. 
 
 For shell elements, the stresses are integrated in time and are updated in the 
corotational coordinate system.  In this procedure the local material axes are assumed to 
remain orthogonal in the deformed configuration.  This assumption is valid if the 
strains remain small.
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22.24  Material Model 24:  Piecewise Linear Isotropic 
Plasticity 

 This plasticity treatment in this model is quite similar to Model 10, but unlike 10, 
it includes strain rate effects and does not use an equation of state.  Deviatoric stresses 
are determined that satisfy the yield function 

𝜙 =
1
2 𝑠𝑖𝑗𝑠𝑖𝑗 −

𝜎y2

3 ≤ 0, (22.24.1)

where 

σy = 𝛽[𝜎0 + 𝑓h(𝜀eff
p )], (22.24.2)

where the hardening function 𝑓h(𝜀eff
p ) can be specified in tabular form as an option.  

Otherwise, linear hardening of the form 

𝑓h(𝜀eff
p ) = 𝐸p(𝜀eff

p ), (22.24.3)

is assumed where 𝐸p and 𝜀eff
p  are given in Equations (22.3.6) and (8.61), respectively.  

The parameter 𝛽 accounts for strain rate effects.  For complete generality a table 
defining the yield stress versus plastic strain may be defined for various levels of 
effective strain rate. 
 
 In the implementation of this material model, the deviatoric stresses are updated 
elastically (see material model 1), the yield function is checked, and if it is satisfied the 
deviatoric stresses are accepted.  If it is not, an increment in plastic strain is computed: 

Δ𝜀eff
p =

(3
2 𝑠𝑖𝑗

∗ 𝑠𝑖𝑗
∗ )

1
2⁄

− 𝜎y
3𝐺 + 𝐸p

, (22.24.4)

is the shear modulus and 𝐸p is the current plastic hardening modulus.  The trial 
deviatoric stress state 𝑠𝑖𝑗

∗  is scaled back: 

𝑠𝑖𝑗
𝑛+1 =

𝜎𝑦

(3
2 𝑠𝑖𝑗

∗ 𝑠𝑖𝑗
∗ )

1
2⁄

𝑠𝑖𝑗
∗ . (22.24.5)

 
 For shell elements, the above equations apply, but with the addition of an 
iterative loop to solve for the normal strain increment, such that the stress component 
normal to the mid surface of the shell element approaches zero. 
 
 Three options to account for strain rate effects are possible: 
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1. Strain rate may be accounted for using the Cowper-Symonds model which 
scales the yield stress with the factor 

𝛽 = 1 + (
𝜀 ̇
𝐶)

1 𝑝⁄
. (22.24.6)

 where 𝜀 ̇is the strain rate. 

2. For complete generality a load curve, defining 𝛽, which scales the yield stress 
may be input instead.  In this curve the scale factor versus strain rate is de-
fined. 

3. If different stress versus strain curves can be provided for various strain rates, 
the option using the reference to a table definition can be used.  See Fig-
ure 19.24.1. 

 
 A fully viscoplastic formulation is optional which incorporates the different 
options above within the yield surface.  An additional cost is incurred over the simple 
scaling but the improvement is results can be dramatic. 
 
 If a table ID is specified a curve ID is given for each strain rate, see Section 23.  
Intermediate values are found by interpolating between curves.  Effective plastic strain 
versus yield stress is expected.  If the strain rate values fall out of range, extrapolation is 
not used; rather, either the first or last curve determines the yield stress depending on 
whether the rate is low or high, respectively.



Material Models LS-DYNA Theory Manual 

20-84 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

22.25  Material Model 25:  Kinematic Hardening Cap Model 

 The implementation of an extended two invariant cap model, suggested by 
Stojko [1990], is based on the formulations of Simo, et al.  [1988, 1990] and Sandler and 
Rubin [1979].  In this model, the two invariant cap theory is extended to include 
nonlinear kinematic hardening as suggested by Isenberg, Vaughn, and Sandler [1978].  
A brief discussion of the extended cap model and its parameters is given below. 
 
 The cap model is formulated in terms of the invariants of the stress tensor.  The 
square root of the second invariant of the deviatoric stress tensor, √𝐽2D is found from 
the deviatoric stresses 𝐒 as 

√𝐽2D ≡ √
1
2 𝑠𝑖𝑗𝑠𝑖𝑗, (22.25.1)

and is the objective scalar measure of the distortional or shearing stress.  The first 
invariant of the stress, 𝐽1, is the trace of the stress tensor. 
 
 The cap model consists of three surfaces in √𝐽2D − 𝐽1 space, as shown in Figure 
22.25.1.  First, there is a failure envelope surface, denoted 𝑓1 in the figure.  The 
functional form of 𝑓1 is 

𝑓1 = √𝐽2D − min(𝐹e(𝐽1), 𝑇mises), (22.25.2)

where 𝐹e is given by 
𝐹e(𝐽1) ≡ 𝛼 − 𝛾exp(−𝛽𝐽1) + 𝜃𝐽1. (22.25.3)

1

2

3

4

5

ε
p
eff

σy

Figure 22.25.1.  Rate effects may be accounted for by defining a table of
curves. 
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and 𝑇mises ≡ |𝑋(𝜅𝑛) − 𝐿(𝜅𝑛)|.  This failure envelope surface is fixed in √𝐽2D − 𝐽1 space, 
and therefore does not harden unless kinematic hardening is present.  Next, there is a 
cap surface, denoted 𝑓2 in the figure, with 𝑓2 given by 

𝑓2 = √𝐽2D − 𝐹c(𝐽1, 𝜅), (22.25.4)

where 𝐹c is defined by 

𝐹c(𝐽1, 𝜅) ≡
1
𝑅

√[𝑋(𝜅) − 𝐿(𝜅)] 2 − [𝐽1 − 𝐿(𝜅)] 2, (22.25.5)

𝑋(𝜅) is the intersection of the cap surface with the 𝐽1 axis 
𝑋(𝜅) = 𝜅 + 𝑅𝐹e(𝜅), (22.25.6)

and 𝐿(𝜅) is defined by  

𝐿(𝜅) ≡ {𝜅 𝜅 > 0
0 𝜅 ≤ 0. (22.25.7)

 
 The hardening parameter 𝜅 is related to the plastic volume change 𝜀v

p through the 
hardening law 

𝜀v
p = W{1 − exp[−𝐷(𝑋(κ) − 𝑋0)]}. (22.25.8)

 
 Geometrically, 𝜅 is seen in the figure as the 𝐽1 coordinate of the intersection of the 
cap surface and the failure surface.  Finally, there is the tension cutoff surface, denoted 
𝑓3 in the figure.  The function 𝑓3 is given by 

𝑓3 + 𝑇 − 𝐽1, (22.25.9)
where 𝑇 is the input material parameter which specifies the maximum hydrostatic 
tension sustainable by the material.  The elastic domain in √𝐽2D − 𝐽1 space is then 

T O

f1

f3

J1

f2

X( )

J = F
c

J = F
e

J

2D

2D

2D

 Figure 22.25.2.  The yield surface of the two-invariant cap model in
pressure √𝐽2D − 𝐽1 space Surface 𝑓1 is the failure envelope, 𝑓2 is the cap surface,
and 𝑓3 is the tension cutoff.   
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bounded by the failure envelope surface above, the tension cutoff surface on the left, 
and the cap surface on the right. 
 
 An additive decomposition of the strain into elastic and plastic parts is assumed: 

𝜀 = 𝜀 + 𝜀P, (22.25.10)

where 𝜀e is the elastic strain and 𝜀p is the plastic strain.  Stress is found from the elastic 
strain using Hooke’s law, 

𝜎 = 𝐶(𝜀 − 𝜀P), (22.25.11)

where 𝜎  is the stress and 𝐶 is the elastic constitutive tensor. 
 
 The yield condition may be written 

𝑓1(𝜎) ≤ 0,
𝑓2(𝜎, 𝜅) ≤ 0, 

𝑓3(𝜎) ≤ 0,
(22.25.12)

and the plastic consistency condition requires that 

𝜆̇𝑘𝑓𝑘 = 0
𝜆̇𝑘 ≥ 0

𝑘 = 1, 2, 3, (22.25.13)

where 𝜆𝑘 is the plastic consistency parameter for surface 𝑘.  If 𝑓𝑘 < 0, then 𝜆̇𝑘 = 0 and the 
response is elastic.  If 𝑓𝑘 > 0, then surface k is active and 𝜆̇𝑘 is found from the 
requirement that 𝑓𝑘̇ = 0. 
 
 Associated plastic flow is assumed, so using Koiter’s flow rule the plastic strain 
rate is given as the sum of contribution from all of the active surfaces, 

𝜀ṗ = ∑ 𝜆̇𝑘
∂𝑓𝑘
∂𝑠

3

𝑘=1
. (22.25.14)

 
 One of the major advantages of the cap model over other classical pressure-
dependent plasticity models is the ability to control the amount of dilatency produced 
under shear loading.  Dilatency is produced under shear loading as a result of the yield 
surface having a positive slope in √𝐽2D − 𝐽1 space, so the assumption of plastic flow in 
the direction normal to the yield surface produces a plastic strain rate vector that has a 
component in the volumetric (hydrostatic) direction (see Figure 22.25.1).  In models 
such as the Drucker-Prager and Mohr-Coulomb, this dilatency continues as long as 
shear loads are applied, and in many cases produces far more dilatency than is 
experimentally observed in material tests.  In the cap model, when the failure surface is 
active, dilatency is produced just as with the Drucker-Prager and Mohr-Columb 
models.  However, the hardening law permits the cap surface to contract until the cap 
intersects the failure envelope at the stress point, and the cap remains at that point.  The 
local normal to the yield surface is now vertical, and therefore the normality rule 
assures that no further plastic volumetric strain (dilatency) is created.  Adjustment of 
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the parameters that control the rate of cap contractions permits experimentally 
observed amounts of dilatency to be incorporated into the cap model, thus producing a 
constitutive law which better represents the physics to be modeled.  Another advantage 
of the cap model over other models such as the Drucker-Prager and Mohr-Coulomb is 
the ability to model plastic compaction.  In these models all purely volumetric response 
is elastic.  In the cap model, volumetric response is elastic until the stress point hits the 
cap surface.  Therefore, plastic volumetric strain (compaction) is generated at a rate 
controlled by the hardening law.  Thus, in addition to controlling the amount of 
dilatency, the introduction of the cap surface adds another experimentally observed 
response characteristic of geological material into the model. 
 
 The inclusion of kinematic hardening results in hysteretic energy dissipation 
under cyclic loading conditions.  Following the approach of Isenberg, et al., [1978] a 
nonlinear kinematic hardening law is used for the failure envelope surface when 
nonzero values of and N are specified.  In this case, the failure envelope surface is 
replaced by a family of yield surfaces bounded by an initial yield surface and a limiting 
failure envelope surface.  Thus, the shape of the yield surfaces described above remains 
unchanged, but they may translate in a plane orthogonal to the J axis. 
 
 Translation of the yield surfaces is permitted through the introduction of a “back 
stress” tensor, α.  The formulation including kinematic hardening is obtained by 
replacing the stress σ with the translated stress tensor 𝜂 ≡ 𝜎 − 𝛼 in all of the above 
equation.  The history tensor α is assumed deviatoric, and therefore has only 5 unique 
components.  The evolution of the back stress tensor is governed by the nonlinear 
hardening law 

𝛼 = c𝐹̅̅(𝜎, 𝛼) 𝜀ṗ, (22.25.15)

where c ̅ is a constant, 𝐹̅ is a scalar function of 𝜎  and 𝛼 and 𝜀ṗ is the rate of deviator 
plastic strain.  The constant may be estimated from the slope of the shear stress - plastic 
shear strain curve at low levels of shear stress. 
 
 The function 𝐹̅ is defined as 

𝐹̅ ≡ max (0,1 −
(𝜎 − 𝛼)𝛼
2N𝐹𝑒(𝐽1)), (22.25.16)

where N is a constant defining the size of the yield surface.  The value of N may be 
interpreted as the radial distant between the outside of the initial yield surface and the 
inside of the limit surface.  In order for the limit surface of the kinematic hardening cap 
model to correspond with the failure envelope surface of the standard cap model, the 
scalar parameter a must be replaced α − N in the definition 𝐹e. 
 
 The cap model contains a number of parameters which must be chosen to 
represent a particular material, and are generally based on experimental data.  The 
parameters 𝛼, 𝛽, 𝜃 and 𝛾 are usually evaluated by fitting a curve through failure data 
taken from a set of triaxial compression tests.  The parameters 𝑊, 𝐷, and X0 define the 
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cap hardening law.  The value W represents the void fraction of the uncompressed 
sample and 𝐷 governs the slope of the initial loading curve in hydrostatic compression.  
The value of R is the ration of major to minor axes of the quarter ellipse defining the cap 
surface.  Additional details and guidelines for fitting the cap model to experimental 
data are found in [Chen and Baladi, 1985].
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22.26  Material Model 26:  Crushable Foam 

 This orthotropic material model does the stress update in the local material 
system denoted by the subscripts, 𝑎, 𝑏, and 𝑐.  The material model requires the following 
input parameters: 

• E, Young’s modulus for the fully compacted material; 

• 𝜈, Poisson’s ratio for the compacted material;  

• 𝜎y, yield stress for fully compacted honeycomb;  

• LCA, load curve number for sigma-aa versus either relative volume or volumet-
ric strain (see Figure 19.26.1.); 

• LCB, load curve number for sigma-bb versus either relative volume or volumet-
ric strain  (default:  LCB = LCA); 

• LCC, the load curve number for sigma-cc versus either relative volume or 
volumetric strain (default: LCC = LCA); 

• LCS, the load curve number for shear stress versus either relative volume or 
volumetric strain (default LCS = LCA); 

• 𝑉f, relative volume at which the honeycomb is fully compacted;  

• 𝐸𝑎𝑎u, elastic modulus in the uncompressed configuration; 

• 𝐸𝑏𝑏u, elastic modulus in the uncompressed configuration; 

• 𝐸𝑐𝑐u, elastic modulus in the uncompressed configuration; 

• 𝐺𝑎𝑏u, elastic shear modulus in the uncompressed configuration; 

• 𝐺𝑏𝑐u, elastic shear modulus in the uncompressed configuration;  

• 𝐺𝑐𝑎u, elastic shear modulus in the uncompressed configuration; 

• LCAB, load curve number for sigma-ab versus either relative volume or 
volumetric strain (default:  LCAB = LCS);  

• LCBC, load curve number for sigma-bc versus either relative volume or 
volumetric strain default:  LCBC = LCS); 

• LCCA, load curve number for sigma-ca versus either relative volume or 
volumetric strain (default: LCCA = LCS);  

• LCSR, optional load curve number for strain rate effects. 

 
 The behavior before compaction is orthotropic where the components of the 
stress tensor are uncoupled, i.e., an 𝑎 component of strain will generate resistance in the 
local 𝑎 direction with no coupling to the local 𝑏 and 𝑐 directions.  The elastic moduli 
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vary linearly with the relative volume from their initial values to the fully compacted 
values: 

𝐸𝑎𝑎 = 𝐸𝑎𝑎u + 𝛽(𝐸 − 𝐸𝑎𝑎u),
𝐸𝑏𝑏 = 𝐸𝑏𝑏u + 𝛽(𝐸 − 𝐸𝑏𝑏u), 
𝐸𝑐𝑐 = 𝐸𝑐𝑐u + 𝛽(𝐸 − 𝐸𝑐𝑐u), 
𝐺𝑎𝑏 = 𝐺𝑎𝑏u + 𝛽(𝐺 − 𝐺𝑎𝑏u), 
𝐺𝑏𝑐 = 𝐺𝑏𝑐u + 𝛽(𝐺 − 𝐺𝑏𝑐u), 
𝐺𝑐𝑎 = 𝐺𝑐𝑎u + 𝛽(𝐺 − 𝐺𝑐𝑎u),

(22.26.1) 

where 

𝛽 = max [min (
1 − 𝑉min

1 − 𝑉𝑓
, 1) ,0], (22.26.2)

and 𝐺 is the elastic shear modulus for the fully compacted honeycomb material 

𝐺 =
𝐸

2(1 + 𝜈). (22.26.3)

 
 The relative volume V is defined as the ratio of the current volume over the 
initial volume; typically, 𝑉 = 1 at the beginning of a calculation.  The relative volume, 
𝑉min, is the minimum value reached during the calculation. 
 
 The load curves define the magnitude of the average stress as the material 
changes density (relative volume).  Each curve related to this model must have the same 

0

Curve extends into negative volumetric 

strain quadrant since LS-DYNA will 

extrapolate using the two end points. It 

is important that the extropolation does 

not extend into the negative stress 

region.

unloading and

reloading path

Unloading is based on the interpolated Young’s 

moduli which must provide an unloading 

tangent that exceeds the loading tangent.

strain: -εij

σij

Figure 22.26.1.  Stress quantity versus volumetric strain.  Note that the “yield
stress” at a volumetric strain of zero is nonzero.  In the load curve definition,
the “time” value is the volumetric strain and the “function” value is the yield
stress. 
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number of points and the same abscissa values.  There are two ways to define these 
curves: as a function of relative volume V, or as a function of volumetric strain defined 
as: 

𝜀𝑉 = 1 − 𝑉. (22.26.4)
 
 In the former, the first value in the curve should correspond to a value of relative 
volume slightly less than the fully compacted value.  In the latter, the first value in the 
curve should be less than or equal to zero corresponding to tension and should increase 
to full compaction.  When defining the curves, care should be taken that the 
extrapolated values do not lead to negative yield stresses. 
 
 At the beginning of the stress update we transform each element’s stresses and 
strain rates into the local element coordinate system.  For the uncompacted material, the 
trial stress components are updated using the elastic interpolated moduli according to: 

𝜎𝑎𝑎𝑛+1trial
= 𝜎𝑎𝑎𝑛 + 𝐸𝑎𝑎Δ𝜀𝑎𝑎,

𝜎𝑏𝑏
𝑛+1trial

= 𝜎𝑏𝑏
𝑛 + 𝐸𝑏𝑏Δ𝜀𝑏𝑏, 

𝜎𝑐𝑐𝑛+1trial
= 𝜎𝑐𝑐𝑛 + 𝐸𝑐𝑐Δ𝜀𝑐𝑐, 

𝜎𝑎𝑏
𝑛+1trial

= 𝜎𝑎𝑏𝑛 + 2𝐺𝑎𝑏Δ𝜀𝑎𝑏, 
𝜎𝑏𝑐

𝑛+1trial
= 𝜎𝑏𝑐

𝑛 + 2𝐺𝑏𝑐Δ𝜀𝑏𝑐, 
𝜎𝑐𝑎𝑛+1trial

= 𝜎𝑐𝑎𝑛 + 2𝐺𝑐𝑎Δ𝜀𝑐𝑎 = 1.

(22.26.5)

 
 Then we independently check each component of the updated stresses to ensure 
that they do not exceed the permissible values determined from the load curves, e.g., if 

∣𝜎𝑖𝑗
𝑛+1trial

∣ > 𝜆𝜎𝑖𝑗(𝑉min), (22.26.6)

then 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗(𝑉min)

𝜆𝜎𝑖𝑗
𝑛+1trial

∣𝜎𝑖𝑗
𝑛+1trial ∣

. (22.26.7)

 
 The parameter 𝜆 is either unity or a value taken from the load curve number, 
LCSR, that defines 𝜆 as a function of strain rate.  Strain rate is defined here as the 
Euclidean norm of the deviatoric strain rate tensor. 
 
 For fully compacted material we assume that the material behavior is elastic-
perfectly plastic and updated the stress components according to 

𝑠𝑖𝑗
trial = 𝑠𝑖𝑗

𝑛 + 2𝐺Δ𝜀𝑖𝑗
dev𝑛+1

2⁄ , (22.26.8)

where the deviatoric strain increment is defined as 
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Δ𝜀𝑖𝑗
dev = Δ𝜀𝑖𝑗 −

1
3 Δ𝜀𝑘𝑘𝛿𝑖𝑗. (22.26.9)

 
 We next check to see if the yield stress for the fully compacted material is 
exceeded by comparing  

𝑠eff
trial = (

3
2 𝑠𝑖𝑗

trial𝑠𝑖𝑗
trial)

1
2⁄
. (22.26.10)

the effective trial stress, to the yield stress 𝜎y.  If the effective trial stress exceeds the 
yield stress, we simply scale back the stress components to the yield surface: 

𝑠𝑖𝑗
𝑛+1 =

𝜎y
𝑠eff

trial 𝑠𝑖𝑗
trial. (22.26.11)

 
 We can now update the pressure using the elastic bulk modulus, 𝐾: 

𝑝𝑛+1 = 𝑝𝑛 − 𝐾Δ𝜀𝑘𝑘
𝑛+1

2⁄ ,

𝐾 =
𝐸

3(1 − 2𝜈),
(22.26.12)

and obtain the final value for the Cauchy stress 

𝜎𝑖𝑗
𝑛+1 = 𝑠𝑖𝑗

𝑛+1 − 𝑝𝑛+1𝛿𝑖𝑗. (22.26.13)

 
 After completing the stress update, we transform the stresses back to the global 
configuration.
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22.27  Material Model 27:  Incompressible Mooney-Rivlin 
Rubber 

 The Mooney-Rivlin material model is based on a strain energy function, 𝑊, as 
follows  

𝑊 = A(𝐼1 − 3) + B(𝐼2 − 3) + C(
1
𝐼3

2 − 1) + D(𝐼3 − 1)2. (22.27.1)

 
 A and B are user defined constants, whereas C and D are related to A and B as 
follows 

C =
1
2A + B,

D =
A(5𝜐 − 2) + B(11𝜐 − 5)

2(1 − 2𝜐) .
(22.27.2)

 
 The derivation of the constants C and D is straightforward [Feng, 1993] and is 
included here since we were unable to locate it in the literature.  The principal 
components of Cauchy stress, 𝜎𝑖, are given by [Ogden, 1984] 

𝐽𝜎𝑖 = 𝜆𝑖
∂𝑊
∂𝜆𝑖

. (22.27.3)

 For uniform dilation 
𝜆1 = 𝜆2 = 𝜆3 = 𝜆, (22.27.4)

thus the pressure, 𝑝, is obtained (please note the sign convention), 

𝑝 = 𝜎1 = 𝜎2 = 𝜎3 =
2
𝜆3 (𝜆2 𝜕𝑊

𝜕𝐼1
+ 2𝜆4 𝜕𝑊

𝜕𝐼2
+ 𝜆6 𝜕𝑊

𝜕𝐼3
). (22.27.5)

 
 The relative volume, 𝑉, can be defined in terms of the stretches as: 

𝑉 = 𝜆3 =
new volume
old volume . (22.27.6)

 
 For small volumetric deformations the bulk modulus, 𝐾, can be defined as the 
ratio of the pressure over the volumetric strain as the relative volume approaches unity: 

𝐾 = lim
𝑉→1

(
𝑝

𝑉 − 1). (22.27.7)

 
 The partial derivatives of 𝑊 lead to: 
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∂𝑊
∂𝐼1

= A, 

𝜕𝑊
𝜕𝐼2

= B, 

𝜕𝑊
𝜕𝐼3

= −2C𝐼3
−3 + 2D(𝐼3 − 1) = −2C𝜆−18 + 2D(𝜆6 − 1), 

𝑝 =
2
𝜆3 {A𝜆2 + 2𝜆4B + 𝜆6[−2C𝜆−18 + 2D(𝜆6 − 1)]} 

=
2
𝜆3 {A𝜆2 + 2𝜆4B − 2C𝜆−12 + 2D(𝜆12 − 𝜆6)}. 

(22.27.8)

 
 In the limit as the stretch ratio approaches unity, the pressure must approach 
zero: 

lim
𝜆→1

𝑝 = 0. (22.27.9)

 
 Therefore, A+ 2B − 2C = 0 and 

C = 0.5A + B. (22.27.10)
 
 To solve for D we note that: 

𝐾 = lim
𝑉→1

(
𝑝

𝑉 − 1) 

= lim
λ→1

2
𝜆3 {A𝜆2 + 2𝜆4B − 2C𝜆−12 + 2D(𝜆12 − 𝜆6)}

𝜆3 − 1
 

= 2lim
λ→1

A𝜆2 + 2𝜆4B − 2C𝜆−12 + 2D(𝜆12 − 𝜆6)
𝜆6 − 𝜆3  

= 2lim
λ→1

2A𝜆 + 8𝜆3B + 24C𝜆−13 + 2D(12𝜆11 − 6𝜆5)
6𝜆5 − 3𝜆2  

=
2
3 (2A + 8B + 24C + 12D) 

=
2
3 (14A + 32B + 12D).

(22.27.11)

 
 We therefore obtain: 

14A + 32B + 12D =
3
2𝐾 =

3
2 (

2𝐺(1 + 𝜐)
3(1 − 2𝜐)) =

2(A + B)(1 + 𝜐)
(1 − 2𝜐) . (22.27.12)

Solving for D we obtain the desired equation: 

D =
A(5𝜐 − 2) + B(11𝜐 − 5)

2(1 − 2𝜐) . (22.27.13)
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 The invariants 𝐼1 − 𝐼3 are related to the right Cauchy-Green tensor C as 

𝐼1 = 𝐶𝑖𝑖,

𝐼2 =
1
2𝐶𝑖𝑖

2 −
1
2𝐶𝑖𝑗𝐶𝑖𝑗, 

𝐼3 = det(𝐶𝑖𝑗).
(22.27.14)

 
 The second Piola-Kirchhoff stress tensor, S, is found by taking the partial 
derivative of the strain energy function with respect to the Green-Lagrange strain 
tensor, E. 

𝑆𝑖𝑗 =
∂𝑊
∂𝐸𝑖𝑗

= 2
∂𝑊
∂𝐶𝑖𝑗

= 2 [A
∂𝐼1
∂𝐶𝑖𝑗

+ B
∂𝐼2
∂𝐶𝑖𝑗

+ (2D(𝐼3 − 1) −
2C
𝐼3

2 )
∂I3
∂𝐶𝑖𝑗

]. (22.27.15)

 
 The derivatives of the invariants 𝐼1 − 𝐼3 are 

∂𝐼1
∂𝐶𝑖𝑗

= 𝛿𝑖𝑗,

∂𝐼2
∂𝐶𝑖𝑗

= 𝐼1𝛿𝑖𝑗 − 𝐶𝑖𝑗, 

∂𝐼3
∂𝐶𝑖𝑗

= 𝐼3𝐶𝑖𝑗
−1.

(22.27.16)

 
 Inserting Equation (22.27.16) into Equation (22.27.15) yields the following 
expression for the second Piola-Kirchhoff stress: 

𝑆𝑖𝑗 = 2A𝛿𝑖𝑗 + 2B(𝐼1𝛿𝑖𝑗 − 𝐶𝑖𝑗) − 4C
1
𝐼3

2 𝐶𝑖𝑗
−1 + 4D(𝐼3 − 1)I3𝐶𝑖𝑗

−1. (22.27.17)

Equation (22.27.17) can be transformed into the Cauchy stress by using the push 
forward operation 

𝜎𝑖𝑗 =
1
𝐽 𝐹𝑖𝑘𝑆𝑘𝑙𝐹𝑗𝑙. (22.27.18)

where 𝐽 = det(𝐹𝑖𝑗). 
 

22.27.1  Stress Update for Shell Elements 

 As a basis for discussing the algorithmic tangent stiffness for shell elements in 
Section 19.27.3, the corresponding stress update as it is done in LS-DYNA is shortly 
recapitulated in this section.  When dealing with shell elements, the stress (as well as 
constitutive matrix) is typically evaluated in corotational coordinates after which it is 
transformed back to the standard basis according to 

𝜎𝑖𝑗 = 𝑅𝑖𝑘𝑅𝑗𝑙𝜎̂𝑘𝑙. (22.27.19)
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 Here 𝑅𝑖𝑗 is the rotation matrix containing the corotational basis vectors.  The so-
called corotated stress 𝜎̂𝑖𝑗 is evaluated using Equation 19.27.21 with the exception that 
the deformation gradient is expressed in the corotational coordinates, i.e., 

𝜎̂𝑖𝑗 =
1
𝐽 𝐹𝑖̂𝑘𝑆𝑘𝑙𝐹𝑗̂𝑙, (22.27.20)

where 𝑆𝑖𝑗 is evaluated using Equation (22.27.17). The corotated deformation gradient is 
incrementally updated with the aid of a time increment Δ𝑡, the corotated velocity 
gradient 𝐿̂𝑖𝑗, and the angular velocity 𝛺̂𝑖𝑗 with which the embedded coordinate system 
is rotating. 

𝐹𝑖̂𝑗 = (𝛿𝑖𝑘 + Δ𝑡𝐿̂𝑖𝑘 − Δ𝑡𝛺̂𝑖𝑘)𝐹𝑘̂𝑗. (22.27.21)

 
 The primary reason for taking a corotational approach is to facilitate the 
maintenance of a vanishing normal stress through the thickness of the shell, something 
that is achieved by adjusting the corresponding component of the corotated velocity 
gradient 𝐿̂33 accordingly.  The problem can be stated as to determine 𝐿̂33 such that when 
updating the deformation gradient through Equation (22.27.21) and subsequently the 
stress through Equation (22.27.20), 𝜎̂33 = 0.  To this end, it is assumed that 

𝐿̂33 = 𝛼(𝐿̂11 + 𝐿̂22), (22.27.22)

for some parameter α that is determined in the following three step procedure.  In the 
first two steps, 𝛼 = 0 and 𝛼 = −1, respectively, resulting in two trial normal stresses 𝜎̂33

(0) 
and 𝜎̂33

(−1). Then it is assumed that the actual normal stress depends linearly on 𝛼, 
meaning that the latter can be determined from 

0 = 𝜎33
(𝛼) = 𝜎33

(0) + 𝛼(𝜎33
(0) − 𝜎33

(−1)). (22.27.23)

 
 In LS-DYNA, α is given by 

𝛼 =

⎩{
{{
⎨
{{
{⎧ 𝜎̂33

(0)

𝜎̂33
(−1) − 𝜎̂33

(0) ∣𝜎̂33
(−1) − 𝜎̂33

(0)∣ ≥ 10−4

− 1 otherwise
, (22.27.24)

and the stresses are determined from this value of α. Finally, to make sure that the 
normal stress through the thickness vanishes, it is set to 0 (zero) before exiting the stress 
update routine. 
 

22.27.2  Derivation of the Continuum Tangent Stiffness 

 This section will describe the derivation of the continuum tangent stiffness for 
the Mooney-Rivlin material.  For solid elements, the continuum tangent stiffness is 
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chosen in favor of an algorithmic (consistent) tangential modulus as the constitutive 
equation at hand is smooth and a consistent tangent modulus is not required for good 
convergence properties.  For shell elements however, this stiffness must ideally be 
modified in order to account for the zero normal stress condition.  This modification, 
and its consequences, are discussed in the next section. 
 
 The continuum tangent modulus in the reference configuration is per definition, 

𝐸𝑖𝑗𝑘𝑙
PK =

∂𝑆𝑖𝑗

∂𝐸𝑘𝑙
= 2

∂𝑆𝑖𝑗

∂𝐶𝑘𝑙
. (22.27.25)

 
 Splitting up the differentiation of Equation (22.27.17) we get 

∂(𝐼1𝛿𝑖𝑗 − 𝐶𝑖𝑗)
∂𝐶𝑘𝑙

= 𝛿𝑘𝑙𝛿𝑖𝑗 −
1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (22.27.26)

𝜕 ( 1
𝐼3

2 𝐶𝑖𝑗
−1)

𝜕𝐶𝑘𝑙
= −

2
𝐼3

2 𝐶𝑘𝑙
−1𝐶𝑖𝑗

−1 −
1

2𝐼3
2 (𝐶𝑘𝑗

−1𝐶𝑖𝑙
−1 + 𝐶𝑙𝑗

−1𝐶𝑖𝑘
−1) (22.27.27)

𝜕(𝐼3(𝐼3 − 1)𝐶𝑖𝑗
−1)

𝜕𝐶𝑘𝑙
= 𝐼3(2𝐼3 − 1)𝐶𝑘𝑙

−1𝐶𝑖𝑗
−1 −

1
2 𝐼3(𝐼3 − 1)(𝐶𝑘𝑗

−1𝐶𝑖𝑙
−1 + 𝐶𝑙𝑗

−1𝐶𝑖𝑘
−1). (22.27.28)

 
 Since LS-DYNA needs the tangential modulus for the Cauchy stress, it is a good 
idea to transform the terms in Equation (22.27.27) before summing them up.  The push 
forward operation for the fourth-order tensor 𝐸𝑖𝑗𝑘𝑙

pk  is 

𝐸𝑖𝑗𝑘𝑙
TC =

1
𝐽 𝐹𝑖𝑎𝐹𝑗𝑏𝐹𝑘𝑐𝐹𝑙𝑑𝐸𝑎𝑏𝑐𝑑PK . (22.27.29)

 
 Since the right Cauchy-Green tensor is 𝐂 = 𝐅T𝐅 and the left Cauchy-Green tensor 
is 𝐛 = 𝐅T𝐅, and the determinant and trace of the both stretches are equal, the 
transformation is in practice carried out by interchanging 

𝐶𝑖𝑗
−1 → 𝛿𝑖𝑗, (22.27.30)

𝛿𝑖𝑗 → 𝑏𝑖𝑗. (22.27.31)

 
 The end result is then 
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𝐽𝐸𝑖𝑗𝑘𝑙
TC = 4B [𝑏𝑘𝑙𝑏𝑖𝑗 −

1
2 (𝑏𝑖𝑘𝑏𝑗𝑙 + 𝑏𝑖𝑙𝑏𝑗𝑘)] +

4C
I3
2 [4𝛿𝑖𝑗𝛿𝑘𝑙 + (𝛿𝑘𝑗𝛿𝑖𝑙 + 𝛿𝑙𝑗𝛿𝑖𝑚)] + 

8D𝐼3 [(2𝐼3 − 1)𝛿𝑖𝑗𝛿𝑘𝑙 −
1
2 (𝐼3 − 1)(𝛿𝑘𝑗𝛿𝑖𝑙 + 𝛿𝑙𝑗𝛿𝑖𝑘)]. 

(22.27.32)

 

22.27.3  The Algorithmic Tangent Stiffness for Shell Elements 

 The corotated tangent stiffness matrix is given by Equation (22.27.32) with the 
exception that the left Cauchy-Green tensor and deformation gradient are given in 
corotational coordinates, i.e., 

𝐽𝐸̂𝑖𝑗𝑘𝑙
TC = 4B [𝑏̂𝑘𝑙𝑏𝑖̂𝑗 −

1
2 (𝑏̂𝑖𝑘𝑏𝑗̂𝑙 + 𝑏̂𝑖𝑙𝑏𝑗̂𝑘)] +

4C
𝐼3

2 [4𝛿𝑖𝑗𝛿𝑘𝑙 + (𝛿𝑘𝑗𝛿𝑖𝑙 + 𝛿𝑙𝑗𝛿𝑖𝑚)]

+  8D𝐼3 [(2𝐼3 − 1)𝛿𝑖𝑗𝛿𝑘𝑙 −
1
2 (𝐼3 − 1)(𝛿𝑘𝑗𝛿𝑖𝑙 + 𝛿𝑙𝑗𝛿𝑖𝑘)]. 

(22.27.33)

 
 Using this exact expression for the tangent stiffness matrix in the context of shell 
elements is not adequate since it does not take into account that the normal stress is zero 
and it must be modified appropriately.  To this end, we assume that the tangent moduli 
in Equation (22.27.33) relates the corotated rate-of-deformation tensor 𝐷̂𝑖𝑗 to the 
corotated rate of stress 𝜎̂𝑖𝑗

•, 

𝜎̂𝑖𝑗
• = 𝐸̂𝑖𝑗𝑘𝑙

TC𝐷̂𝑘𝑙. (22.27.34)

 
 Even though this is not completely true, we believe that attempting a more 
thorough treatment would hardly be worth the effort.  The objective can now be stated 
as to find a modified tangent stiffness matrix 𝐸̂ijkl

TCalg such that 

𝜎̂𝑖𝑗
•alg = 𝐸̂𝑖𝑗𝑘𝑙

TCalg𝐷̂𝑘𝑙, (22.27.35)

where 𝜎̂𝑖𝑗
alg is the stress as it is evaluated in LS-DYNA.  The stress update, described in 

Section 19.27.1, is performed in a rather ad hoc way which probably makes the stated 
objective unachievable.  Still we attempt to extract relevant information from it that 
enables us to come somewhat close.  
 
 An example of a modification of this tangent moduli is due to Hughes and Liu 
[1981] and given by 

𝐸̂𝑖𝑗𝑘𝑙
TCalg = 𝐸̂𝑖𝑗𝑘𝑙

TC −
𝐸̂𝑖𝑗33

TC 𝐸̂33𝑘𝑙
TC

𝐸̂3333
TC . (22.27.36)
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 This matrix is derived by eliminating the thickness strain 𝐷̂33 from the equation 
𝜎̂33
• = 0 in Equation (22.27.35) as an unknown.  This modification is unfortunately not 

consistent with how the stresses are updated in LS-DYNA. When consulting Section 
19.27.1, it is suggested that 𝐷̂33 instead can be eliminated from 

𝐷̂33 = 𝛼(𝐷̂11 + 𝐷̂22), (22.27.37)

using the α determined from the stress update.  Unfortunately, by the time when the 
tangent stiffness matrix is calculated, the exact value of α is not known.  From 
experimental observations however, we have found that α is seldom far from being 
equal to −1.  The fact that α = −1 represents incompressibility strengthen this 
hypothesis.  This leads to a modified tangent stiffness 𝐸̂𝑖𝑗𝑘𝑙

TCalg that is equal to 𝐸̂𝑖𝑗𝑘𝑙
TC except 

for the following modifications, 

𝐸̂𝑖𝑖𝑗𝑗
TCalg = 𝐸̂𝑖𝑖𝑗𝑗

TC − 𝐸̂𝑖𝑖33
TC − 𝐸̂33𝑗𝑗

TC + 𝐸̂3333
TC ,

𝐸̂33𝑖𝑗
TCalg = 𝐸̂𝑖𝑗33

TCalg = 0, 𝑖 ≠ 𝑗.
(22.27.38)

 
 To preclude the obvious singularity, a small positive value is assigned to 𝐸̂3333

TCalg, 

𝐸̂3333
TCalg = 10−4(∣𝐸̂1111

TCalg∣ + ∣𝐸̂2222
TCalg∣). (22.27.39)

 
 As with the Hughes-Liu modification, this modification preserves symmetry and 
positive definiteness of the tangent moduli, which together with the stress update 
“consistency” makes it intuitively attractive.
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22.28  Material Model 28:  Resultant Plasticity 

 This plasticity model, based on resultants as illustrated in Figure 22.28.1, is very 
cost effective but not as accurate as through-thickness integration.  This model is 
available only with the C0 triangular, Belytschko-Tsay shell, and the Belytschko beam 
element since these elements, unlike the Hughes-Liu elements, lend themselves very 
cleanly to a resultant formulation.  

 
 
 In applying this model to shell elements the resultants are updated incrementally 
using the midplane strains 𝜀m and curvatures 𝜅: 

Δ𝑛 = Δ𝑡𝐶𝜀m (22.28.1) 

Δ𝑚 = Δ𝑡
ℎ3

12𝐶𝜅, (22.28.2) 

where the plane stress constitutive matrix is given in terms of Young’s Modulus 𝐸 and 
Poisson’s ratio 𝜈 as: 

𝑚̅̅̅̅̅ = 𝑚𝑥𝑥
2 − 𝑚𝑥𝑥𝑚𝑦𝑦 + 𝑚𝑦𝑦

2 + 3𝑚𝑥𝑦
2 . (22.28.3)

 
 Defining 

𝑛̅ = 𝑛𝑥𝑥
2 − 𝑛𝑥𝑥𝑛𝑦𝑦 + 𝑛𝑦𝑦

2 + 3𝑛𝑥𝑦
2 , (22.28.4) 

𝑚̅̅̅̅̅ = 𝑚𝑥𝑥
2 − 𝑚𝑥𝑥𝑚𝑦𝑦 + 𝑚𝑦𝑦

2 + 3𝑚𝑥𝑦
2 , (22.28.5) 

𝑚̅̅̅̅̅𝑛̅ = 𝑚𝑥𝑥𝑛𝑥𝑥 −
1
2 𝑚𝑥𝑥𝑛𝑦𝑦 −

1
2 𝑛𝑥𝑥𝑚𝑦𝑦 + 𝑚𝑦𝑛𝑦 + 3𝑚𝑥𝑦𝑛𝑥𝑦, (22.28.6) 

the Ilyushin yield function becomes 

𝑓 (𝑚, 𝑛) = 𝑛̅ +
4|𝑚̅̅̅̅̅𝑛|̅

ℎ√3
+

16𝑚̅̅̅̅̅
ℎ2 ≤ 𝑛y2 = ℎ2𝜎y2. (22.28.7)

Membrane
σy

σy
Bending

(a) (b)

 Figure 22.28.1.  Full section yield using resultant plasticity. 
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In our implementation we update the resultants elastically and check to see if the yield 
condition is violated: 

𝑓 (𝑚, 𝑛) > 𝑛y2. (22.28.8)

If so, the resultants are scaled by the factor 𝛼: 

𝛼 = √
𝑛y2

𝑓 (𝑚, 𝑛). (22.28.9)

We update the yield stress incrementally: 

𝜎y𝑛+1 = 𝜎y𝑛 + 𝐸PΔ𝜀plasticeff , (22.28.10)

where 𝐸P is the plastic hardening modulus which in incremental plastic strain is 
approximated by 

Δ𝜀plasticeff =
√𝑓 (𝑚, 𝑛) − 𝑛y

ℎ(3𝐺 + 𝐸𝑝) . (22.28.11)

 
 Kennedy, et.  al., report that this model predicts results that may be too stiff; 
users of this model should proceed cautiously. 
 
 In applying this material model to the Belytschko beam, the flow rule changes to 

𝑓 (𝑚, 𝑛) = 𝑓𝑥̂2 +
4𝑚̂𝑦

2𝐴
3𝐼𝑦𝑦

+
4𝑚̂𝑧

2𝐴
3𝐼𝑧𝑧

≤ 𝑛y2 = 𝐴2𝜎y2, (22.28.12)

have been updated elastically according to Equations (4.16)-(4.18).  The yield condition 
is checked with Equation (22.28.8), and if it is violated, the resultants are scaled as 
described above. 
 
 This model is frequently applied to beams with non-rectangular cross sections.  
The accuracy of the results obtained should be viewed with some healthy suspicion.  
No work hardening is available with this model.
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22.29  Material Model 29:  FORCE LIMITED Resultant 
Formulation 

 This material model is available for the Belytschko beam element only.  Plastic 
hinges form at the ends of the beam when the moment reaches the plastic moment.  The 
moment-versus-rotation relationship is specified by the user in the form of a load curve 
and scale factor.  The point pairs of the load curve are (plastic rotation in radians, plastic 
moment).  Both quantities should be positive for all points, with the first point pair being 
(zero, initial plastic moment).  Within this constraint any form of characteristic may be 
used including flat or falling curves.  Different load curves and scale factors may be 
specified at each node and about each of the local s and t axes. 
 
 Axial collapse occurs when the compressive axial load reaches the collapse load.  
The collapse load-versus-collapse deflection is specified in the form of a load curve.  
The points of the load curve are (true strain, collapse force).  Both quantities should be 
entered as positive for all points, and will be interpreted as compressive i.e., collapse 
does not occur in tension.  The first point should be the pair (zero, initial collapse load). 
 
 The collapse load may vary with end moment and with deflection.  In this case, 
several load-deflection curves are defined, each corresponding to a different end 
moment.  Each load curve should have the same number of point pairs and the same 
deflection values.  The end moment is defined as the average of the absolute moments 
at each end of the beam, and is always positive.  It is not possible to make the plastic 
moment vary with axial load. 
 
 A co-rotational technique and moment-curvature relations are used to compute 
the internal forces.  The co-rotational technique is treated in Section 4 in and will not be 
treated here as we will focus solely on the internal force update and computing the 
tangent stiffness.  For this we use the notation 
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𝐸 = Young′smodulus 
𝐺 = Shear modulus 
𝐴 = Cross sectional area 
𝐴s = Effective area in shear 
𝑙𝑛 = Reference length of beam 

𝑙𝑛+1 = Current length of beam 
𝐼𝑦𝑦 = Second moment of inertia about 𝑦 
𝐼𝑧𝑧 = Second moment of inertia about 𝑧 

𝐽 = Polar moment of inertia 
𝑒𝑖 = 𝑖th local base vector in the current configuration 
𝑦𝐼 = nodal vector in y direction at node I in the current configuration 
𝑧𝐼 = nodal vector in z direction at node I in the current configuration 

(22.29.1)

 

M1M1

M2

M3

M4

M5

M6

M7

M8

Strain (or change in length, see AOPT)

A
x
ia

l 
F

o
rc

e

Figure 22.29.1.  The force magnitude is limited by the applied end moment.
For an intermediate value of the end moment, LS-DYNA interpolates between 
the curves to determine the allowable force. 
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 We emphasize that the local 𝑦 and 𝑧 base vectors in the reference configuration 
always coincide with the corresponding nodal vectors.  The nodal vectors in the current 
configuration are updated using the Hughes-Winget formula while the base vectors are 
computed from the current geometry of the element and the current nodal vectors. 
 

22.29.1  Internal Forces 

Elastic Update 
 In the local system for a beam connected by nodes I and J, the axial force is 
updated as 

𝐟ael = 𝐟an + Kael𝛅, (22.29.2)

where 

𝐾ael =
𝐸𝐴
𝑙𝑛 ,

𝛿 = 𝑙𝑛+1 − 𝑙𝑛.
(22.29.3) 

 
 The torsional moment is updated as 

𝑚tel = 𝑚tn + 𝐾tel𝜃t, (22.29.4)

where 

𝐾tel =
𝐺𝐽
𝑙𝑛 ,

𝜃t =
1
2 𝐞1

T(𝐲I × 𝐲J + 𝐳I × 𝐳J).
(22.29.5) 

 The bending moments are updated as 

𝐦𝑦
el = 𝐦𝑦

n + 𝐀𝑦
el𝛉𝑦 (22.29.6) 

𝐦𝑧
el = 𝐦𝑧

n + 𝐀𝑧
el𝛉𝑧, (22.29.7) 

where 

𝐀∗
el =

1
1 + 𝜑∗

𝐸𝐼∗∗
𝑙n [4 + 𝜑∗ 2 − 𝜑∗

2 − 𝜑∗ 4 + 𝜑∗
] (22.29.8) 

𝜑∗ =
12𝐸𝐼∗∗

𝐺𝐴slnl
n (22.29.9) 

𝛉yT = −𝐞3
T(𝐲I × 𝐳I 𝐲J × 𝐳J) (22.29.10)

𝛉z
T = 𝐞2

T(𝐲I × 𝐳I 𝐲J × 𝐳J). (22.29.11)

 
 In the following we refer to 𝐀∗

el as the (elastic) moment-rotation matrix. 
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Plastic Correction 
 After the elastic update the state of force is checked for yielding as follows.  As a 
preliminary note we emphasize that whenever yielding does not occur the elastic 
stiffnesses and forces are taken as the new stiffnesses and forces. 
 
 The yield moments in direction 𝑖 at node 𝐼 as functions of plastic rotations are 
denoted 𝑚𝑖𝐼

Y(𝜃𝑖𝐼
P). This function is given by the user but also depends on whether a 

plastic hinge has been created.  The theory for plastic hinges is given in the LS-DYNA 
Keyword User’s Manual [Hallquist 2003] and is not treated here.  Whenever the elastic 
moment exceeds the plastic moment, the plastic rotations are updated as 

𝜃𝑖𝐼
P(𝑛+1) = 𝜃𝑖𝐼

P(𝑛) +
∣𝑚𝑖𝐼

el∣ − 𝑚𝑖𝐼
Y

max (0.001, 𝐴𝑖(𝐼𝐼)
el +

∂𝑚𝑖𝐼
Y

∂𝜃𝑖𝐼
P )

, (22.29.12)

and the moment is reduced to the yield moment 

𝑚𝑖𝐼
𝑛+1 = 𝑚𝑖𝐼

Y(𝜃𝑖𝐼
P(𝑛+1))sgn(𝑚𝑖𝐼

el). (22.29.13)

 
 The corresponding diagonal component in the moment-rotation matrix is 
reduced as 

𝐴𝑖(II)
𝑛+1 = 𝐴𝑖(𝐼𝐼)

el

⎝
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎛

1 − 𝛼
𝐴𝑖(𝐼𝐼)

el

max (0.001, 𝐴𝑖(𝐼𝐼)
el +

∂𝑚𝑖𝐼
Y

∂𝜃𝑖𝐼
P )

⎠
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎞

, (22.29.14)

where α ≤ 1 is a parameter chosen such that the moment-rotation matrix remains 
positive definite. 
 
 The yield moment in torsion is given by 𝑚tY(𝜃tP) and is provided by the user.  If 
the elastic torsional moment exceeds this value, the plastic torsional rotation is updated 
as 

𝜃t
P(𝑛+1) = 𝜃t

P(𝑛) +
∣𝑚tel∣ − 𝑚tY

max (0.001, 𝐾tel + ∂𝑚tY

∂𝜃tP
)

, (22.29.15)

and the moment is reduced to the yield moment 

𝑚t𝑛+1 = 𝑚tY(𝜃t
P(𝑛+1))sgn(𝑚tel). (22.29.16)

 
 The torsional stiffness is modified as 
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𝐾tn+1 = 𝐾tel

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎛

1 − α
𝐾tel

𝐾tel + ∂𝑚tY

∂𝜃tP ⎠
⎟⎟⎟
⎟⎟⎟
⎟⎟⎞

, (22.29.17)

where again α ≤ 1 is chosen so that the stiffness is positive. 
 
 Axial collapse is modeled by limiting the axial force by 𝑓aY(𝜀, 𝑚), i.e., a function of 
the axial strains and the magnitude of bending moments.  If the axial elastic force 
exceeds this value it is reduced to yield 

𝑓a𝑛+1 = 𝑓aY(𝜀𝑛+1, 𝑚𝑛+1)sgn(𝑓ael), (22.29.18)

and the axial stiffness is given by 

𝐾a𝑛+1 = max (0.05𝐾ael,
∂𝑓aY

∂𝜀 ). (22.29.19)

We neglect the influence of change in bending moments when computing this 
parameter. 
 
 
Damping 
Damping is introduced by adding a viscous term to the internal force on the form 

𝐟v = 𝐃
𝑑
𝑑𝑡

⎣
⎢⎢
⎢
⎡
δ
𝜃t
𝜃𝑦
𝜃𝑧⎦

⎥⎥
⎥
⎤

, (22.29.20)

𝐃 = 𝛾

⎣
⎢⎢
⎢⎢
⎡𝐾a

el

𝐾tel

𝐴𝑦
el

𝐴𝑧
el⎦

⎥⎥
⎥⎥
⎤

, (22.29.21)

where γ is a damping parameter. 
 
Transformation 
 The internal force vector in the global system is obtained through the 
transformation 

𝐟g𝑛+1 = 𝐒𝐟l
𝑛+1, (22.29.22)

where 
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𝐒 =

⎣
⎢⎢
⎢
⎡−𝑒1 0 −𝑒3/𝑙𝑛+1 −𝑒3/𝑙𝑛+1 𝑒2/𝑙𝑛+1 𝑒2/𝑙𝑛+1

0 −𝑒1 𝑒2 0 𝑒3 0
𝑒1 0 𝑒3/𝑙𝑛+1 𝑒3/𝑙𝑛+1 −𝑒2/𝑙𝑛+1 −𝑒2/𝑙𝑛+1

0 𝑒1 0 𝑒2 0 𝑒3 ⎦
⎥⎥
⎥
⎤

, (22.29.23)

𝐟l
𝑛+1 =

⎣
⎢⎢
⎢⎢
⎡fa𝑛+1

𝑚t𝑛+1

𝑚y𝑛+1

𝑚z
𝑛+1⎦

⎥⎥
⎥⎥
⎤

. (22.29.24)

 

22.29.2  Tangent Stiffness 

Derivation 
 The tangent stiffness is derived from taking the variation of the internal force 

δ𝐟g𝑛+1 = δ𝐒𝐟l
𝑛+1 + 𝐒δ𝐟l

𝑛+1, (22.29.25)

which can be written 

δ𝐟g𝑛+1 = 𝐊geoδ𝐮 + 𝐊matδ𝐮, (22.29.26)

where  

δ𝐮 = [δx𝐼
T δω𝐼

T δx𝐽T δω𝐽T]T. (22.29.27)

 
 There are two contributions to the tangent stiffness, one geometrical and one 
material contribution.  The geometrical contribution is given (approximately) by 

𝐊geo = 𝐑(𝐟l
𝑛+1 ⊗ 𝐈)𝐖 −

1
l𝑛+1l𝑛+1 𝐓𝐟l

𝑛+1𝐋, (22.29.28)

where 

𝐑 =

⎣
⎢⎢
⎢
⎡ 𝑅1 0 𝑅3/𝑙𝑛+1 𝑅3/𝑙𝑛+1 −𝑅2/𝑙𝑛+1 −𝑅2/𝑙𝑛+1

0 𝑅1 −𝑅2 0 −𝑅3 0
−𝑅1 0 −𝑅3/𝑙𝑛+1 −𝑅3/𝑙𝑛+1 𝑅2/𝑙𝑛+1 𝑅2/𝑙𝑛+1

0 −𝑅1 0 −𝑅2 0 −𝑅3 ⎦
⎥⎥
⎥
⎤

, (22.29.29)

𝐖 = [−𝑅1/𝑙𝑛+1 𝐞1𝐞1
T/2 𝑅1/𝑙𝑛+1 𝐞1𝐞1

T/2], (22.29.30)

𝐓 =
⎣
⎢⎢
⎡

0 0 −𝑒3 −𝑒3 𝑒2 𝑒2
0 0 0 0 0 0
0 0 𝑒3 𝑒3 −𝑒2 −𝑒2
0 0 0 0 0 0 ⎦

⎥⎥
⎤

, (22.29.31)

𝐋 = [−𝐞1
T 0 𝐞1

T 0], (22.29.32)

and 𝐈 is the 3 by 3 identity matrix.  We use ⊗ as the outer matrix product and define 
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Riv = 𝐞i × 𝐯. (22.29.33)
 
 The material contribution can be written as 

𝐊mat = 𝐒𝐊𝐒T, (22.29.34)

where 

𝐊 =

⎣
⎢⎢
⎢⎢
⎡𝐾a

𝑛+1

𝐾t𝑛+1

𝐴y𝑛+1

𝐴z
𝑛+1⎦

⎥⎥
⎥⎥
⎤

+
1
Δ𝑡𝐃. (22.29.35)
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22.30  Material Model 30:  Closed-Form Update Shell 
Plasticity 

 This section presents the mathematical details of the shape memory alloy 
material in LS-DYNA. The description closely follows the one of Auricchio and Taylor 
[1997] with appropriate modifications for this particular implementation. 
 

22.30.1  Mathematical Description of the Material Model 

 The Kirchhoff stress 𝛕 in the shape memory alloy can be written 
𝛕 = 𝑝𝐢 + 𝐭, (22.30.1)

where 𝐢 is the second order identity tensor and 
𝑝 = 𝐾(𝜃 − 3α𝜉S𝜀L), (22.30.2) 

𝐭 = 2𝐺(𝐞 − 𝜉S𝜀L𝐧). (22.30.3) 
 
 Here 𝐾 and 𝐺 are bulk and shear modulii, 𝜃 and e are volumetric and shear 
logarithmic strains and 𝛼 and 𝜀L are constant material parameters.  There is an option to 
define the bulk and shear modulii as functions of the martensite fraction according to 

𝐾 = 𝐾A + 𝜉S(𝐾S − 𝐾A),
𝐺 = 𝐺A + 𝜉S(𝐺S − 𝐺A), (22.30.4)

in case the stiffness of the martensite differs from that of the austenite.  Furthermore, the 
unit vector 𝐧 is defined as 

𝐧 = 𝐞/(‖𝐞‖ + 10−12), (22.30.5)

and a loading function is introduced as 
𝐹 = 2𝐺‖𝐞‖ + 3𝛼𝐾𝜃 − 𝛽𝜉S, (22.30.6)

where 

𝛽 = (2𝐺 + 9𝛼2𝐾)𝜀L. (22.30.7)

 
 For the evolution of the martensite fraction 𝜉S in the material, the following rule 
is adopted 

𝐹 − 𝑅sAS > 0
𝐹̇ > 0
𝜉S < 1 ⎭}

⎬
}⎫

    ⇒     𝜉Ṡ = −(1 − 𝜉S)
𝐹̇

𝐹 − 𝑅fAS
 (22.30.8)
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𝐹 − 𝑅sSA < 0
𝐹̇ < 0
𝜉S > 0 ⎭}

⎬
}⎫

    ⇒     𝜉Ṡ = 𝜉S
𝐹̇

𝐹 − 𝑅fSA
. (22.30.9)

 
 Here 𝑅sAS, 𝑅fAS, 𝑅sSA and 𝑅fSA are constant material parameters.  The Cauchy 
stress is finally obtained as 

𝛔 =
𝛕
𝐽 , (22.30.10)

where 𝐽 is the Jacobian of the deformation. 
 

22.30.2  Algorithmic Stress Update 

 For the stress update we assume that the martensite fraction 𝜉S𝑛 and the value of 
the loading function F𝑛 is known from time 𝑡𝑛 and the deformation gradient at time 
𝑡𝑛+1, F, is known.  We form the left Cauchy-Green tensor as 𝐁 = 𝐅𝐅Twhich is 
diagonalized to obtain the principal values and directions 𝚲 = diag(λi) and 𝐐. The 
volumetric and principal shear logarithmic strains are given by 

𝜃 = log(𝐽) ,

𝑒𝑖 = log
⎝
⎜⎜⎜
⎛𝜆𝑖

𝐽
1
3⎠
⎟⎟⎟
⎞, (22.30.11)

where 
𝐽 = 𝜆1𝜆2𝜆3. (22.30.12)

is the total Jacobian of the deformation.  Using Equation (22.30.6) with 𝜉S = 𝜉S𝑛, a value 
𝐹trial of the loading function can be computed.  The discrete counterpart of Equation 
(22.30.8) becomes 

𝐹trial − 𝑅sAS > 0
𝐹trial − 𝐹n > 0
𝜉Sn < 1 ⎭}

⎬
}⎫
⇒ Δ𝜉S

= −(1 − 𝜉S𝑛 − Δ𝜉S)
𝐹trial − 𝛽Δ𝜉S − min(max(𝐹𝑛, 𝑅sAS), 𝑅fAS)

𝐹trial − 𝛽Δ𝜉S − 𝑅fAS
 

(22.30.13)

𝐹trial − 𝑅sSA < 0
𝐹trial − 𝐹n < 0
𝜉Sn > 0 ⎭}

⎬
}⎫
⇒ Δ𝜉S = (𝜉S𝑛 + Δ𝜉𝑆)

𝐹trial − 𝛽Δ𝜉S − min(max(𝐹n, 𝑅fSA) , 𝑅sSA)
𝐹trial − 𝛽Δ𝜉S − 𝑅fSA

. (22.30.14)

 
 If none of the two conditions to the left are satisfied, set 𝜉S

𝑛+1 = 𝜉S𝑛, 𝐹𝑛+1 = 𝐹trial 
and compute the stress 𝜎𝑛+1 using Equations (22.30.1), (22.30.2), (22.30.5), (22.30.10) and 
𝜉S = 𝜉S𝑛. When phase transformation occurs according to a condition to the left, the 
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corresponding equation to the right is solved for Δ𝜉S. If the bulk and shear modulii are 
constant this is an easy task.  Otherwise 𝐹trial as well as 𝛽 depends on this parameter 
and makes things a bit more tricky.  We have that  

𝐹trial = 𝐹ntrial (1 +
𝐸S − 𝐸A

𝐸n
Δ𝜉S) ,

𝛽 = 𝛽n (1 +
𝐸S − 𝐸A

𝐸n
Δ𝜉S),

(22.30.15)

where 𝐸S and 𝐸A are Young’s modulii for martensite and austenite, respectively.  The 
subscript 𝑛 is introduced for constant quantities evaluated at time 𝑡𝑛.  To simplify the 
upcoming expressions, these relations are written  

𝐹trial = 𝐹ntrial + Δ𝐹trialΔ𝜉S,
𝛽 = 𝛽n + Δ𝛽Δ𝜉S.

(22.30.16)

 
 Inserting these expressions into Equation (19.30.7) results in  

𝑓 (Δ𝜉S) = Δ𝛽(1 − 𝜉S𝑛)Δ𝜉S2 + (𝑅fAS − 𝐹ÃS𝑛 + (𝛽n − Δ𝐹trial)(1 − 𝜉S𝑛)) Δ𝜉S +

(1 − 𝜉S𝑛)(𝐹ÃS𝑛 − 𝐹𝑛
trial) = 0.

 (22.30.17)

and 

𝑓 (Δ𝜉S) = Δ𝛽𝜉S𝑛Δ𝜉S2 + (𝐹S̃A𝑛 − 𝑅fSA + (𝛽𝑛 − Δ𝐹trial)𝜉S𝑛)Δ𝜉S +
𝜉S𝑛(𝐹S̃A𝑛 − 𝐹𝑛

trial) = 0.
 (22.30.18)

respectively, where we have for simplicity set  

𝐹ÃS𝑛 = min(max(𝐹𝑛, 𝑅sAS) , 𝑅fAS) ,
𝐹S̃A𝑛 = min(max(𝐹𝑛, 𝑅fSA), 𝑅sSA).

(22.30.19)

 
 The solutions to these equations are approximated with two Newton iterations 
starting in the point Δ𝜉S = 0. Now set 𝜉S

𝑛+1 = min(1, max(0, 𝜉S𝑛 + Δ𝜉S)) and compute 
𝜎𝑛+1 and 𝐹𝑛+1 according to Equations (22.30.1), (22.30.2), (22.30.5), (22.30.6), (22.30.10) 
and 𝜉S = 𝜉S

𝑛+1. 
 
 

22.30.3  Tangent Stiffness Matrix 

 An algorithmic tangent stiffness matrix relating a change in true strain to a 
corresponding change in Kirchhoff stress is derived in the following.  Taking the 
variation of Equation (22.30.2) results in 

δ𝑝 = 𝐾(δ𝜃 − 3𝛼δ𝜉S𝜀L) + δ𝐾(𝜃 − 3𝛼𝜉S𝜀L), (22.30.20)

δ𝐭 = 2𝐺(δ𝐞 − δ𝜉S𝜀L𝐧 − 𝜉S𝜀Lδ𝐧) + 2δ𝐺(𝐞 − 𝜉S𝜀L𝐧). (22.30.21)
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 The variation of the unit vector in Equation (22.30.5) can be written 

δ𝐧 =
1

‖𝐞‖ + 10−12 (𝐈 − 𝐧 ⊗ 𝐧)δ𝐞, (22.30.22)

where 𝐈 is the fourth order identity tensor.  For the variation of martensite fraction we 
introduce the indicator parameters 𝐻AS and 𝐻SA that should give information of the 
probability of phase transformation occurring in the next stress update.  Set initially 
𝐻AS = 𝐻SA = 0 and change them according to 

𝐹trial − 𝑅sAS > 0
𝐹trial − 𝐹𝑛 > 0
𝜉S𝑛 + Δ𝜉S ≤ 1 ⎭}

⎬
}⎫

    ⇒     𝐻AS = 1, (22.30.23)

𝐹trial − 𝑅sSA < 0
𝐹trial − 𝐹𝑛 < 0
𝜉S𝑛 + Δ𝜉S ≥ 0 ⎭}

⎬
}⎫

    ⇒     𝐻SA = 1, (22.30.24)

using the quantities computed in the previous stress update.  For the variation of the 
martensite fraction we take variations of Equations (22.30.17) and (22.30.18) with  

δ𝐹ntrial = 2𝐺𝐧: δ𝐞 + 3𝛼𝐾δ𝜃, (22.30.25)

which results in 
δ𝜉S = γ(2𝐺𝐧: δ𝐞 + 3𝛼𝐾δ𝜃), (22.30.26)

where 

𝛾 =
(1 − 𝜉S𝑛)𝐻AS

𝑅fAS − 𝐹ÃS𝑛 + (𝛽𝑛 − Δ𝐹𝑛
trial)(1 − 𝜉S𝑛)

+
𝜉S𝑛𝐻SA

𝐹S̃A𝑛 − 𝑅fSA + (𝛽𝑛 − Δ𝐹𝑛
trial)𝜉S𝑛

. (22.30.27)

 
 As can be seen, we use the value of 𝛾 obtained in the previous stress update since 
this is easier to implement and will probably give a good indication of the current value 
of this parameter. 
 
 The variation of the material parameters 𝐾 and 𝐺 results in  

δK = (𝐾S − 𝐾A)δ𝜉S,
δG = (𝐺S − 𝐺A)δ𝜉S,

(22.30.28)

and, finally, using the identities 
𝐧: δ𝐞 = 𝐧: δ𝛆, (22.30.29)

δ𝜃 = 𝐢: δ𝛆, (22.30.30)

δ𝛕 = 𝐢δ𝑝 + δ𝐭, (22.30.31)
results in 
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δ𝛕 = {2𝐺(1 −
𝜉S𝜀L

‖𝐞‖ + 10−12) 𝐈dev

+ 𝐾[1 − 9𝛼2𝐾𝛾𝜀L + 3𝛼𝛾(𝐾S − 𝐾A)(𝜃 − 3𝛼𝜉S𝜀L)]𝐢 ⊗ 𝐢

+ 2γ𝐺(𝐾S − 𝐾A)(𝜃 − 3𝛼𝜉S𝜀L)𝐢 ⊗ 𝐧

+ 6𝛾𝛼𝐾(𝐺S − 𝐺A)(‖𝐞‖ − 𝜉S𝜀L)𝐧 ⊗ 𝐢 

+ 2𝐺 [
𝜉S𝜀L

‖𝐞‖ + 10−12 − 2𝐺𝛾𝜀L + 2𝛾(𝐺S − 𝐺A)(‖𝐞‖ − 𝜉S𝜀L)] 𝐧 ⊗ 𝐧

− 6𝐾𝐺𝛼𝛾𝜀L(𝐢 ⊗ 𝐧 + 𝐧 ⊗ 𝐢)} δ𝜀. 

(22.30.32)

where 𝐈dev is the fourth order deviatoric identity tensor.  In general this tangent is not 
symmetric because of the terms on the second line in the expression above.  We simply 
use a symmetrization of the tangent stiffness above in the implementation.  
Furthermore, we transform the tangent to a tangent closer related to the one that should 
be used in the LS-DYNA implementation, 

𝐂 = 𝐽−1 {2𝐺(1 −
𝜉S𝜀L

‖𝐞‖ + 10−12) 𝐈dev

+ 𝐾[1 − 9𝛼2𝐾𝛾𝜀L + 3𝛼𝛾(𝐾S − 𝐾A)(𝜃 − 3𝛼𝜉S𝜀L)]𝐢 ⊗ 𝐢

+ 3𝛾𝛼𝐾(𝐺S − 𝐺A)(‖𝐞‖ − 𝜉S𝜀L) − 6𝐾𝐺𝛼𝛾𝜀L))(𝐢 ⊗ 𝐧 + 𝐧 ⊗ 𝐢)

+ 2G [
𝜉S𝜀L

‖𝐞‖ + 10−12 − 2𝐺𝛾𝜀L + 2𝛾(𝐺S − 𝐺A)(‖𝐞‖ − 𝜉S𝜀L)] 𝐧 ⊗ 𝐧} δ𝜀. 

(22.30.33)
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22.31  Material Model 31:  Slightly Compressible Rubber 
Model 

 This model implements a modified form of the hyperelastic constitutive law first 
described in [Kenchington 1988]. 
 
 The strain energy functional, 𝑈, is defined in terms of the input constants as: 

𝑈 = C100𝐼1 + C200𝐼1
2 + C300𝐼1

3 + C400𝐼1
4 + C110𝐼1𝐼2 +

          C210𝐼1
2𝐼2 + C010𝐼2 + C020𝐼2

2 + 𝑓 (𝐽),
(22.31.1)

where the strain invariants can be expressed in terms of the deformation gradient 
matrix, 𝐹𝑖𝑗, and the Green-St.  Venant strain tensor, 𝐸𝑖𝑗: 

𝐽 = ∣𝐹𝑖𝑗∣
𝐼1 = 𝐸𝑖𝑖 

𝐼2 =
1
2! 𝛿𝑝𝑞

𝑖𝑗 𝐸𝑝𝑖𝐸𝑞𝑗.
(22.31.2)

 
 The derivative of 𝑈 with respect to a component of strain gives the correspond-
ing component of stress 

𝑆𝑖𝑗 =
∂𝑈
∂𝐸𝑖𝑗

, (22.31.3)

where, 𝑆𝑖𝑗, is the second Piola-Kirchhoff stress tensor which is transformed into the 
Cauchy stress tensor: 

𝜎𝑖𝑗 =
𝜌
𝜌0

𝜕𝑥𝑖
𝜕𝑋𝑘

𝜕𝑥𝑗

𝜕𝑋𝑙
𝑆𝑘𝑙, (22.31.4)

where 𝜌0 and 𝜌 are the initial and current density, respectively.
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22.32  Material Model 32:  Laminated Glass Model 

 This model is available for modeling safety glass.  Safety glass is a layered 
material of glass bonded to a polymer material which can undergo large strains. 
 
 The glass layers are modeled by isotropic hardening plasticity with failure based 
on exceeding a specified level of plastic strain.  Glass is quite brittle and cannot 
withstand large strains before failing.  Plastic strain was chosen for failure since it 
increases monotonically and, therefore, is insensitive to spurious numerical noise in the 
solution.   
 
 The material to which the glass is bonded is assumed to stretch plastically 
without failure.  The user defined integration rule option must be used with this 
material.  The user defined rule specifies the thickness of the layers making up the 
safety glass.  Each integration point is flagged with a zero if the layer is glass and with a 
one if the layer is polymer.   
 
 An iterative plane stress plasticity algorithm is used to enforce the plane stress 
condition.
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22.33  Material Model 33:  Barlat’s Anisotropic Plasticity 
Model 

 
 This model was developed by Barlat, Lege, and Brem [1991] for modeling 
material behavior in forming processes.  The finite element implementation of this 
model is described in detail by Chung and Shah [1992] and is used here. 
 
 The yield function 𝛷 is defined as 

𝛷 = |𝑆1 − 𝑆2|𝑚 + |𝑆2 − 𝑆3|𝑚 + |𝑆3 − 𝑆1|𝑚 = 2𝑚, (22.33.1)
where 𝜎̅̅̅̅̅  is the effective stress, and 𝑆𝑖 for 𝑖 = 1, 2, 3 are the principal values of the 
symmetric matrix 𝑆𝛼𝛽, 

𝑆𝑥𝑥 =
[𝑐(𝜎𝑥𝑥 − 𝜎𝑦𝑦) − 𝑏(𝜎𝑧𝑧 − 𝜎𝑥𝑥)]

3  

𝑆𝑦𝑦 =
[𝑎(𝜎𝑦𝑦 − 𝜎𝑧𝑧) − 𝑐(𝜎𝑥𝑥 − 𝜎𝑦𝑦)]

3  

𝑆𝑧𝑧 =
[𝑏(𝜎𝑧𝑧 − 𝜎𝑥𝑥) − 𝑎(𝜎𝑦𝑦 − 𝜎𝑧𝑧)]

3  
𝑆𝑦𝑧 = 𝑓 𝜎𝑦𝑧 
𝑆𝑧𝑥 = 𝑔𝜎𝑧𝑥 
𝑆𝑥𝑦 = ℎ𝜎𝑥𝑦.

(22.33.2)

 
 The material constants 𝑎, 𝑏, 𝑐, 𝑓 , 𝑔 and ℎ represent anisotropic properties.  When 
𝑎 = 𝑏 = 𝑐 = 𝑓 = 𝑔 = ℎ = 1, the material is isotropic and the yield surface reduces to the 
Tresca yield surface for 𝑚 = 1 and von Mises yield surface for 𝑚 =  2 or 4. For face-
centered-cubic (FCC) materials 𝑚 = 8 is recommended and for body-centered-cubic 
(BCC) materials 𝑚 = 6 is used. 
 
 The yield strength of the material is 

𝜎y = 𝑘(1 + 𝜀0)𝑛. (22.33.3)
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22.34  Material Model 34:  Fabric 

 The fabric model is a variation on the Layered Orthotropic Composite material 
model (Material 22) and is valid for only 3 and 4 node membrane elements.  This 
material model is strongly recommended for modeling airbags and seatbelts.  In 
addition to being a constitutive model, this model also invokes a special membrane 
element formulation that is better suited to the large deformations experienced by 
fabrics.  For thin fabrics, buckling (wrinkling) can occur with the associated inability of 
the structure to support compressive stresses; a material parameter flag is included for 
this option.  A linear elastic liner is also included which can be used to reduce the 
tendency for these material/elements to be crushed when the no-compression option is 
invoked. 
 
 If the airbag material is to be approximated as an isotropic elastic material, then 
only one Young’s modulus and Poisson’s ratio should be defined.  The elastic 
approximation is very efficient because the local transformations to the material 
coordinate system may be skipped.  If orthotropic constants are defined, it is very 
important to consider the orientation of the local material system and use great care in 
setting up the finite element mesh.  
 
 If the reference configuration of the airbag is taken as the folded configuration, 
the geometrical accuracy of the deployed bag will be affected by both the stretching and 
the compression of elements during the folding process.  Such element distortions are 
very difficult to avoid in a folded bag.  By reading in a reference configuration such as 
the final unstretched configuration of a deployed bag, any distortions in the initial 
geometry of the folded bag will have no effect on the final geometry of the inflated bag.  
This is because the stresses depend only on the deformation gradient matrix: 

𝐹𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑋𝑗

, (22.34.1)

where the choice of 𝑋𝑗 may coincide with the folded or unfold configurations.  It is this 
unfolded configuration which may be specified here.  When the reference geometry is 
used then the no-compression option should be active.  With the reference geometry it 
is possible to shrink the airbag and then perform the inflation.  Although the elements 
in the shrunken bag are very small, the time step can be based on the reference 
geometry so a very reasonable time step size is obtained.  The reference geometry based 
time step size is optional in the input. 
 
 The parameters fabric leakage coefficient, FLC, fabric area coefficient, FAC, and 
effective leakage area, ELA, for the fabric in contact with the structure are optional for 
the Wang-Nefske and hybrid inflation models.  It is possible for the airbag to be 
constructed of multiple fabrics having different values of porosity and permeability.  
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The gas leakage through the airbag fabric then requires an accurate determination of the 
areas by part ID available for leakage.  The leakage area may change over time due to 
stretching of the airbag fabric or blockage when the outer surface of the bag is in contact 
with the structure.  LS-DYNA can check the interaction of the bag with the structure 
and split the areas into regions that are blocked and unblocked depending on whether 
the regions are in contact or not, respectively.  Typically, the parameters, FLC and FAC, 
must be determined experimentally and their variation with time and pressure are 
optional inputs that allow for maximum modeling flexibility.
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22.35  Material Model 35:  Kinematic/Isotropic Plastic Green-
Naghdi Rate 

 The reader interested in an detailed discussion of the relative merits of various 
stress rates, especially Jaumann [1911] and Green-Naghdi [1965], is urged to read the 
work of Johnson and Bammann [1984].  A mathematical description of these two stress 
rates, and how they are implemented in LS-DYNA, is given in the section entitled Stress 
Update Overview in this manual. 
 
 In the cited work by Johnson and Bammann, they conclude that the Green-
Naghdi stress rate is to be preferred over all other proposed stress rates, including the 
most widely used Jaumann rate, because the Green-Naghdi stress rate is based on the 
notions of invariance under superimposed rigid-body motions.  However, 
implementation of the Green-Naghdi stress rate comes at a significant computational 
cost compared to the Jaumann stress rate, e.g., see the discussion in this manual in the 
section entitled Green-Naghdi Stress Rate. 
 
 Perhaps more importantly, in practical applications there is little if any noted 
difference in the results generated using either Jaumann or Green-Naghdi stress rate.  
This is in part due to the fact that the Jaumann stress rate only produces erroneous 
results2 when linear kinematic hardening is used; the results for isotropic hardening are 
not affected by the choice of either of these two stress rates.  Also in practical 
applications, the shear strains are rather small, compared to the extensional strains, and 
if they are not small it is usually the case that the material description, i.e., constitutive 
model, is not valid for such large shear strains.

                                                 
2 The results of a simple shear simulation, monotonically increasing shear deformation, produce 
sinusoidal stress response. 
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22.36  Material Model 36:  Barlat’s 3-Parameter Plasticity 
Model 

 Material model 36 in LS-DYNA aims at modeling sheets with anisotropy under 
plane stress conditions.  It allows the use of the Lankford parameters for the definition 
of the anisotropic yield surface.  The yield condition can be written 

𝑓 (𝛔, 𝜀p) = 𝜎eff(𝜎11, 𝜎22, 𝜎12) − 𝜎Y(𝜀p) ≤ 0, (22.36.1)

where 

𝜎eff(𝜎11, 𝜎22, 𝜎12) = (
𝑎
2 |𝐾1 + 𝐾2|𝑚 +

𝑎
2 |𝐾1 − 𝐾2|𝑚 +

𝑐
2 |2𝐾2|𝑚)

1/𝑚
 

𝐾1 = 𝐾1(𝜎11, 𝜎22, 𝜎12) =
𝜎11 + ℎ𝜎22

2  

𝐾2 = 𝐾2(𝜎11, 𝜎22, 𝜎12) = √(
𝜎11 − ℎ𝜎22

2 )
2

+ 𝑝2𝜎12
2 ,

(22.36.2)

and the hardening of the yield surface is either linear, exponential or determined by a 
load curve.  In the above, the stress components 𝜎11, 𝜎22 and 𝜎12 are with respect to the 
material coordinate system and 𝜀p denotes the effective plastic strain.  The material 
parameters 𝑎, 𝑐, ℎ and 𝑝 can be determined from the Lankford parameters as described 
in the LS-DYNA Keyword User’s Manual [Hallquist 2003].  The Lankford parameters, 
or R-values, are defined as the ratio of instantaneous width change to instantaneous 
thickness change.  That is, assume that the width 𝑊 and thickness 𝑇 are measured as 
function of strain.  Then the corresponding R-value is given by 

𝑅 =
𝑑𝑊
𝑑𝜀 /𝑊
𝑑𝑇
𝑑𝜀/𝑇

. 

The gradient of the yield surface is denoted  

∂𝑓
∂𝛔 (𝛔) =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛ ∂𝑓

∂𝜎11
(𝛔)

∂𝑓
∂𝜎22

(𝛔)

∂𝑓
∂𝜎12

(𝛔)

0

0
⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛ 𝜕𝑓

𝜕𝜎11
(𝜎11, 𝜎22, 𝜎12)

𝜕𝑓
𝜕𝜎22

(𝜎11, 𝜎22, 𝜎12)

𝜕𝑓
𝜕𝜎12

(𝜎11, 𝜎22, 𝜎12)

0

0
⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

, (22.36.3)

where 
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𝜕𝑓
𝜕𝜎11

(𝜎11, 𝜎22, 𝜎12) =
∂𝜎eff
∂𝜎11

(𝜎11, 𝜎22, 𝜎12) =
𝜎eff(𝜎11, 𝜎22, 𝜎12)1−𝑚

2 ⋅

    {𝑎(𝐾1 − 𝐾2)|𝐾1 − 𝐾2|𝑚−2 (
1
2 −

𝜎11 − ℎ𝜎22
4𝐾2

) +

        𝑎(𝐾1 + 𝐾2)|𝐾1 + 𝐾2|𝑚−2 (
1
2 +

𝜎11 − ℎ𝜎22
4𝐾2

) +

        𝑐2𝑚𝐾2
𝑚−1 𝜎11 − ℎ𝜎22

4𝐾2
} ,

 (22.36.4) 

𝜕𝑓
𝜕𝜎22

(𝜎11, 𝜎22, 𝜎12) =
𝜕𝜎eff
𝜕𝜎22

(𝜎11, 𝜎22, 𝜎12) =
𝜎eff(𝜎11, 𝜎22, 𝜎12)1−𝑚

2 ℎ ⋅

    {𝑎(𝐾1 − 𝐾2)|𝐾1 − 𝐾2|𝑚−2 (
1
2 +

𝜎11 − ℎ𝜎22
4𝐾2

) +

        𝑎(𝐾1 + 𝐾2)|𝐾1 + 𝐾2|𝑚−2 (
1
2 −

𝜎11 − ℎ𝜎22
4𝐾2

) −

        𝑐2𝑚𝐾2
𝑚−1 𝜎11 − ℎ𝜎22

4𝐾2
} ,

 (22.36.5) 

and 

𝜕𝑓
𝜕𝜎12

(𝜎11, 𝜎22, 𝜎12) =
𝜕𝜎eff
𝜕𝜎12

(𝜎11, 𝜎22, 𝜎12) =
𝜎eff(𝜎11, 𝜎22, 𝜎12)1−𝑚

2
𝑝2𝜎12
𝐾2

⋅

    {−𝑎(𝐾1 − 𝐾2)|𝐾1 − 𝐾2|𝑚−2 + 𝑎(𝐾1 + 𝐾2)|𝐾1 + 𝐾2|𝑚−2 + 𝑐2𝑚𝐾2
𝑚−1}.

 (22.36.6)

 

22.36.1  Material Tangent Stiffness 

 Since the plastic model is associative, the general expression for tangent relating 
the total strain rate to total stress rate can be found in standard textbooks.  Since this 
situation is rather special we derive it here for the plane stress model presented in the 
previous section.  The elastic stress-strain relation can be written 

𝛔̇ =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎛

𝜎̇11
𝜎̇22
𝜎̇12
𝜎̇23
𝜎̇13⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟
⎞

=
𝐸

1 − ν2

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

1 𝜈
𝜈 1

1 − 𝜈
2

1 − 𝜈
2

1 − 𝜈
2 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

 

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛𝜀1̇1 − 𝜀1̇1

p

𝜀2̇2 − 𝜀2̇2
p

2(𝜀1̇2 − 𝜀1̇2
p )

2(𝜀2̇3 − 𝜀2̇3
p )

2(𝜀1̇3 − 𝜀1̇3
p )⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

= 𝐂ps(𝛆̇ − 𝛆ṗ). 

(22.36.7)

where 𝐸 is the Young’s modulus, 𝜈 is the Poisson’s ratio and 𝐂ps denotes the plane 
stress elastic tangential stiffness matrix.  The associative flow rule for the plastic strain 
can be written 
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𝛆ṗ = λ̇
∂𝑓
∂𝛔, (22.36.8)

and the consistency condition results in  

∂𝑓 T

∂𝛔 𝛔̇ +
∂𝑓

∂𝜀p
𝛆ṗ = 0. (22.36.9)

 
 For algorithmic consistency, the effective plastic strain rate is defined as 𝜀ṗ = 𝜆̇. 
Multiplying Equation (22.36.7) with ∂𝑓

∂𝛔 and using Equation (22.36.8) and Equation 
(22.36.9) gives 

λ̇ =

∂𝑓
∂𝛔

T
𝐂ps𝛆̇

∂𝑓
∂𝛔

T
𝐂ps ∂𝑓

∂𝛔 − ∂𝑓
∂𝜀p

. (22.36.10)

 
 Inserting 

𝛆ṗ =

∂𝑓
∂𝛔

T
𝐂ps𝛆̇

∂𝑓
∂𝛔

T
𝐂ps ∂𝑓

∂𝛔 − ∂𝑓
∂𝜀p

∂𝑓
∂𝛔, (22.36.11)

into Equation (22.36.7) results in  

𝛔̇ =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛

𝐂ps −
{𝐂ps ∂𝑓

∂𝛔} {𝐂ps ∂𝑓
∂𝛔}

T

∂𝑓
∂𝛔

T
𝐂ps ∂𝑓

∂𝛔 − ∂𝑓
∂𝜀p ⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

𝛆.̇ (22.36.12)

 
 To get the elastic-plastic tangent stiffness tensor in the element coordinate system 
it needs to be transformed back.  Since the elastic tangential stiffness tensor is isotropic 
with respect to the axis of rotation, the plastic tangent stiffness tensor can be written  

𝐂plastic
ps =

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛

𝐂ps −
{𝐐𝐂ps ∂𝑓

∂𝛔} {𝐐𝐂ps ∂𝑓
∂𝛔}

∂𝑓
∂𝛔

T
𝐂ps ∂𝑓

∂𝛔 − ∂𝑓
∂𝜀p ⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

, (22.36.13)

where 𝐐 is the rotation matrix in Voigt form. 
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22.36.2  Load curves in different directions 

A project by Fleischer et.al.  [2007] resulted in the option HR = 7, see *MAT_036 in LS-
DYNA Keyword User’s Manual, which allows for specification of different hardening 
curves in the three directions corresponding to 0, 45 and 90 degrees.  In addition, the R-
values in these directions can be specified as functions of plastic strains, both features 
make up an interesting extension to the standard form of the material model.  This 
section is devoted to the theory of the hardening option while the theory for the R-
values follows in the next section.  

22.36.2.1 An introductory remark 
This material typically fits three Lankford parameters and the yield stress in the 00 
direction.  This fit will result in a non-intuitive effective stress-strain relationship for 
uniaxial tension in other directions.  To explain this we assume that we pull in the 𝜑 
direction giving a uniaxial stress value of 𝜎𝜑 and a corresponding plastic strain 
component 𝜀𝜑

𝑝 . The relation between the stress value 𝜎𝜑 and effective stress 𝜎eff is given 
by  
 𝜎eff = 𝑘𝜑𝜎𝜑 
where 𝑘𝜑 = 1 if 𝜑 = 0 but not in general.  The plastic work relation, which defines the 
effective plastic strain for the current material, gives the following expression for the 
effective plastic strain  

 𝜀𝑝 =
𝜀𝜑
𝑝𝜎𝜑
𝜎eff . 

This means that there is a relationship with a stress-strain hardening curve using the 
effective stress and strain and a corresponding stress-strain hardening curve using the 
actual stress and strain values.  Assume that a test reveals that the hardening is given by 
the curve 

𝑓 (𝝈, 𝜀𝑝) ≤ 0 

𝛼00, 𝛼45, 𝛼90
changes  

𝜎11
 

𝜎22 
  

𝜀𝑝
  

𝜎𝑌
  𝜎𝑌90(𝜀𝑝) 

𝜎𝑌45(𝜀𝑝) 
𝜎𝑌00(𝜀𝑝) 

𝜎𝑌(𝜀𝑝) 
  

𝜕𝑓
𝜕𝝈 

𝒏(𝑅45)

𝒏(𝑅00) 

𝒏(𝑅90) 

𝜕𝑓
𝜕𝝈 

𝜕𝑓
𝜕𝝈 

20-1 Plastic flow direction (left) and hardening (right) illustrated for 
variable R-values and hardening.  Changes in 𝛼00, 𝛼45 and 𝛼90 come from 

𝒏(𝑅𝜑) 𝜕𝑓
𝜕𝝈 
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 𝜎𝜑 = 𝜎𝜑(𝜀𝜑
𝑝 ) 

and we want to determine the hardening curve used by LS-DYNA 
𝜎eff = 𝜎eff(𝜀𝑝), 

then using the relationships above yields 
𝜎eff(𝜀𝑝) = 𝑘𝜑𝜎𝜑(𝑘𝜑𝜀𝑝). 

Consequently a user input hardening curve must internally be transformed to an 
effective hardening curve to be used in the material model to get the desired behavior.  
Still, the effective plastic strain is not going to be equal to the plastic strain component 
in the tensile direction and validation of the hardening behavior is not straightforward.  
Therefore we introduce a new effective plastic strain 𝜀𝑝̃ with evolution given by 

  
𝑑𝜀𝑝̃
𝑑𝑡 = 𝑘𝜑

𝑑𝜀𝑝
𝑑𝑡  

that can be used to verify the hardening relationship.  This is actually the von Mises 
plastic strain in the work hardening sense and is output to the d3plot database as 
history variable #2 for post-processing. 

22.36.2.2 The model 
The load curve hardening option can be generalized to allow different hardening curves 
in the 00, 45 and 90 directions, as well as balanced biaxial and shear loading.  To this 
end we let the yield value be given as a convex combination of the hardening curves in 
each direction as 
 𝜎𝑌(𝝈, 𝜀𝑝) = 𝛼00𝜎𝑌00(𝜀𝑝) + 𝛼45𝜎𝑌45(𝜀𝑝) + 𝛼90𝜎𝑌90(𝜀𝑝) + 𝛼bi𝜎𝑌bi(𝜀𝑝) + 𝛼sh𝜎𝑌sh(𝜀𝑝) 
where 𝜎𝑌00(𝜀𝑝) is the user defined hardening curve in direction 00, and the others are 
the internal hardening curves in the other directions (see the section 22.36.2.1 and figure 
20-1). The convex parameters must fulfill 
 0 ≤ 𝛼00 ≤ 1,  0 ≤ 𝛼45 ≤ 1,  0 ≤ 𝛼90 ≤ 1, 0 ≤ 𝛼bi ≤ 1, 0 ≤ 𝛼sh ≤ 1, 
   𝛼00 + 𝛼45 + 𝛼90 + 𝛼bi + 𝛼sh = 1, 
and depend on the stress state.  Furthermore 𝛼00 = 1 must mean that the stress is 
uniaxial and is directed in the 00 direction, and that the same thing holds for the other 
directions.  To accomplish this we reason as follows. 
Let 𝜎̂𝑖𝑗 be the normalized in-plane stress components, i.e.,  
 𝜎̂𝑖𝑗 =

𝜎𝑖𝑗

√𝜎11
2 +𝜎222 +2𝜎12

2
  

and let 𝜎  be the largest eigenvalue to this matrix and 𝑞𝑖 the associated eigenvector 
components.  Furthermore we define 𝜎𝑣 = (𝜎̂11 + 𝜎̂22)/2 as the normalized volumetric 

stress and 𝜎𝑑 = √(𝜎̂11−𝜎̂22)2
4 + 𝜎̂12

2   the normalized shear stress, and make a note that 0 ≤

𝜎𝑑 ≤ 1/√2 and 
 𝜎𝑑 = 0 → biaxial stress state 
 𝜎𝑑 = 1/2 → uniaxial stress state 
 𝜎𝑑 = 1/√2 → shear stress state. 
If 𝑎 = 2𝜎𝑣

2 is the fraction of stress that is volumetric and 𝑏 = 𝜎2 an indicator of uniaxial 
stress state, then  𝑐 = 𝑎(1 − 4{𝑏 − 1/2}2) is a normalized measure that indicates when 
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the stress is deviatoric/uniaxial or volumetric.  That is, 𝑐 = 0 means that the stress is 
deviatoric or uniaxial and 𝑐 = 1 means that it is volumetric. 
Now, let 𝑞 = 4𝑞1

2(1 − 𝑞1
2) be the fraction of the eigenvector 𝑞𝑖 that points in the 00 or 90 

direction.  That is, 𝑞 = 1 means that the eigenvector points in the 45 direction and 𝑞 = 0 
means that it is pointing in either the 00 or 90 direction.  Moreover, the same way of 
reasoning is valid for the eigenvector associated to the smallest eigenvalue. 
To determine in which direction of 00 or 90 a certain eigenvector is pointing we 
introduce 𝑑 = 𝑏𝑞1

2 + (1 − 𝑏)(1 − 𝑞1
2), and deduce that 𝑑 = 1 means that the eigenvector 𝑞𝑖 

points in the 00 direction and 𝑑 = 0 means that it is pointing in the 90 direction. 
 We are now ready to give partial expressions for the three uniaxial convex parameters 
 𝛼0̃0 = (1 − 𝑐)𝑑(1 − 𝑞) + 𝑐/4 
 𝛼4̃5 = (1 − 𝑐)𝑞 + 𝑐/2 
 𝛼0̃0 = (1 − 𝑐)(1 − 𝑑)(1 − 𝑞) + 𝑐/4 
and these are completed by means of adding the biaxial and shear parts 
 𝛼bi = max (0,1 − 4𝜎𝑑2) 
 𝛼sh = max (0,4𝜎𝑑2 − 1) 
 𝛼00 = 𝛼0̃0(1 − 𝛼bi − 𝛼sh) 
 𝛼45 = 𝛼4̃5(1 − 𝛼bi − 𝛼sh) 
 𝛼90 = 𝛼9̃0(1 − 𝛼bi − 𝛼sh) 
This set of parameters fulfills the requirements mentioned above and allows for a 
decent expression for a directional dependent yield stress.  
In the consistency condition we do not consider the derivatives of the convex 
parameters with respect to the stress, as we assume that these will not have a major 
impact on convergence. 

22.36.3  Variable Lankford parameters 

The R-values are supposed to be variable with deformation, and we let 𝑅00(𝜀𝑝), 
𝑅45(𝜀𝑝) and 𝑅90(𝜀𝑝) be the internal load curves that are transformed from the ones 
given by the user.  Then we define the directional dependent R-value according to 
 𝑅(𝝈, 𝜀𝑝) = 𝛼00𝑅00(𝜀𝑝) + 𝛼45𝑅45(𝜀𝑝) + 𝛼90𝑅90(𝜀𝑝) 
using the same set of convex parameters as in the previous section.  A generalized 
relation for the R-value in terms of the stress can be given as 
 (𝜎̂22 + {𝜎̂11 + 𝜎̂22}𝑅)𝑛1 + (𝜎̂11 + {𝜎̂11 + 𝜎̂22}𝑅)𝑛2 − 𝜎̂12𝑛4 = 0, 
where 𝜎̂𝑖𝑗 are the normalized stress components, 𝑛𝑖 is the direction of plastic flow and 
where we have suppressed the dependence of stress and plastic strain in 𝑅. By setting  
 ∆𝑛1 = 𝑛1 − 𝜕𝑓

𝜕𝜎11
,  ∆𝑛2 = 𝑛2 − 𝜕𝑓

𝜕𝜎22
,  ∆𝑛4 = 𝑛4 − 𝜕𝑓

𝜕𝜎12
 

and 
 ∆𝑅 = 𝑅(𝜀𝑝) − 𝑅(0)  
we can simplify this equation as 
 (𝜎̂22 + {𝜎̂11 + 𝜎̂22}𝑅)∆𝑛1 + (𝜎̂11 + {𝜎̂11 + 𝜎̂22}𝑅)∆𝑛2 − 𝜎̂12∆𝑛4 = 
  −( 𝜕𝑓

𝜕𝜎11
+ 𝜕𝑓

𝜕𝜎22
){𝜎̂11 + 𝜎̂22}∆𝑅 
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assuming that the relation already holds for the yield surface normal and R-value in the 
reference configuration. 
This equation is complemented with a consistency condition of the plastic flow 
 𝜎̂11∆𝑛1 + 𝜎̂22∆𝑛2 + 𝜎̂12∆𝑛4 = 0. 
These two equations are linearly independent if and only if 

 {𝜎̂11 + 𝜎̂22}√
(𝜎̂11−𝜎̂22)2

4 + 𝜎̂12
2 ≠ 0 

and then the equation 
 −𝜎̂12∆𝑛1 + 𝜎̂12∆𝑛2 + (𝜎̂11 − 𝜎̂22)∆𝑛4 = 0 
can be used to complement the previous two.  This defines a system of equations that 
can be used to solve in least square sense for the perturbation ∆𝑛𝑖 of the yield surface 
normal to get the R-value of interest.  To avoid numerical problems and make the 
perturbation continuous with respect to the stress, the right hand side of the first 
equation is changed to 
 −( 𝜕𝑓

𝜕𝜎11
+ 𝜕𝑓

𝜕𝜎22
){𝜎̂11 + 𝜎̂22}((𝜎̂11 − 𝜎̂22)2 + 4𝜎̂12

2 )∆𝑅. 
This results in a non-associated flow rule, meaning that the plastic flow is not in the 
direction of the yield surface normal.  Again, we don’t take any special measures into 
account for the stress return algorithm as we believe that the perturbation of the normal 
is small enough not to deteriorate convergence.  In figure 20-1 the plastic flow direction 
is illustrated as function of the stress on the yield surface.
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22.37  Material Model 37:  Transversely Anisotropic Elastic-
Plastic 

 This fully iterative plasticity model is available only for shell elements.  The 
input parameters for this model are: Young’s modulus 𝐸; Poisson’s ratio 𝜐; the yield 
stress; the tangent modulus 𝐸t; and the anisotropic hardening parameter 𝑅.  
 
 Consider Cartesian reference axes which are parallel to the three symmetry 
planes of anisotropic behavior.  Then the yield function suggested by Hill [1948] can be 
written 

F(𝜎22 − 𝜎33)2 + G(𝜎33 − 𝜎11)2 + H(𝜎11 − 𝜎22)2 + 2L𝜎23
2 + 2M𝜎31

2 + 2N𝜎12
2 − 1 = 0,(22.37.1)

where 𝜎y1, 𝜎y2, and 𝜎y3, are the tensile yield stresses and 𝜎y12, 𝜎y23, and 𝜎y31 are the 
shear yield stresses.  The constants F, G, H, L, M, and N are related to the yield stress by 

2L =
1

𝜎y23
2

2M =
1

𝜎y31
2  

2N =
1

𝜎y12
2  

2F =
1

𝜎y2
2 +

1
𝜎y3

2 −
1

𝜎y1
2  

2G =
1

𝜎y3
2 +

1
𝜎y1

2 −
1

𝜎y2
2  

2H =
1

𝜎y1
2 +

1
𝜎y2

2 −
1

𝜎y3
2  . 

(22.37.2)

 
 The isotropic case of von Mises plasticity can be recovered by setting 

F = G = H =
1

2𝜎y2
, (22.37.3)

and  

L = M = N =
1

2𝜎y2
. (22.37.4)

 
 For the particular case of transverse anisotropy, where properties do not vary in 
the 𝑥1 − 𝑥2 plane, the following relations hold: 
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F = 2G =
1

𝜎y3
2

2H =
2

𝜎y2
−

1
𝜎y3

2  

N =
2

𝜎y2
−

1
2

1
𝜎y3

2 , 

(22.37.5)

where it has been assumed that 𝜎y1 = 𝜎y2 = 𝜎y. 
 
 Letting K =

𝜎y
𝜎y3

, the yield criterion can be written 

𝑭(𝛔) = 𝜎e = 𝜎y, (22.37.6)

where 

𝐹(𝛔) ≡ [𝜎11
2 + 𝜎22

2 + K2𝜎33
2 − K2𝜎33(𝜎11 + 𝜎22) − (2 − K2)𝜎11𝜎22

+2L𝜎y2(𝜎23
2 + 𝜎31

2 ) + 2 (2 −
1
2K

2) 𝜎12
2 ]

1
2⁄

.
 (22.37.7)

 
 The rate of plastic strain is assumed to be normal to the yield surface so 𝜀𝑖̇𝑗

p is 
found from 

𝜀𝑖̇𝑗
p = λ

∂𝐹
∂𝜎𝑖𝑗

. (22.37.8)

 
 Now consider the case of plane stress, where 𝜎33 = 0.  Also, define the anisotropy 
input parameter 𝑅 as the ratio of the in-plane plastic strain rate to the out-of-plane 
plastic strain rate: 

𝑅 =
𝜀2̇2
p

𝜀3̇3
p . (22.37.9)

It then follows that 

𝑅 =
2
K2 − 1. (22.37.10)

 
 Using the plane stress assumption and the definition of 𝑅, the yield function may 
now be written  

F(𝛔) = [𝜎11
2 + 𝜎22

2 −
2R
R + 1 𝜎11𝜎22 + 2

2R + 1
R + 1 𝜎12

2 ]
1

2⁄
. (22.37.11)
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22.38  Material Model 38:  Blatz-Ko Compressible Foam 

𝑊(𝐼1, 𝐼2, 𝐼3) =
𝜇
2 (

𝐼2
𝐼3

+ 2√𝐼3 − 5), (22.38.1)

where 𝜇 is the shear modulus and 𝐼1, 𝐼2, and 𝐼3 are the strain invariants.  Blatz and Ko 
[1962] suggested this form for a 47 percent volume polyurethane foam rubber with a 
Poisson’s ratio of  0.25.  The second Piola-Kirchhoff stresses are given as  

𝑆𝑖𝑗 = 𝜇 [(𝐼𝛿𝑖𝑗 − 𝐺𝑖𝑗)
1
𝐼3

+ (√𝐼3 −
𝐼2
𝐼3

)𝐺𝑖𝑗], (22.38.2)

where 𝐺𝑖𝑗 = 𝜕𝑥𝑘
𝜕𝑋𝑖

𝜕𝑥𝑘
𝜕𝑋𝑗

, 𝐺𝑖𝑗 = 𝜕𝑋𝑖
𝜕𝑥𝑘

𝜕𝑋𝑗
𝜕𝑥𝑘

, after determining 𝑆𝑖𝑗, it is transformed into the Cauchy 
stress tensor: 

σ𝑖𝑗 =
𝜌
𝜌0

𝜕𝑥𝑖
𝜕𝑋𝑘

𝜕𝑥𝑗

𝜕𝑋𝑙
𝑆𝑘𝑙, (22.38.3)

where 𝜌0 and 𝜌 are the initial and current density, respectively.
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22.39  Material Model 39:  Transversely Anisotropic Elastic-
Plastic With FLD 

 See Material Model 37 for the similar model theoretical basis.  The first history 
variable is the maximum strain ratio defined by: 

𝜀majorworkpiece
εmajorfld

(22.39.1)

corresponding to 𝜀minorworkpiece.  This history variable replaces the effective plastic strain 
in the output.  Plastic strains can still be obtained but one additional history variable 
must be written into the D3PLOT database. 
 
 The strains on which these calculations are based are integrated in time from the 
strain rates: 

𝜀𝑖𝑗
𝑛+1 = 𝜀𝑖𝑗

𝑛 + 𝜀𝑖𝑗
∇𝑛+1

2⁄ Δ𝑡𝑛+1
2⁄ , (22.39.2) 

and are stored as history variables.  The resulting strain measure is logarithmic.
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 Figure 22.39.1.  Flow limit diagram. 
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22.40  Material Model 42:  Planar Anisotropic Plasticity Model 

 This model is built into LS-DYNA as a user material model for modeling plane 
stress anisotropic plasticity in shells.  Please note that only three cards are input here.  
The orthotropic angles must be defined later as for all materials of this type.  This model 
is currently not vectorized. 
 
 This is an implementation of an anisotropic plasticity model for plane stress 
where the flow rule, see Material Type 37, simplifies to: 

𝐹(𝜎22)2 + 𝐺(𝜎11)2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝑁𝜎12
2 − 1 = 0. (22.40.1)

 
 The anisotropic parameters R00, R45, and R90 are defined in terms of 𝐹, 𝐺, 𝐻, 
and 𝑁 as [Hill, 1989]: 

2𝑅00 =
𝐻
𝐺 ,

2𝑅45 =
2𝑁

(𝐹 + 𝐺) − 1, 

2𝑅90 =
𝐻
𝐹 .

(22.40.2) 

 
 The yield function for this model is given as: 

𝜎y = 𝐴𝜀𝑚𝜀𝑛̇. (22.40.3)

 
 To avoid numerical problems the minimum strain rate, 𝜀ṁin must be defined and 
the initial yield stress 𝜎0 is calculated as 

𝜎0 = 𝐴𝜀0
𝑚𝜀ṁin

𝑛 = 𝐸𝜀0, (22.40.4) 

𝜀0 = (
𝐸

𝐴𝜀ṁin
𝑛 )

1
𝑚−1

. (22.40.5) 
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22.41  Material Model 51:  Temperature and Rate Dependent 
Plasticity 

 The kinematics associated with the model are discussed in references [Hill 1948, 
Bammann and Aifantis 1987, Bammann 1989].  The description below is taken nearly 
verbatim from Bammann [Hill 1948]. 
 
 With the assumption of linear elasticity we can write, 

𝛔o = 𝜆tr(𝐃e)𝟏 + 2𝜇𝐃e, (22.41.1)

where, the Cauchy stress 𝛔 is convected with the elastic spin 𝐖e as, 

𝛔o = 𝛔̇ −𝐖e𝛔 + 𝛔𝐖e. (22.41.2)

 
 This is equivalent to writing the constitutive model with respect to a set of 
directors whose direction is defined by the plastic deformation [Bammann and Aifantis 
1987, Bammann and Johnson 1987].  Decomposing both the skew symmetric and 
symmetric parts of the velocity gradient into elastic and plastic parts we write for the 
elastic stretching 𝐃e and the elastic spin 𝐖e, 

𝐃e = 𝐃−𝐃p −𝐃th,𝐖e = 𝐖 = 𝐖p. (22.41.3)

 
 Within this structure it is now necessary to prescribe an equation for the plastic 
spin 𝐖p in addition to the normally prescribed flow rule for 𝐃p and the stretching due 
to the thermal expansion 𝐃th.  As proposed, we assume a flow rule of the form, 

𝐃p = 𝑓 (𝑇) sinh [
|𝛏| − 𝜅 − 𝑌(𝑇)

𝑉(𝑇) ]
𝛏′
∣𝛏′∣

, (22.41.4)

where 𝑇 is the temperate, 𝜅 is the scalar hardening variable, 𝛏′ is the difference between 
the deviatoric Cauchy stress 𝛔′ and the tensor variable 𝛂′, 

𝛏′ = 𝛔′ − 𝛂′, (22.41.5)
and 𝑓 (𝑇), 𝑌(𝑇), 𝑉(𝑇) are scalar functions whose specific dependence upon the 
temperature is given below.  Assuming isotropic thermal expansion, and introducing 
the expansion coefficient 𝐴,̇ the thermal stretching can be written, 

𝐃th = 𝐴𝑇̇̇𝟏. (22.41.6)

 
 The evolution of the internal variables 𝛼 and 𝜅 are prescribed in a hardening 
minus recovery format as, 

𝛂o = ℎ(𝑇)𝐃p − [𝑟d (T) ∣𝐃p∣ + 𝑟s(𝑇)] |𝛂|𝛂, (22.41.7) 
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𝜅̇ = 𝐻(𝑇)𝐃p − [𝑅d(𝑇) ∣𝐃p∣ − 𝑅s(𝑇)]𝜅2, (22.41.8) 

where ℎ and 𝐻 are the hardening moduli, 𝑟𝑠(𝑇) and 𝑅s(𝑇) are scalar functions 
describing the diffusion controlled ‘static’ or ‘thermal’ recovery, and 𝑟d(𝑇) and 𝑅d(𝑇) 
are the functions describing dynamic recovery.   
 
 If we assume that 𝐖p = 0, we recover the Jaumann stress rate which results in 
the prediction of an oscillatory shear stress response in simple shear when coupled with 
a Prager kinematic hardening assumption [Johnson and Bammann 1984].  Alternatively 
we can choose, 

𝐖p = 𝐑T𝐔̇𝐔−1𝐑, (22.41.9)

which recovers the Green-Naghdi rate of Cauchy stress and has been shown to be 
equivalent to Mandel’s isoclinic state [Bammann and Aifantis 1987].  The model 
employing this rate allows a reasonable prediction of directional softening for some 
materials but in general under-predicts the softening and does not accurately predict 
the axial stresses which occur in the torsion of the thin walled tube.   
 
 The final equation necessary to complete our description of high strain rate 
deformation is one which allows us to compute the temperature change during the 
deformation.  In the absence of a coupled thermomechanical finite element code we 
assume adiabatic temperature change and follow the empirical assumption that 90 -
 95% of the plastic work is dissipated as heat.  Hence, 

𝑇̇ =
0.9
𝜌𝐶v

(𝛔 ⋅ 𝐃p), (22.41.10)

where 𝜌 is the density of the material and 𝐶v the specific heat. 
 
 In terms of the input parameters the functions defined above become: 

𝑉(𝑇) = C1 ∙ exp(−C2/𝑇)
𝑌(𝑇) = C3 ∙ exp(C4/𝑇) 
𝑓 (𝑇) = C5 ∙ exp(−C6/𝑇) 
𝑟𝑑(𝑇) = C7 ∙ exp(−C8/𝑇) 

ℎ(𝑇) = C9 ∙ exp(C10/𝑇) 
𝑟𝑠(𝑇) = C11 ∙ exp(−C12/𝑇) 
𝑅𝑑(𝑇) = C13 ∙ exp(−C14/𝑇) 
𝐻(𝑇) = C15 ∙ exp(C16/𝑇) 
𝑅𝑠(𝑇) = C17 ∙ exp(−C18/𝑇)

and the heat generation coefficient is 

𝐻𝐶 =
0.9

𝜌𝐶𝑉
. (22.41.11)
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22.42  Material Model 52:  Sandia’s Damage Model 

 The evolution of the damage parameter, 𝜙, is defined by [Bammann, et.  al., 1990] 

𝜙̇ = 𝛽 [
1

(1 − 𝜙)𝑁
− (1 − 𝜙)]

∣Dp∣

, (22.42.1)

in which 

𝛽 = sin [
2(2𝑁 − 1)𝑝
(2𝑁 − 1)𝜎̅̅̅̅̅ ], (22.42.2)

where 𝑝 is the pressure and 𝜎̅̅̅̅̅  is the effective stress.
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22.43  Material Model 53:  Low Density Closed Cell 
Polyurethane Foam 

 A rigid, low density, closed cell, polyurethane foam model developed at Sandia 
Laboratories [Neilsen et al., 1987] has been recently implemented for modeling impact 
limiters in automotive applications.  A number of such foams were tested at Sandia and 
reasonable fits to the experimental data were obtained.  
 
 In some respects this model is similar to the crushable honeycomb model type 26 
in that the components of the stress tensor are uncoupled until full volumetric 
compaction is achieved.  However, unlike the honeycomb model this material possesses 
no directionality but includes the effects of confined air pressure in its overall response 
characteristics. 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
sk − δ𝑖𝑗𝜎air, (22.43.1)

where 𝜎𝑖𝑗
sk is the skeletal stress and 𝜎air is the air pressure computed from the equation: 

𝜎air = −
𝑝0𝛾

1 + 𝛾 − 𝜙, (22.43.2)

where 𝑝0 is the initial foam pressure usually taken as the atmospheric pressure and 𝛾 
defines the volumetric strain  

𝛾 = 𝑉 − 1 + 𝛾0, (22.43.3)
where 𝑉 is the relative volume and 𝛾0  is the initial volumetric strain which is typically 
zero.  The yield condition is applied to the principal skeletal stresses which are updated 
independently of the air pressure.  We first obtain the skeletal stresses: 

 𝜎𝑖𝑗
sk = 𝜎𝑖𝑗 + 𝜎𝑖𝑗𝜎air, (22.43.4)

and compute the trial stress, 𝛔𝑖
skt 

𝜎𝑖𝑗
skt = 𝜎𝑖𝑗

sk + 𝐸𝜀𝑖̇𝑗Δ𝑡, (22.43.5)

where 𝐸 is Young’s modulus.  Since Poisson’s ratio is zero, the update of each stress 
component is uncoupled and 2𝐺 = 𝐸 where 𝐺 is the shear modulus.  The yield 
condition is applied to the principal skeletal stresses such that if the magnitude of a 
principal trial stress component, 𝛔𝑖

skt, exceeds the yield stress, 𝜎y, then 

𝛔𝑖
sk = min(𝜎y, ∣𝛔𝑖

skt∣)
𝛔𝑖
skt

∣𝛔𝑖
skt∣

. (22.43.6)

 
 The yield stress is defined by 

𝜎y = 𝑎 + 𝑏(1 + 𝑐𝛾), (22.43.7)
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where 𝑎, 𝑏, and 𝑐 are user defined input constants.  After scaling the principal stresses 
they are transformed back into the global system and the final stress state is computed 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
sk − 𝛿𝑖𝑗𝜎air. (22.43.8)
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22.44  Material Models 54 and 55:  Enhanced Composite 
Damage Model 

 These models are very close in their formulations.  Material 54 uses the Chang 
matrix failure criterion (as Material 22), and material 55 uses the Tsay-Wu criterion for 
matrix failure. 
 
 Arbitrary orthothropic materials, e.g., unidirectional layers in composite shell 
structures can be defined.  Optionally, various types of failure can be specified 
following either the suggestions of [Chang and Chang, 1984] or [Tsai and Wu, 1981].  In 
addition special measures are taken for failure under compression.  See [Matzenmiller 
and Schweizerhof, 1990].  This model is only valid for thin shell elements. 
 
 The Chang/Chang criteria is given as follows: for the tensile fiber mode, 

𝜎aa > 0    then    𝑒f2 = (
𝜎aa
Xt

)
2

+ 𝛽(
𝜎𝑎𝑏
𝑆𝑐

)
2

− 1 {≥ 0 failed
< 0 elastic, (22.44.1) 

Ea = Eb = Gab = νba = νab = 0, (22.44.2)
for the compressive fiber mode, 

𝜎aa < 0    then    𝑒c2 = (
𝜎aa
Xc

)
2

− 1 {≥ 0 failed
< 0 elastic, (22.44.3) 

Ea = νba = νab = 0, (22.44.4)
for the tensile matrix mode,  

𝜎bb > 0    then    𝑒m2 = (
𝜎bb
Yt

)
2

+ (
𝜎ab
Sc

)
2

− 1 {≥ 0 failed
< 0 elastic, (22.44.5) 

Eb = νba = 0 → Gab = 0, (22.44.6)
and for the compressive matrix mode, 

𝜎bb < 0    then    𝑒d2 = (
𝜎bb
2Sc

)
2

+
⎣
⎢⎡(
Yc
2Sc

)
2

− 1
⎦
⎥⎤

𝜎bb
Yc

+ (
𝜎ab
Sc

)
2

− 1 {≥ 0 failed
< 0  elastic, 

(22.44.7) 

Eb = νba = νab = 0 ⇒
Gab = 0
XC = 2Yc, for 50% fiber volume

. (22.44.8) 

 
 In the Tsay/Wu criteria the tensile and compressive fiber modes are treated as in 
the Chang/Chang criteria.   The failure criterion for the tensile and compressive matrix 
mode is given as: 
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𝑒md2 =
𝜎bb2

YcYt
+ (

𝜎ab
Sc

)
2

+
(Yc − Yt) 𝜎bb

YcYt
− 1 {≥ 0 failed

< 0 elastic. 
(22.44.9)

For 𝛽 = 1 we get the original criterion of Hashin [1980] in the tensile fiber mode.  For 
𝛽 = 0, we get the maximum stress criterion which is found to compare better to 
experiments. 
 
 Failure can occur in any of four different ways: 

1. If DFAILT is zero, failure occurs if the Chang/Chang failure criterion is 
satisfied in the tensile fiber mode. 

2. If DFAILT is greater than zero, failure occurs if the tensile fiber strain is greater 
than DFAILT or less than DFAILC. 

3. If EFS is greater than zero, failure occurs if the effective strain is greater than 
EFS. 

4. If TFAIL is greater than zero, failure occurs according to the element time step 
as described in the definition of TFAIL above. 

 
 When failure has occurred in all the composite layers (through-thickness 
integration points), the element is deleted.  Elements which share nodes with the 
deleted element become “crashfront” elements and can have their strengths reduced by 
using the SOFT parameter with TFAIL greater than zero. 
 
 Information about the status in each layer (integration point) and element can be 
plotted using additional integration point variables.  The number of additional 
integration point variables for shells written to the LS-DYNA database is input by the 
*DATABASE_BINARY definition as variable NEIPS.  For Models 54 and 55 these 
additional variables are tabulated below (i = shell integration point): 
 
History 
Variable 

Description Value LS-PREPOST 
History 
Variable 

1. 𝑒𝑓 (𝑖) tensile fiber mode  1 
2. 𝑒𝑐(𝑖) compressive fiber mode 1 – elastic 2 
3. 𝑒𝑚(𝑖) tensile matrix mode 0 – failed 3 

4. 𝑒𝑑(𝑖) compressive matrix 
mode  4 

5. 𝑒𝑓𝑎𝑖l max[𝑒𝑓 (𝑖𝑝)]  5 

6. 𝑑𝑎𝑚 damage parameter 
-1 - element intact 

10-8 - element in crashfront 
+1 - element failed 

6 
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 The following components, defined by the sum of failure indicators over all 
through-thickness integration points, are stored as element component 7 instead of the 
effective plastic strain.: 
 

Description Integration point 
1

𝑛𝑖𝑝 ∑ 𝑒𝑓 (𝑖)
𝑛𝑖𝑝

𝑖=1
 1 

1
𝑛𝑖𝑝 ∑ 𝑒𝑐(𝑖)

𝑛𝑖𝑝

𝑖=1
 2 

1
𝑛𝑖𝑝 ∑ 𝑐𝑚(𝑖)

𝑛𝑖𝑝

𝑖=1
 2 
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22.45  Material Model 57:  Low Density Urethane Foam 

 The urethane foam model is available to model highly compressible foams such 
as those used in seat cushions and as padding on the Side Impact Dummy (SID).  The 
compressive behavior is illustrated in Figure 22.45.1 where hysteresis on unloading is 
shown.  This behavior under uniaxial loading is assumed not to significantly couple in 
the transverse directions.  In tension the material behaves in a linear fashion until 
tearing occurs.  Although our implementation may be somewhat unusual, it was first 
motivated by Shkolnikov [1991] and a paper by Storakers [1986].  The recent additions 
necessary to model hysteretic unloading and rate effects are due to Chang, et al., [1994].  
These latter additions have greatly expanded the usefulness of this model. 
 
 The model uses tabulated input data for the loading curve where the nominal 
stresses are defined as a function of the elongations, 𝜀𝑖, which are defined in terms of 
the principal stretches, 𝜆𝑖, as: 

𝜀𝑖 = 𝜆 𝑖 − 1. (22.45.1)
 
 The stretch ratios are found by solving for the eigenvalues of the left stretch 
tensor, 𝑉𝑖𝑗, which is obtained via a polar decomposition of the deformation gradient 
matrix, 𝐹𝑖𝑗: 

𝐹𝑖𝑗 = 𝑅𝑖𝑘𝑈𝑘𝑗 = 𝑉𝑖𝑘𝑅𝑘𝑗. (22.45.2)

 
 The update of 𝑉𝑖𝑗 follows the numerically stable approach of Taylor and 
Flanagan [1989].  After solving for the principal stretches, the elongations are computed 
and, if the elongations are compressive, the corresponding values of the nominal 
stresses, 𝜏𝑖 are interpolated.  If the elongations are tensile, the nominal stresses are given 
by 

Typical unloading

curves determined by

the hysteretic unloading

factor. With the shape

factor equal to unity.

Unloading

curves

Typical unloading for

a large shape factor, e.g. 

5.0-8.0, and a small 

hystereticfactor, e.g., 0.010.

Strain Strain

σ σ

 Figure 22.45.1.  Behavior of the low-density urethane foam model. 
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𝜏𝑖 = 𝐸𝜀𝑖. (22.45.3)
 
 The Cauchy stresses in the principal system become 

𝜎𝑖 =
𝜏𝑖
𝜆𝑗𝜆𝑘

. (22.45.4)

The stresses are then transformed back into the global system for the nodal force 
calculations. 
 
 When hysteretic unloading is used, the reloading will follow the unloading curve 
if the decay constant, 𝛽, is set to zero.  If 𝛽 is nonzero the decay to the original loading 
curve is governed by the expression: 

1 − 𝑒−𝛽𝑡. (22.45.5)

 
 The bulk viscosity, which generates a rate dependent pressure, may cause an 
unexpected volumetric response and, consequently, it is optional with this model.   
 
 Rate effects are accounted for through linear viscoelasticity by a convolution 
integral of the form 

𝜎𝑖𝑗
r = ∫ 𝑔𝑖𝑗𝑘𝑙

𝑡

0
(𝑡 − 𝜏)

∂𝜀𝑘𝑙
∂𝜏 𝑑𝜏, (22.45.6)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) is the relaxation function.  The stress tensor, 𝜎𝑖𝑗
r , augments the stresses 

determined from the foam, 𝜎𝑖𝑗
f ; consequently, the final stress, 𝜎𝑖𝑗, is taken as the 

summation of the two contributions: 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
f + 𝜎𝑖𝑗

r . (22.45.7)

 
 Since we wish to include only simple rate effects, the relaxation function is 
represented by one term from the Prony series: 

𝑔(𝑡) = 𝛼0 + ∑ α𝑚

N

𝑚=1
𝑒−𝛽𝑡, (22.45.8)

given by, 

𝑔(𝑡) = 𝐸d𝑒−𝛽1𝑡. (22.45.9)

 
 This model is effectively a Maxwell fluid which consists of a damper and spring 
in series.  We characterize this in the input by a Young's modulus, 𝐸d, and decay 
constant, 𝛽1.  The formulation is performed in the local system of principal stretches 
where only the principal values of stress are computed and triaxial coupling is avoided.  
Consequently, the one-dimensional nature of this foam material is unaffected by this 
addition of rate effects.  The addition of rate effects necessitates twelve additional 
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history variables per integration point.  The cost and memory overhead of this model 
comes primarily from the need to “remember” the local system of principal stretches. 
 
 

Viscous damping is implemented by incrementation of the principal stress 
components.  Firstly, we let 

𝑎 =
𝑐𝜌𝜇𝐿𝑒
1 + 𝛾, (22.45.10)

where 𝑐, 𝜌, 𝜇, 𝐿𝑒 and 𝛾 respectively denote the material sound speed, density, viscous 
coefficient, element characteristic length and element volumetric strain.  The 
incremental stress components due to viscous damping are then given by  

Δ𝜎𝑖 = 𝑎 (
𝜀𝑖̇ − 𝜀𝑚̇
1 + 𝜈 +

𝜀𝑚̇
1 − 2𝜈) 𝑖 = 1,2,3 (22.45.11)

and 

Δ𝜎𝑖 =
𝑎𝜀𝑖̇

2(1 + 𝜈) 𝑖 = 4,5,6, (22.45.12)

where 𝜀𝑖̇ are the strain rates and 𝜀𝑚̇ = ∑ 𝜀𝑖̇
3
𝑖=1 3⁄ .
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22.46  Material Model 58:  Laminated Composite Fabric 

 Parameters to control failure of an element layer are: ERODS, the maximum 
effective strain, i.e., maximum 1 = 100% straining.  The layer in the element is 
completely removed after the maximum effective strain (compression/tension 
including shear) is reached.   
 
 The stress limits are factors used to limit the stress in the softening part to a given 
value,  

𝜎min = SLIMxx ⋅ strength, (22.46.1)
thus, the damage value is slightly modified such that  elastoplastic like behavior is 
achieved with the threshold stress.  As a factor for SLIMxx a number between 0.0 and 
1.0 is possible.  With a factor of 1.0, the stress remains at a maximum value identical to 
the strength, which is similar to ideal elastoplastic behavior.  For tensile failure a small 
value for SLIMTx is often reasonable; however, for compression SLIMCx = 1.0 is 
preferred.  This is also valid for the corresponding shear value.  If SLIMxx is smaller 
than 1.0 then localization can be observed depending on the total behavior of the lay-
up.  If the user is intentionally using SLIMxx < 1.0, it is generally recommended to 
avoid a drop to zero and set the value to something in between 0.05 and 0.10. Then 
elastoplastic behavior is achieved in the limit which often leads to less numerical 
problems.  Defaults for SLIMXX = 1.0E-8. 
 
 The crashfront-algorithm is started if and only if a value for TSIZE (time step 
size, with element elimination after the actual time step becomes smaller than TSIZE) is 
input . 
 
 The damage parameters can be written to the postprocessing database for each 
integration point as the first three additional element variables and can be visualized. 
 
 Material models with FS = 1 or FS = −1 are favorable for complete laminates 
and fabrics, as all directions are treated in a similar fashion. 
 
 For material model FS = 1 an interaction between normal stresses and shear 
stresses is assumed for the evolution of damage in the a- and b- directions.  For the 
shear damage is always the maximum value of the damage from the criterion in a- or b- 
direction is taken. 
 
 For material model FS = −1 it is assumed that the damage evolution is 
independent of any of the other stresses.  A coupling is present only via the elastic 
material parameters and the complete structure. 
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 In tensile and compression directions and in a- as well as in b- direction, different 
failure surfaces can be assumed.  The damage values, however, increase only when the 
loading direction changes. 
 
Special control of shear behavior of fabrics 
 For fabric materials a nonlinear stress strain curve for the shear part of failure 
surface FS = −1 can be assumed as given below.  This is not possible for other values of 
FS. 
 
 The curve, shown in Figure 22.46.1, is defined by three points: 

• the origin (0,0) is assumed, 

• the limit of the first slightly nonlinear part (must be input), stress (TAU1) and 
strain (GAMMA1), see below. 

• the shear strength at failure and shear strain at failure. 

 
 In addition a stress limiter can be used to keep the stress constant via the SLIMS 
parameter.  This value must be less than or equal to 1.0 and positive, which leads to an 
elastoplastic behavior for the shear part.  The default is 1.0E-08, assuming almost brittle 
failure once the strength limit SC is reached.

SLIMS*SC

GMSGAMMA1

TAU1

SC

τ

γ

 Figure 22.46.1.  Stress-strain diagram for shear. 
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22.47  Material Model 60:  Elastic With Viscosity 

 This material model was developed to simulate the forming of glass products 
(e.g., car windshields) at high temperatures.  Deformation is by viscous flow but elastic 
deformations can also be large.  The material model, in which the viscosity may vary 
with temperature, is suitable for treating a wide range of viscous flow problems and is 
implemented for brick and shell elements. 
 
 Volumetric behavior is treated as linear elastic.  The deviatoric strain rate is 
considered to be the sum of elastic and viscous strain rates: 

𝛆′̇total = 𝛆′̇elastic + 𝛆′̇ viscous =
𝛔̇′
2𝐺 +

𝛔̇′
2𝜈, (22.47.1)

where 𝐺 is the elastic shear modulus, 𝜈 is the viscosity coefficient.  The stress increment 
over one time step 𝑑𝑡 is 

𝑑𝛔′ = 2𝐺𝛆′̇total𝑑𝑡 −
𝐺
𝜐 𝑑𝑡𝛔′. (22.47.2)

 
 The stress before the update is used for 𝛔′.  For shell elements, the through-
thickness strain rate is calculated as follows 

𝑑𝜎33 = 0 = 𝐾(𝜀1̇1 + 𝜀2̇2 + 𝜀3̇3)𝑑𝑡 + 2𝐺𝜀′̇33 𝑑𝑡 −
𝐺
𝜐 𝑑𝑡σ′

33, (22.47.3)

where the subscript 𝑖𝑗 = 33 denotes the through-thickness direction and 𝐾 is the elastic 
bulk modulus.  This leads to: 

𝜀3̇3 = −a(𝜀1̇1 + 𝜀2̇2) + 𝑏𝑝, (22.47.4) 

𝑎 =
𝐾 − 2

3𝐺

𝐾 + 4
3𝐺

, (22.47.5) 

𝑏 =
𝐺𝑑𝑡

𝜐(𝐾 + 4
3𝐺)

, (22.47.6) 

in which 𝑝 is the pressure defined as the negative of the hydrostatic stress.
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22.48  Material Model 61:  Maxwell/Kelvin Viscoelastic with 
Maximum Strain 

 The shear relaxation behavior is described for the Maxwell model by: 

𝐺(𝑡) = G∞ + (G0 − G∞)𝑒−𝛽𝑡. (22.48.1)

 
 A Jaumann rate formulation is used 

𝑠′𝑖𝑗
∇

= 2 ∫ 𝐺(𝑡 − 𝜏)𝜀′̇𝑖𝑗(𝜏)𝑑𝑡
𝑡

0
, (22.48.2)

where the prime denotes the deviatoric part of the stress rate, 𝑠′𝑖𝑗
∇

, and 𝜀′̇𝑖𝑗 is the 
deviatoric strain rate. 
 
 For the Kelvin model the stress evolution equation is defined as: 

𝑠𝑖̇𝑗 +
1
𝜏 𝑠𝑖𝑗 = (1 + 𝛿𝑖𝑗)G0𝜀′̇𝑖𝑗 + (1 + 𝛿𝑖𝑗)

G∞
𝜏 𝜀′𝑖𝑗, (22.48.3)

where 𝛿𝑖𝑗 is the Kronecker delta, G0 is the instantaneous shear modulus, G∞is the long 
term shear modulus, and τ is the decay constant.   
 
 The pressure is determined from the bulk modulus and the volumetric strain: 

𝑝 = −𝐾𝜀v, (22.48.4)
where 

𝜀v = ln (
𝑉
𝑉0

), (22.48.5)

defines the logarithmic volumetric strain from the relative volume. 
 
 Bandak’s [1991] calculation of the total strain tensor, 𝜀𝑖𝑗, for output uses an 
incremental update based on Jaumann rate: 

𝜀𝑖𝑗
𝑛+1 = 𝜀𝑖𝑗

𝑛 + 𝑟𝑖𝑗𝑛 + 𝜀𝑖𝑗
𝛻𝑛+1

2⁄ 𝛥𝑡𝑛+1
2⁄ , (22.48.6)

where 

𝛥𝜀𝑖𝑗
𝑛+1

2⁄ = 𝜀𝑖̇𝑗
𝑛+1

2⁄ 𝛥𝑡𝑛+1
2⁄ , (22.48.7)

and 𝑟𝑖𝑗𝑛 gives the rotation of the stain tensor at time 𝑡𝑛 to the configuration at 𝑡𝑛+1 

𝑟𝑖𝑗𝑛 = (𝜀𝑖𝑝
𝑛 𝜔𝑝𝑗

𝑛+1
2⁄ + 𝜀𝑗𝑝

𝑛 𝜔𝑝𝑖
𝑛+1

2⁄ )𝛥𝑡𝑛+1
2⁄ . (22.48.8)
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22.49  Material Model 62:  Viscous Foam 

 This model was written to represent the energy absorbing foam found on certain 
crash dummies, i.e., the ‘Confor Foam’ covering the ribs of the Eurosid dummy. 
 
 The model consists of a nonlinear elastic stiffness in parallel with a viscous 
damper.  A schematic is shown in Figure 22.49.1.  The elastic stiffness is intended to 
limit total crush while the viscous damper absorbs energy.  The stiffness 𝐸2 prevents 
timestep problems.   
 
 Both 𝐸1 and 𝑉2 are nonlinear with crush as follows: 

𝐸1
𝑡 = 𝐸1(𝑉−n1),

𝑉2
𝑡 = 𝑉2(abs(1 − 𝑉))n2, (22.49.1)

where 𝑉 is the relative volume defined by the ratio of the current to initial volume.  
Typical values are (units of N, mm, s) 

𝐸1 = 0.0036,
𝑛1 = 4.0, 
𝑉2 = 0.0015, 
𝐸2 = 100.0, 
𝑛2 = 0.2, 
𝜈 = 0.05.

(22.49.2)

E1

E2

V1

 Figure 22.49.1.  Schematic of Material Model 62. 
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22.50  Material Model 63:  Crushable Foam 

 The intent of this model is to model crushable foams in side impact and other 
applications where cyclic behavior is unimportant. 
 
 This isotropic foam model crushes one-dimensionally with a Poisson’s ratio that 
is essentially zero.  The stress versus strain behavior is depicted in Figure 22.50.1 where 
an example of unloading from point a to the tension cutoff stress at b then unloading to 
point c and finally reloading to point d is shown.  At point d the reloading will continue 
along the loading curve.  It is important to use nonzero values for the tension cutoff to 
prevent the disintegration of the material under small tensile loads.  For high values of 
tension cutoff the behavior of the material will be similar in tension and compression.  
Viscous damping in the model follows an implementation identical to that of material 
type 57. 
  
 In the implementation we assume that Young’s modulus is constant and update 
the stress assuming elastic behavior. 

𝜎𝑖𝑗
trial = 𝜎𝑖𝑗

𝑛 + 𝐸𝜀𝑖̇𝑗
𝑛+1

2⁄ Δ𝑡𝑛+1
2⁄ . (22.50.1)

The magnitudes of the principal values, 𝜎𝑖
trial, 𝑖 = 1,3  are then checked to see if the yield 

stress, 𝜎y, is exceeded and if so they are scaled back to the yield surface: 

if  𝜎y < ∣𝜎𝑖
trial∣ then 𝜎𝑖

𝑛+1 = 𝜎y
𝜎𝑖

trial

∣σ𝑖
trial∣

. (22.50.2)

 After the principal values are scaled, the stress tensor is transformed back into 

E

σij

a

bc

Volumetric strain - In V

d

Figure 22.50.1.  Yield stress versus volumetric strain curve for the crushable
foam. 
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the global system.  As seen in Figure 22.50.1, the yield stress is a function of the natural 
logarithm of the relative volume, 𝑉, i.e., the volumetric strain.
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22.51  Material Model 64:  Strain Rate Sensitive Power-Law 
Plasticity 

 This material model follows a constitutive relationship of the form: 
𝜎 = 𝑘𝜀𝑚𝜀𝑛̇ (22.51.1)

where 𝜎  is the yield stress, 𝜀 is the effective plastic strain, 𝜀 ̇is the effective plastic strain 
rate, and the constants 𝑘, 𝑚, and 𝑛 can be expressed as functions of effective plastic 
strain or can be constant with respect to the plastic strain.  The case of no strain 
hardening can be obtained by setting the exponent of the plastic strain equal to a very 
small positive value, i.e., 0.0001. 
 
 This model can be combined with the superplastic forming input to control the 
magnitude of the pressure in the pressure boundary conditions in order to limit the 
effective plastic strain rate so that it does not exceed a maximum value at any 
integration point within the model.   
 
 A fully viscoplastic formulation is optional.  An additional cost is incurred but 
the improvement in results can be dramatic.
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22.52  Material Model 65:  Modified Zerilli/Armstrong 

 The Armstrong-Zerilli Material Model expresses the flow stress as follows.  For 
fcc metals, 

𝜎 = C1 + {C2(𝜀p)
1

2⁄ [𝑒(−C3+C4ln(𝜀∗̇))𝑇] + C5}(
𝜇(𝑇)

𝜇(293)), (22.52.1)

𝜀p =  effective plastic strain 

𝜀∗̇ =
𝜀 ̇
𝜀0̇

 effective plastic strain rate  

where 𝜀0̇ = 1,1𝑒 − 3,1𝑒 − 6 for time units of seconds, milliseconds, and microseconds, 
respectively. 
 
 For bcc metals, 

𝜎 = C1 + C2𝑒(−C3+C4ln(𝜀∗̇))𝑇 + [C5(𝜀p)𝑛 + C6] (
𝜇(𝑇)

𝜇(293)), (22.52.2)

where 

(
𝜇(𝑇)

𝜇(293)) = B1 + B2𝑇 + B3𝑇2. (22.52.3)

 
 The relationship between heat capacity (specific heat) and temperature may be 
characterized by a cubic polynomial equation as follows: 

Cp = G1 + G2𝑇 + G3𝑇2 + G4𝑇3. (22.52.4)

 
 A fully viscoplastic formulation is optional.  An additional cost is incurred but 
the improvement in results can be dramatic.
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22.53  Material Model 66:  Linear Stiffness/Linear Viscous 3D 
Discrete Beam 

 The formulation of the discrete beam (Type 6) assumes that the beam is of zero 
length and requires no orientation node.  A small distance between the nodes joined by 
the beam is permitted.  The local coordinate system which determines (𝑟, 𝑠, 𝑡) is given 
by the coordinate ID in the cross sectional input where the global system is the default.  
The local coordinate system axes rotate with the average of the rotations of the two 
nodes that define the beam. 
 
 For null stiffness coefficients, no forces corresponding to these null values will 
develop.  The viscous damping coefficients are optional.
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22.54  Material Model 67:  Nonlinear Stiffness/Viscous 3D 
Discrete Beam 

 The formulation of the discrete beam (Type 6) assumes that the beam is of zero 
length and requires no orientation node.  A small distance between the nodes joined by 
the beam is permitted.  The local coordinate system which determines (𝑟, 𝑠, 𝑡) is given 
by the coordinate ID in the cross sectional input where the global system is the default.  
The local coordinate system axes rotate with the average of the rotations of the two 
nodes that define the beam. 
 
 For null load curve ID’s, no forces are computed.   The force resultants are found 
from load curves (See Figure 22.54.1) that are defined in terms of the force resultant 
versus the relative displacement in the local coordinate system for the discrete beam.
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Figure 22.54.1.  The resultant forces and moments are determined by a table
lookup.  If the origin of the load curve is at [0,0] as in (b.) and tension and
compression responses are symmetric. 



Material Models LS-DYNA Theory Manual 

20-154 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

22.55  Material Model 68:  Nonlinear Plastic/Linear Viscous 
3D Discrete Beam 

 The formulation of the discrete beam (Type 6) assumes that the beam is of zero 
length and requires no orientation node.  A small distance between the nodes joined by 
the beam is permitted.  The local coordinate system which determines (𝑟, 𝑠, 𝑡) is given 
by the coordinate ID in the cross sectional input where the global system is the default.  
The local coordinate system axes rotate with the average of the rotations of the two 
nodes that define the beam.  Each force resultant in the local system can have a limiting 
value defined as a function of plastic displacement by using a load curve (See Figure 
22.55.1).  For the degrees of freedom where elastic behavior is desired, the load curve ID 
is simply set to zero. 
 
 Catastrophic failure, based on force resultants, occurs if the following inequality 
is satisfied:   

(
𝐹r

𝐹rfail)
2

+ (
𝐹s

𝐹sfail)
2

+ (
𝐹t

𝐹tfail)
2

+ (
𝑀r
𝑀rfail)

2

+ (
𝑀s
𝑀sfail)

2

+ (
𝑀t
𝑀tfail)

2

− 1.≥ 0. (22.55.1)

Likewise, catastrophic failure based on displacement resultants occurs if: 

(
𝑢r
𝑢rfail)

2

+ (
𝑢s
𝑢sfail)

2

+ (
𝑢t
𝑢tfail)

2

+ (
𝜃r
𝜃rfail)

2

+ (
𝜃s
𝜃sfail)

2

+ (
𝜃t
𝜃tfail)

2

− 1.≥ 0. (22.55.2)

 
 After failure, the discrete element is deleted.  If failure is included, either one or 
both of the criteria may be used.
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PLASTIC DISPLACEMENT

Figure 22.55.1.  The resultant forces and moments are limited by the yield
definition.  The initial yield point corresponds to a plastic displacement of zero.
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22.56  Material Model 69:  Side Impact Dummy Damper (SID 
Damper) 

 The side impact dummy uses a damper that is not adequately treated by 
nonlinear force versus relative velocity curves, since the force characteristics are also 
dependent on the displacement of the piston.  As the damper moves, the fluid flows 
through the open orifices to provide the necessary damping resistance.  While moving 
as shown in Figure 22.56.1, the piston gradually blocks off and effectively closes the 
orifices.  The number of orifices and the size of their openings control the damper 
resistance and performance.  The damping force is computed from the equation: 

𝐹 = 𝑆𝐹
⎩{
⎨
{⎧𝐾𝐴p𝑉p

⎩{
⎨
{⎧𝐶1

𝐴0
𝑡 + 𝐶2∣𝐕p∣𝜌fluid

⎣
⎢⎡(
𝐴p
𝐶𝐴0

𝑡 )
2

− 1
⎦
⎥⎤

⎭}
⎬
}⎫ − 𝑓 (𝑠 + 𝑠0) + 𝑉p𝑔(𝑠 + 𝑠0)

⎭}
⎬
}⎫, (22.56.1)

where 𝐾 is a user defined constant or a tabulated function of the absolute value of the 
relative velocity, 𝐕p is the piston's relative velocity, 𝐶 is the discharge coefficient, 𝐴p is 
the piston area, 𝐴0

𝑡  is the total open areas of orifices at time 𝑡, 𝜌fluid is the fluid density, 
𝐶1 is the coefficient for the linear term, and 𝐶2 is the coefficient for the quadratic term. 
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 Figure 22.56.1.  Mathematical model for the Side Impact Dummy damper. 
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 In the implementation, the orifices are assumed to be circular with partial 
covering by the orifice controller.  As the piston closes, the closure of the orifice is 
gradual.  This gradual closure is taken into account to insure a smooth response.  If the 
piston stroke is exceeded, the stiffness value, 𝑘, limits further movement, i.e., if the 
damper bottoms out in tension or compression, the damper forces are calculated by 
replacing the damper by a bottoming out spring and damper, k and c, respectively.  The 
piston stroke must exceed the initial length of the beam element.  The time step 
calculation is based in part on the stiffness value of the bottoming out spring.  A typical 
force versus displacement curve at constant relative velocity is shown in Figure 22.56.2.  
The factor, SF, which scales the force defaults to 1.0 and is analogous to the adjusting 
ring on the damper.

DISPLACEMENT

F

O

R

C

E

Force increases as orifice

is gradually covered.

Last orifice

closes.

Figure 22.56.2.  Force versus displacement as orifices are covered at a constant
relative velocity.  Only the linear velocity term is active. 
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22.57  Material Model 70:  Hydraulic/Gas Damper 

 This special purpose element represents a combined hydraulic and gas-filled 
damper which has a variable orifice coefficient.  A schematic of the damper is shown in 
Figure 22.57.1.  Dampers of this type are sometimes used on buffers at the end of 
railroad tracks and as aircraft undercarriage shock absorbers.  This material can be used 
only as a discrete beam element. 
 
 As the damper is compressed two actions contribute to the force that develops.  
First, the gas is adiabatically compressed into a smaller volume.  Secondly, oil is forced 
through an orifice.  A profiled pin may occupy some of the cross-sectional area of the 
orifice; thus, the orifice area available for the oil varies with the stroke.  The force is 
assumed proportional to the square of the velocity and inversely proportional to the 
available area.  The equation for this element is: 

𝐹 = SCLF ⋅ {𝐾h (
𝑉
𝑎0

)
2

+ [𝑃0 (
𝐶0

𝐶0 − 𝑆)
𝑛

− 𝑃a] ⋅ 𝐴p}, (22.57.1)

where 𝑆 is the element deflection and 𝑉 is the relative velocity across the element.

Orifice

GasProfiled PinOil

 Figure 22.57.1.  Schematic of Hydraulic/Gas damper. 



Material Models LS-DYNA Theory Manual 

20-158 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

22.58  Material Model 71:  Cable 

 This material can be used only as a discrete beam element.  The force, 𝐹, 
generated by the cable is nonzero only if the cable is in tension.  The force is given by: 

𝐹 = 𝐾 ⋅ max(Δ𝐿, 0. ), (22.58.1)
where Δ𝐿 is the change in length 

Δ𝐿 = current  length − (initial  length-offset), (22.58.2)
and the stiffness is defined as: 

𝐾 =
𝐸 ⋅ area

(initial  length-  offset). (22.58.3)

 
 The area and offset are defined on either the cross section or element cards in the 
LS-DYNA input.  For a slack cable the offset should be input as a negative length.  For 
an initial tensile force the offset should be positive.  If a load curve is specified, the 
Young’s modulus will be ignored and the load curve will be used instead.  The points 
on the load curve are defined as engineering stress versus engineering strain, i.e., the 
change in length over the initial length.  The unloading behavior follows the loading.
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22.59  Material Model 73:  Low Density Viscoelastic Foam  

 This viscoelastic foam model is available to model highly compressible viscous 
foams.  The hyperelastic formulation of this model follows that of material 57.  Rate 
effects are accounted for through linear viscoelasticity by a convolution integral of the 
form 

𝜎𝑖𝑗
r = ∫ 𝑔𝑖𝑗𝑘𝑙

𝑡

0
(𝑡 − 𝜏)

𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.59.1)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) is the relaxation function.  The stress tensor, 𝜎𝑖𝑗
r , augments the stresses 

determined from the foam, 𝜎𝑖𝑗
f ; consequently, the final stress, 𝜎𝑖𝑗, is taken as the 

summation of the two contributions: 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
f + 𝜎𝑖𝑗

r . (22.59.2)

 
 Since we wish to include only simple rate effects, the relaxation function is 
represented by up to six terms of the Prony series: 

𝑔(𝑡) = 𝛼0 + ∑ 𝛼𝑚

𝑁

𝑚=1
𝑒−𝛽𝑡. (22.59.3)

 
 This model is effectively a Maxwell fluid which consists of a dampers and 
springs in series.  The formulation is performed in the local system of principal stretches 
where only the principal values of stress are computed and triaxial coupling is avoided.  
Consequently, the one-dimensional nature of this foam material is unaffected by this 
addition of rate effects.  The addition of rate effects necessitates 42 additional history 
variables per integration point.  The cost and memory overhead of this model comes 
primarily from the need to “remember” the local system of principal stretches and the 
evaluation of the viscous stress components.  Viscous damping in the model follows an 
implementation identical to that of material type 57.
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22.60  Material Model 74:  Elastic Spring for the Discrete 
Beam 

 This model permits elastic springs with damping to be combined and 
represented with a discrete beam element type 6.  Linear stiffness and damping 
coefficients can be defined, and, for nonlinear behavior, a force versus deflection and 
force versus rate curves can be used.  Displacement based failure and an initial force are 
optional.  
 
 If the linear spring stiffness is used, the force, F, is given by: 

𝐹 = 𝐹0 + 𝐾Δ𝐿 + 𝐷Δ𝐿̇, (22.60.1)

where K is the stiffness constant, and D is the viscous damping coefficient.   
 
 If the load curve ID for 𝑓 (Δ𝐿) is specified, nonlinear behavior is activated.  For 
this case the force is given by: 

𝐹 = 𝐹0 + 𝐾 𝑓 (Δ𝐿) [1 + C1 ⋅ Δ𝐿̇ + C2 ⋅ sgn(Δ𝐿̇)ln (max {1. ,
∣Δ𝐿̇∣
DLE})]

            +𝐷Δ𝐿̇ + 𝑔(Δ𝐿)ℎ(Δ𝐿̇),
 (22.60.2)

where C1 and C2 are damping coefficients for nonlinear behavior, DLE is a factor to 
scale time units, and 𝑔(Δ𝐿) is an optional load curve defining a scale factor versus 
deflection for load curve ID, ℎ(𝑑Δ𝐿/𝑑𝑡). 
 
 In these equations, Δ𝐿 is the change in length  

Δ𝐿 = current  length-initial  length. (22.60.3)
 
 Failure can occur in either compression or tension based on displacement values 
of CDF and TDF, respectively.  After failure no forces are carried.  Compressive failure 
does not apply if the spring is initially zero length. 
 
 The cross sectional area is defined on the section card for the discrete beam 
elements, in *SECTION_BEAM.  The square root of this area is used as the contact 
thickness offset if these elements are included in the contact treatment.
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22.61  Material Model 75:  Bilkhu/Dubois Foam Model  

 This model uses uniaxial and triaxial test data to provide a more realistic 
treatment of crushable foam.  The Poisson’s ratio is set to zero for the elastic response.  
The volumetric strain is defined in terms of the relative volume, 𝑉, as: 

𝛾 = −ln(𝑉). (22.61.1)
 
 In defining the curves, the stress and strain pairs should be positive values 
starting with a volumetric strain value of zero. 
 

Viscous damping in the model follows an implementation identical to that of 
material type 57.

Volumetric Strain

M
a

x
 S

tr
e

s
s

Pressure Yield

Uniaxial Yield Stress

 Figure 22.61.1.  Behavior of crushable foam.  Unloading is elastic. 
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22.62  Material Model 76:  General Viscoelastic  

22.62.1  Introduction  

Material type 76 in LS-DYNA is a general viscoelastic Maxwell model having up to 18 
terms in the prony series expansion and is useful for modeling dense continuum 
rubbers and solid explosives.  It is characterized in the input by bulk and shear modulii, 
𝐾𝑚 and 𝐺𝑚, and associated decay constants, 𝛽𝑚

𝑘  and 𝛽𝑚
𝑔 . Either the coefficients of the 

prony series expansion can be used directly, or a relaxation curve may be specified to 
define the viscoelastic deviatoric and bulk behavior. 

22.62.2  Constitutive Model 

The model is a hypoelastic version of the model given by Christensen and can be stated 
as 

𝝈∇ = ∑(𝐾𝑚𝑡𝑚
∇ 𝒊 + 2𝐺𝑚𝒔𝑚

∇ )
𝑚

, (22.62.1)

where 𝑡𝑚 and 𝒔𝑚 are (strain) quantities governed by the following evolution in time 

𝒔𝑚
∇ = 𝑫dev − 𝛽𝑚

𝑔 𝒔𝑚 (22.62.2)

and 

𝑡𝑚
∇ = 𝐷vol − 𝛽𝑚

𝑘 𝑡𝑚 (22.62.3)

Here 𝐾𝑚 and 𝐺𝑚 are bulk and shear moduli, respectively, 𝛽𝑚
𝑘  and 𝛽𝑚

𝑔  are the 
corresponding decay coefficients, 𝐷vol and 𝑫dev are the volumetric and deviatoric 
strain rates, 𝒊 is the 2nd order identity tensor and ∇ denotes the Jaumann objective rate.  
It should immediately be noted that for all decay coefficients equal to 0 (zero), the 
model is reduced to a time independent elastic model, 

𝝈∇ = 𝐾𝐷vol𝒊 + 2𝐺𝑫dev (22.62.4) 

with bulk and shear modulus given by 𝐾 = ∑ 𝐾𝑚𝑚  and 𝐺 = ∑ 𝐺𝑚𝑚 . For small 
displacement theory, the stress can be integrated to be given by 

𝝈(𝑡) = ∑ (𝐾𝑚 ∫ 𝑒−𝛽𝑚
𝑘 (𝑡−𝜏)𝐷vol(𝜏)

𝑡

0
𝑑𝜏𝒊 + 2𝐺𝑚 ∫ 𝑒−𝛽𝑚

𝑔 (𝑡−𝜏)𝑫dev(𝜏)
𝑡

0
𝑑𝜏)

𝑚
 (22.62.5) 

For shell elements, the same theory applies except that the objective rate ∇ is the 
corotational time derivative instead of the Jaumann rate. 

22.62.3  Tangent Modulus 

For the implicit tangent modulus, we note that the internal force contribution depends 
on the displacement and time, which we denote 𝒇int = 𝒇int(𝒖, 𝑡). The time derivative of 
this vector is the sum of a material and a geometric contribution.  The material 
contribution is given by  



LS-DYNA Theory Manual Material Models 

LS-DYNA DEV 06/21/18 (r:10113) 20-163 (Material Models) 

𝒇 ̇int
mat = ∫𝑩𝑇 𝝈∇𝑇𝑑Ω (22.62.6) 

where 𝑩 is the strain displacement matrix, the integration is over the current 
configuration Ω and ∇𝑇 stands for Truesdell rate.  This expression should later be 
identified with  

𝒇 ̇int
mat =

𝜕𝒇intmat

𝜕𝒖 𝒖̇ +
𝜕𝒇intmat

𝜕𝑡  (22.62.7) 

in order to determine the tangent modulus.  Neglecting discrepancies between the 
Jaumann and Truesdell rates, we can use (22.62.2) and (22.62.3) in (22.62.6) to get 

𝒇 ̇int
mat = ∫𝑩𝑇 ∑(𝐾𝑚𝒊⨂𝒊 + 2𝐺𝑚𝑰dev)

𝑚
𝑩𝑑𝛺𝒖̇ − ∫𝑩𝑇 ∑(𝐾𝑚𝛽𝑚

𝑘 𝑡𝑚𝒊 + 2𝐺𝑚𝛽𝑚
𝑔 𝒔𝑚)

𝑚
𝑑𝛺, (22.62.8) 

where 𝑰dev is the 4th order deviatoric identity tensor. Comparing this expression with 
(22.62.7) one can conclude that 

𝜕𝒇intmat

𝜕𝒖 = ∫𝑩𝑇 ∑(𝐾𝑚𝒊⨂𝒊 + 2𝐺𝑚𝑰dev)
𝑚

𝑩𝑑𝛺, (22.62.9) 

and hence the tangent modulus is 

𝑪 = ∑(𝐾𝑚𝒊⨂𝒊 + 2𝐺𝑚𝑰dev)
𝑚

. (22.62.10)

i.e., independent of deformation and time.  In fact, this tangent modulus is equal to the classical 
elastic tangent modulus for a hypoelastic material, cf. (22.62.4).  

22.62.4  Using the Relaxation Curve 
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Instead of inputting the stiffness and relaxation parameters, one can input a relaxation 
curve from test according to Figure 22.62.1. The time scale is determined by BSTART 
and LS-DYNA will determine all parameters as to best fit the curve.

Optional ramp time for loading

Stress relaxation curve

time10
n

10
n+2

10
n+1

Figure 22.62.1.  Relaxation curve.  This curve defines stress versus time where
time is defined on a logarithmic scale.  For best results, the points defined in
the load curve should be equally spaced on the logarithmic scale.
Furthermore, the load curve should be smooth and defined in the positive 
quadrant.  If nonphysical values are determined by least squares fit, LS-DYNA 
will terminate with an error message after the initialization phase is completed.
If the ramp time for loading is included, then the relaxation which occurs 
during the loading phase is taken into account.  This effect may or may not be
important. 
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22.63  Material Model 77:  Hyperviscoelastic Rubber  

 Material type 77 in LS-DYNA consists of two hyperelastic rubber models, a 
general hyperelastic rubber model and an Ogden rubber model, that can be combined 
optionally with a viscoelastic stress contribution.  As for the rate independent part, the 
constitutive law is determined by a strain energy function which in this case 
advantageously can be expressed in terms of the principal stretches, i.e., 𝑊 =
𝑊(𝜆1, 𝜆2, 𝜆3). To obtain the Cauchy stress 𝜎𝑖𝑗, as well as the constitutive tensor of 
interest, 𝐷𝑖𝑗𝑘𝑙

TC, they are first calculated in the principal basis after which they are 
transformed back to the “base frame”, or standard basis.  The complete set of formulas 
is given by Crisfield [1997] and is for the sake of completeness recapitulated here. 
The principal Kirchoff stress components are given by 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

(no sum), (22.63.1)

that are transformed to the standard basis using the standard formula 

𝜏𝑖𝑗 = 𝑞𝑖𝑘𝑞𝑗𝑙𝜏𝑘𝑙
E. (22.63.2)

 
 The 𝑞𝑖𝑗 are the components of the orthogonal tensor containing the eigenvectors 
of the principal basis.  The Cauchy stress is then given by  

𝜎𝑖𝑗 = 𝐽−1𝜏𝑖𝑗, (22.63.3)

where 𝐽 = 𝜆1𝜆2𝜆3 is the relative volume change. 
 
 The constitutive tensor that relates the rate of deformation to the Truesdell 
(convected) rate of Kirchoff stress can in the principal basis be expressed as 

𝐷𝑖𝑖𝑗𝑗
TKE = 𝜆𝑗

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑗
− 2𝜏𝑖𝑖

E𝛿𝑖𝑗

𝐷𝑖𝑗𝑖𝑗
TKE =

𝜆𝑗
2𝜏𝑖𝑖
E − 𝜆𝑖

2𝜏𝑗𝑗
E

𝜆𝑖
2 − 𝜆𝑗

2 ,    𝑖 ≠ 𝑗, 𝜆𝑖 ≠ 𝜆𝑗

𝐷𝑖𝑗𝑖𝑗
TKE =

𝜆𝑖
2 (

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑖
−

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑗
), 𝑖 ≠ 𝑗, 𝜆𝑖 = 𝜆𝑗

  (no sum). (22.63.4)

 
 These components are transformed to the standard basis according to 

𝐷𝑖𝑗𝑘𝑙
TK = 𝑞𝑖𝑝𝑞𝑗𝑞𝑞𝑘𝑟𝑞𝑙𝑠𝐷𝑝𝑞𝑟𝑠

TKE, (22.63.5)

and finally the constitutive tensor relating the rate of deformation to the Truesdell rate 
of Cauchy stress is obtained through 
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𝐷𝑖𝑗𝑘𝑙
TC = 𝐽−1𝐷𝑖𝑗𝑘𝑙

TK . (22.63.6)

 
 When dealing with shell elements, the tangent moduli in the corotational 
coordinates is of interest.  This matrix is given by 

𝐷̂𝑖𝑗𝑘𝑙
TC = 𝑅𝑝𝑖𝑅𝑞𝑗𝑅𝑟𝑘𝑅𝑠𝑙𝐷𝑝𝑞𝑟𝑠

TC = 𝐽−1𝑅𝑝𝑖𝑅𝑞𝑗𝑅𝑟𝑘𝑅𝑠𝑙𝐷𝑝𝑞𝑟𝑠
TK = 𝐽−1𝑞𝑖̂𝑝𝑞𝑗̂𝑞𝑞𝑘̂𝑟𝑞𝑙̂𝑠𝐷𝑝𝑞𝑟𝑠

TKE, (22.63.7)

where 𝑅𝑖𝑗 is the matrix containing the unit basis vectors of the corotational system and 
𝑞𝑖̂𝑗 = 𝑅𝑘𝑖𝑞𝑘𝑗. The latter matrix can be determined as the eigenvectors of the co-rotated left 
Cauchy-Green tensor (or the left stretch tensor).  In LS-DYNA, the tangent stiffness 
matrix is after assembly transformed back to the standard basis according to standard 
transformation formulae. 
 

22.63.1  General Hyperelastic Rubber Model 

The strain energy function for the general hyperelastic rubber model is given by 

𝑊 = ∑ 𝐶𝑝𝑞𝑊1
𝑝𝑊2

𝑞
𝑛

𝑝,𝑞=0
+

1
2𝐾(𝐽 − 1)2, (22.63.8)

where 𝐾 is the bulk modulus, 

𝑊1 = 𝐼1𝐼3
−1

3 − 3
𝑊2 = 𝐼2𝐼3

−2/3 − 3,
(22.63.9)

and 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆1
2𝜆3

2 
𝐼3 = 𝜆1

2𝜆2
2𝜆3

2,
(22.63.10)

are the invariants in terms of the principal stretches.  To apply the formulas in the 
previous section, we require 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

= ∑ 𝐶𝑝𝑞(𝑝𝑊1
𝑝−1𝑊1𝑖

′ 𝑊2
𝑞 + 𝑞𝑊1

𝑝𝑊2
𝑞−1𝑊2𝑖

′ )
𝑛

𝑝,𝑞=0
+ 𝐾𝐽(𝐽 − 1), (22.63.11)

where 

𝑊1𝑖
′ ≔ 𝜆𝑖

𝜕𝑊1
𝜕𝜆𝑖

= (2𝜆𝑖
2 −

2
3 𝐼1) 𝐼3

−1
3

𝑊2𝑖
′ : = 𝜆𝑖

𝜕𝑊2
𝜕𝜆𝑖

= (2𝜆𝑖
2(𝐼1 − 𝜆𝑖

2) −
4
3 𝐼2) 𝐼3

−2
3.

(22.63.12)

 
 If C𝑝𝑞 is nonzero only for 𝑝𝑞 = 01,10,11,20,02,30, then Equation (22.63.11) can be 
written as 
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𝜏𝑖𝑖
E = (𝐶10 + 𝐶11𝑊2 + 2𝐶20𝑊1 + 3𝐶30𝑊1

2)𝑊1𝑖
′ +

         (𝐶01 + 𝐶11𝑊1 + 2𝐶02𝑊2)𝑊2𝑖
′ + 𝐾𝐽(𝐽 − 1).

(22.63.13)

 
 Proceeding with the constitutive tensor, we have 

𝜆𝑗
𝜕𝜏𝑖𝑖

E

𝜕𝜆𝑗
= ∑ 𝐶𝑝𝑞(𝑝(𝑝 − 1)𝑊1

𝑝−2𝑊1𝑖
′ 𝑊1𝑗

′ 𝑊2
𝑞 + 𝑝𝑊1

𝑝−1𝑊1𝑖𝑗
′′ 𝑊2

𝑞 + 𝑝𝑞𝑊1
𝑝−1𝑊1𝑖

′ 𝑊2
𝑞−1𝑊2𝑗

′
𝑛

𝑝,𝑞=0

+𝑞𝑝𝑊1
𝑝−1𝑊1𝑗

′ 𝑊2
𝑞−1𝑊2𝑖

′ + 𝑞(𝑞 − 1)𝑊1
𝑝𝑊2

𝑞−2𝑊2𝑖
′ 𝑊2𝑗

′ + 𝑞𝑊1
𝑝𝑊2

𝑞−1𝑊2𝑖𝑗
′′ )

+𝐾𝐽(2𝐽 − 1),

(22.63.14)

where 

𝑊1𝑖𝑗
′′ : = 𝜆𝑗

𝜕𝑊1𝑖
′

𝜕𝜆𝑗
= (4𝜆𝑖

2𝛿𝑖𝑗 −
4
3 (𝜆𝑖

2 + 𝜆𝑗
2) +

4
9 𝐼1)𝐼3

−1/3

𝑊2𝑖𝑗
′′ : = 𝜆𝑗

𝜕𝑊2𝑖
′

𝜕𝜆𝑗
= ((4𝜆𝑖

2𝐼1 − 8𝜆𝑖
4)𝛿𝑖𝑗 + 4𝜆𝑖

2𝜆𝑗
2 −

8
3 (𝜆𝑖

2(𝐼1 − 𝜆𝑖
2) + 𝜆𝑗

2(𝐼1 − 𝜆𝑗
2)) +

16
9 𝐼2)𝐼3

−2/3
(22.63.15)

 
 Again, using only the nonzero coefficients mentioned above, Equation (22.63.14) 
is reduced to 

𝜆𝑗
𝜕𝜏𝑖𝑖

E

𝜕𝜆𝑗
= 𝐶11(𝑊1𝑖

′ 𝑊2𝑗
′ +𝑊1𝑗

′ 𝑊2𝑖
′ ) + 2(𝐶20 + 3𝐶30𝑊1)𝑊1𝑗

′ 𝑊1𝑖
′ + 2𝐶02𝑊2𝑖

′ 𝑊2𝑗
′ +

(𝐶10 + 𝐶11𝑊2 + 2𝐶20𝑊1 + 3𝐶30𝑊1
2)𝑊1𝑖𝑗

′′ + (𝐶01 + 𝐶11𝑊1 + 2𝐶02𝑊2)𝑊2𝑖𝑗
′′ +

𝐾𝐽(2𝐽 − 1).

 (22.63.16)

 

22.63.2  Ogden Rubber Model 

 The strain energy function for the Ogden rubber model is given by  

𝑊 = ∑
𝜇𝑚
𝛼𝑚

(𝜆̃1
𝛼𝑚

𝑛

𝑚=1
+ 𝜆̃2

𝛼𝑚 + 𝜆̃3
𝛼𝑚 − 3) +

1
2𝐾(𝐽 − 1)2, (22.63.17)

where 

𝜆̃𝑖 =
𝜆𝑖

𝐽1/3, (22.63.18)

are the volumetric independent principal stretches, and 𝜇𝑚 and 𝛼𝑚 are material 
parameters.  To apply the formulas in the previous section, we require 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

= ∑ 𝜇𝑚(𝜆̃𝑖
𝛼𝑚 −

1
3 𝑎𝑚)

𝑛

𝑚=1
+ 𝐾𝐽(𝐽 − 1), (22.63.19)

where 

𝑎𝑚 = 𝜆̃1
𝛼𝑚 + 𝜆̃2

𝛼𝑚 + 𝜆̃3
𝛼𝑚. (22.63.20)
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 Proceeding with the constitutive tensor, we have 

𝜆𝑗
𝜕𝜏𝑖𝑖

E

𝜕𝜆𝑗
= ∑

𝜇𝑚𝛼𝑚
3 (

1
3 𝑎𝑚 + 3𝜆̃𝑖

𝛼𝑚𝛿𝑖𝑗 − 𝜆̃𝑖
𝛼𝑚 − 𝜆̃𝑗

𝛼𝑚)
𝑛

𝑚=1
+ 𝐾𝐽(2𝐽 − 1). (22.63.21)

 
 

22.63.3  The Viscoelastic Contribution 

 As mentioned above, this material model is accompanied with a viscoelastic 
stress contribution.  The rate form of this constitutive law can in co-rotational 
coordinates be written 

𝜎̂𝑖𝑗
ve• = ∑ 2𝐺𝑚

𝑛

𝑚=1
𝐷̂𝑖𝑗

dev − ∑ 2𝛽𝑚𝐺𝑚 ∫ 𝑒−𝛽𝑚(𝑡−𝜏)𝐷̂𝑖𝑗
dev(𝜏)𝑑𝜏

𝑡

0

𝑛

𝑚=1
. (22.63.22)

 
 Here 𝑛 is a number less than or equal to 6, 𝜎̂𝑖𝑗

ve is the co-rotated viscoelastic stress, 
𝐷̂𝑖𝑗

dev is the deviatoric co-rotated rate-of-deformation and 𝐺𝑚 and 𝛽𝑚 are material 
parameters.  The parameters 𝐺𝑚 can be thought of as shear moduli and 𝛽𝑚 as decay 
coefficients determining the relaxation properties of the material.  This rate form can be 
integrated in time to form the corotated viscoelastic stress 

𝜎̂𝑖𝑗
ve = ∑ 2𝐺𝑚 ∫ 𝑒−𝛽𝑚(𝑡−𝜏)𝐷̂𝑖𝑗

dev(𝜏)𝑑𝜏
𝑡

0

6

𝑚=1
. (22.63.23)

 
 For the constitutive matrix, we refer to Borrvall [2002] and here simply state that 
it is equal to 

𝐷̂𝑖𝑗𝑘𝑙
TCve = ∑ 2𝐺𝑚

𝑛

𝑚=1
(

1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) −

1
3 𝛿𝑖𝑗𝛿𝑘𝑙). (22.63.24)

 
 
 

22.63.4  Stress Update for Shell Elements 

 In principal, the stress update for material 77 and shell elements follows closely 
the one that is implemented for material 27. The stress is evaluated in corotational 
coordinates after which it is transformed back to the standard basis according to 

𝜎𝑖𝑗 = 𝑅𝑖𝑘𝑅𝑗𝑙𝜎̂𝑘𝑙, (22.63.25)

or equivalently the internal force is assembled in the corotational system and then 
transformed back to the standard basis according to standard transformation formulae.  
Here 𝑅𝑖𝑗 is the rotation matrix containing the corotational basis vectors.  The so-called 
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corotated stress 𝜎̂𝑖𝑗 is evaluated as the sum of the stresses given in Sections 19.77.1 and 
19.77.4.   
 
 The viscoelastic stress contribution is incrementally updated with aid of the 
corotated rate of deformation.  To be somewhat more precise, the values of the 12 
integrals in Equation (22.63.23) are kept as history variables that are updated in each 
time step.  Each integral is discretized in time and the mean value theorem is used in 
each time step to determine their values.  
 
 For the hyperelastic stress contribution, the principal stretches are needed and 
here taken as the square root of the eigenvalues of the co-rotated left Cauchy-Green 
tensor 𝑏̂𝑖𝑗. The corotated left Cauchy-Green tensor is incrementally updated with the aid 
of a time increment Δ𝑡, the corotated velocity gradient 𝐿̂𝑖𝑗, and the angular velocity 𝛺̂𝑖𝑗 
with which the embedded coordinate system is rotating,  

𝑏̂𝑖𝑗 = 𝑏̂𝑖𝑗 + Δ𝑡(𝐿̂𝑖𝑘 − 𝛺̂𝑖𝑘)𝑏̂𝑘𝑗 + Δ𝑡𝑏̂𝑖𝑘(𝐿̂𝑖𝑘 − 𝛺̂𝑖𝑘). (22.63.26)

 
 The primary reason for taking a corotational approach is to facilitate the 
maintenance of a vanishing normal stress through the thickness of the shell, something 
that is achieved by adjusting the corresponding component of the corotated velocity 
gradient 𝐿̂33 accordingly.  The problem can be stated as to determine L̂33 such that 
when updating the left Cauchy-Green tensor through Equation (22.63.26) and 
subsequently the stress through formulae in Sections 19.77.1 and 19.77.4, 𝜎̂33 = 0. To 
this end, it is assumed that 

𝐿̂33 = α(𝐿̂11 + 𝐿̂22), (22.63.27)

for some parameter α that is determined in the following three step procedure.  In the 
first two steps, α = 0 and α = −1, respectively, resulting in two trial normal stresses 𝜎̂33

(0) 
and 𝜎̂33

(−1). Then it is assumed that the actual normal stress depends linearly on α, 
meaning that the latter can be determined from 

0 = 𝜎33
(α) = 𝜎33

(0) + α(𝜎33
(0) − 𝜎33

(−1)). (22.63.28)

 
 In the current implementation, α is given by 

𝛼 =

⎩{
{{
⎨
{{
{⎧ 𝜎̂33

(0)

𝜎̂33
(−1) − 𝜎̂33

(0) if ∣𝜎̂33
(−1) − 𝜎̂33

(0)∣ ≥ 10−4

− 1 otherwise
 (22.63.29)

and the stresses are determined from this value of 𝛼. Finally, to make sure that the 
normal stress through the thickness vanishes, it is set to 0 (zero) before exiting the stress 
update routine.
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22.64  Material Model 78:  Soil/Concrete  

 Concrete pressure is positive in compression.  Volumetric strain is defined as the 
natural log of the relative volume and is positive in compression where the relative 
volume, 𝑉, is the ratio of the current volume to the initial volume.  The tabulated data 
should be given in order of increasing compression.  If the pressure drops below the 
cutoff value specified, it is reset to that value and the deviatoric stress state is 
eliminated. 
 
 If the load curve ID is provided as a positive number, the deviatoric perfectly 
plastic pressure dependent yield function 𝜙, is described in terms of the second 
invariant, 𝐽2, the pressure, 𝑝, and the tabulated load curve, 𝐹(𝑝), as 

𝜙 = √3𝐽2 − 𝐹(𝑝) = σ𝑦 − 𝐹(𝑝), (22.64.1)

where 𝐽2 is defined in terms of the deviatoric stress tensor as: 

𝐽2 =
1
2 𝑆𝑖𝑗𝑆𝑖𝑗, (22.64.2)

assuming that if the ID is given as negative, then the yield function becomes: 
𝜙 = 𝐽2 − 𝐹(𝑝), (22.64.3)

being the deviatoric stress tensor. 
 
 If cracking is invoked, the yield stress is multiplied by a factor f which reduces 
with plastic stain according to a trilinear law as shown in Figure 22.64.1. 

1.0

b

f

ε1 ε2 εp

 Figure 22.64.1.  Strength reduction factor. 
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b = residual strength factor 
𝜀1 = plastic stain at which cracking begins. 
𝜀2 = plastic stain at which residual strength is reached. 
 
𝜀1 and 𝜀2 are tabulated functions of pressure that are defined by load curves (see Figure 
22.64.2).  The values on the curves are pressure versus strain and should be entered in 
order of increasing pressure.  The strain values should always increase monotonically 
with pressure. 
 
 By properly defining the load curves, it is possible to obtain the desired strength 
and ductility over a range of pressures.  See Figure 22.64.3.

P

ε

ε
1

ε
2

 Figure 22.64.2.  Cracking strain versus pressure. 

Yield

stress

Plastic strain

p1

p2

p3

 Figure 22.64.3.  Example Caption 
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22.65  Material Model 79:  Hysteretic Soil 

 This model is a nested surface model with five superposed “layers” of elasto-
perfectly plastic material, each with its own elastic modulii and yield values.  Nested 
surface models give hysteretic behavior, as the different “layers” yield at different 
stresses. 
 
 The constants 𝑎0, 𝑎1, 𝑎2 govern the pressure sensitivity of the yield stress.  Only 
the ratios between these values are important - the absolute stress values are taken from 
the stress-strain curve.   
 
 The stress strain pairs (𝛾1, 𝜏1), ... (𝛾5, 𝜏5) define a shear stress versus shear strain 
curve.  The first point on the curve is assumed by default to be (0,0) and does not need 
to be entered.  The slope of the curve must decrease with increasing 𝛾.  Not all five 
points need be to be defined.  This curve applies at the reference pressure; at other 
pressures the curve varies according to 𝑎0, 𝑎1, and 𝑎2 as in the soil and crushable foam 
model, Material 5.  
 
 The elastic moduli 𝐺 and 𝐾 are pressure sensitive. 

𝐺 = 𝐺0(𝑝 − 𝑝0)𝑏,
𝐾 = 𝐾0(𝑝 − 𝑝0)𝑏,

(22.65.1)

where 𝐺0 and 𝐾0 are the input values, 𝑝 is the current pressure, 𝑝0 the cut-off or 
reference pressure (must be zero or negative).  If 𝑝 attempts to fall below 𝑝0 (i.e., more 
tensile) the shear stresses are set to zero and the pressure is set to 𝑝0.  Thus, the material 
has no stiffness or strength in tension.  The pressure in compression is calculated as 
follows: 

𝑝 = [−𝐾0ln(𝑉)]
1

1−𝑏⁄ , (22.65.2)

where 𝑉 is the relative volume, i.e., the ratio between the original and current volume.
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22.66  Material Model 80:  Ramberg-Osgood Plasticity 

 The Ramberg-Osgood equation is an empirical constitutive relation to represent 
the one-dimensional elastic-plastic behavior of many materials, including soils.  This 
model allows a simple rate independent representation of the hysteretic energy 
dissipation observed in soils subjected to cyclic shear deformation.  For monotonic 
loading, the stress-strain relationship is given by: 

𝛾
𝛾𝑦

=
𝜏
𝜏𝑦

+ 𝛼 ∣
𝜏
𝜏𝑦
∣
𝑟

if 𝛾 ≥ 0,

𝛾
𝛾𝑦

=
𝜏
𝜏𝑦

− 𝛼 ∣
𝜏
𝜏𝑦
∣
𝑟

if 𝛾 < 0,
(22.66.1)

where 𝛾 is the shear and 𝜏 is the stress.  The model approaches perfect plasticity as the 
stress exponent 𝑟 → ∞.  These equations must be augmented to correctly model 
unloading and reloading material behavior.  The first load reversal is detected by 𝛾𝛾̇ <
0.  After the first reversal, the stress-strain relationship is modified to  

(𝛾 − 𝛾0)
2𝛾𝑦

=
(𝜏 − 𝜏0)

2𝜏𝑦
+ 𝛼 ∣

(𝜏 − 𝜏0)
2𝜏𝑦

∣
𝑟

if 𝛾 ≥ 0,

(𝛾 − 𝛾0)
2𝛾𝑦

=
(𝜏 − 𝜏0)

2𝜏𝑦
− 𝛼 ∣

(𝜏 − 𝜏0)
2𝜏𝑦

∣
𝑟

if 𝛾 < 0,
(22.66.2)

where 𝛾0 and 𝜏0 represent the values of strain and stress at the point of load reversal.  
Subsequent load reversals are detected by (𝛾 − 𝛾0)𝛾̇ < 0. 
 
 The Ramberg-Osgood equations are inherently one-dimensional and are 
assumed to apply to shear components.  To generalize this theory to the multidimen-
sional case, it is assumed that each component of the deviatoric stress and deviatoric 
tensorial strain is independently related by the one-dimensional stress-strain equations.  
A projection is used to map the result back into deviatoric stress space if required.  The 
volumetric behavior is elastic, and, therefore, the pressure 𝑝 is found by  

𝑝 = −𝐾𝜀𝑣, (22.66.3)
where 𝜀𝑣 is the volumetric strain.
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22.67  Material Models 81 and 82:  Plasticity with Damage 
and Orthotropic Option 

 With this model an elasto-viscoplastic material with an arbitrary stress versus 
strain curve and arbitrary strain rate dependency can be defined.  Damage is considered 
before rupture occurs.  Also, failure based on a plastic strain or a minimum time step 
size can be defined. 
 
 An option in the keyword input, ORTHO, is available, which invokes an 
orthotropic damage model.  This option is an extension to include orthotropic damage 
as a means of treating failure in aluminum panels.  Directional damage begins after a 
defined failure strain is reached in tension and continues to evolve until a tensile 
rupture strain is reached in either one of the two orthogonal directions.   
 
 The stress versus strain behavior may be treated by a bilinear stress strain curve 
by defining the tangent modulus, ETAN.  Alternately, a curve similar to that shown in 
Figure 22.67.1 is expected to be defined by (EPS1,ES1) - (EPS8,ES8); however, an 
effective stress versus effective plastic strain curve (LCSS) may be input instead if eight 
points are insufficient.  The cost is roughly the same for either approach.  The most 

general approach is to use the table definition (LCSS) discussed below. 
 
 Two options to account for strain rate effects are possible.  Strain rate may be 
accounted for using the Cowper-Symonds model which scales the yield stress with the 
factor, 

damage increases

linearly with plastic

strain after failure

yield stress versus

effective plastic strain

for undamaged material

nominal stress

after failure

rupture

0

Failure Begins

ω=0 ω=1 εp

eff

σyield

 Figure .22.67.1.  Stress strain behavior when damage is included. 
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1 + (
𝜀 ̇
𝐶)

1 𝑝⁄
, (22.67.1)

where 𝜀 ̇is the strain rate, 𝜀 ̇ = √𝜀𝑖̇𝑗𝜀𝑖̇𝑗.  If the viscoplastic option is active, VP = 1.0, and if 
SIGY is > 0 then the dynamic yield stress is computed from the sum of the static stress, 
𝜎ys(𝜀eff

p ), which is typically given by a load curve ID, and the initial yield stress, SIGY, 
multiplied by the Cowper-Symonds rate term as follows: 

𝜎𝑦(𝜀eff
p , 𝜀ėff

p ) = 𝜎𝑦
s(𝜀eff

p ) + SIGY ⋅ (
𝜀ėff
p

C )
1 p⁄

, (22.67.2)

where the plastic strain rate is used.  With this latter approach similar results can be 
obtained between this model and material model: 
*MAT_ANISOTROPIC_VISCOPLASTIC.  If SIGY = 0, the following equation is used 
instead where the static stress, 𝜎ys(𝜀eff

p ), must be defined by a load curve: 

𝜎y(𝜀eff
p , 𝜀ėff

p ) = 𝜎ys(𝜀eff
p )

⎣
⎢⎢
⎡

1 + (
𝜀ėff
p

C )
1 p⁄

⎦
⎥⎥
⎤

. (22.67.3)

 
 This latter equation is always used if the viscoplastic option is off.  For complete 
generality a load curve (LCSR) to scale the yield stress may be input instead.  In this 
curve the scale factor versus strain rate is defined. 
 
 The constitutive properties for the damaged material are obtained from the 
undamaged material properties.  The amount of damage evolved is represented by the 
constant, 𝜔, which varies from zero if no damage has occurred to unity for complete 
rupture.  For uniaxial loading, the nominal stress in the damaged material is given by  

𝜎nominal =
𝑃
𝐴, (22.67.4)

where P is the applied load and A is the surface area.  The true stress is given by:  

𝜎true =
𝑃

𝐴 − 𝐴loss
, (22.67.5)

where 𝐴loss is the void area.  The damage variable can then be defined: 

𝜔 =
𝐴loss
𝐴 , 0 ≤ 𝜔 ≤ 1. (22.67.6)

 
 In this model damage is defined in terms of plastic strain after the failure strain is 
exceeded: 

𝜔 =
𝜀eff
p − 𝜀failure

p

𝜀rupture
p − 𝜀failure

p     if    𝜀failure
p ≤ 𝜀eff

p ≤ 𝜀rupture
p . (22.67.7)



Material Models LS-DYNA Theory Manual 

20-176 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

 
 After exceeding the failure strain softening begins and continues until the 
rupture strain is reached. 
 
 By default, deletion of a shell element occurs when all integration points in the 
shell have failed.  A parameter is available, NUMINT, that defines the number of 
through thickness integration points for shell element deletion.  The default of all 
integration points is not recommended since shells undergoing large strain are often not 
deleted due to nodal fiber rotations which limit strains at active integration points after 
most points have failed.  Better results are obtained if NUMINT is set to 1 or a number 
less than one half of the number of through thickness points.  For example, if four 
through thickness points are used, NUMINT should not exceed 2, even for fully 
integrated shells which have 16 integration points. 

22.67.1  Material Model 82:  Isotropic Elastic-Plastic with Anisotropic Damage 

 Material 82 is an isotropic elastic-plastic material model with anisotropic 
damage..  The stress update in the case of shell elements is performed as follows.  For a 
given stress state 𝜎𝑖𝑗

𝑡  and damage parameters 𝐷𝑖
𝑡, 𝑖 = 1, 2 at time 𝑡, the local stress is 

obtained as  

𝜎𝑖𝑗
𝑙 = 𝑞𝑘𝑖𝑞𝑙𝑗𝜎𝑘𝑙

𝑡 , (22.67.8)

where 𝑞𝑖𝑗 is an orthogonal matrix determining the direction of the damage.  The 
directions are determined as follows.  The first direction is taken as the one in which the 
plastic strain first reaches the plastic strain at impending failure, see below.  The other 
direction is orthogonal to the first and in the plane of the shell. 
 

 For this local stress, the undamaged stress is computed as 

1

d
a

m
a

g
e

failureεeff
p - f s

0

Figure 22.67.2.  A nonlinear damage curve is optional.  Note that the origin of
the curve is at (0,0).  It is permissible to input the failure strain, fs, as zero for
this option.  The nonlinear damage curve is useful for controlling the softening
behavior after the failure strain is reached. 
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𝜎11
u =

𝜎11
l

1 − D1
t , 

𝜎22
u =

𝜎22
l

1 − D2
𝑡 , 

𝜎12
u =

2𝜎12
l

2 − 𝐷1
𝑡 − 𝐷2

𝑡 , 

𝜎23
u =

𝜎23
l

1 − 𝐷2
𝑡 , 

𝜎13
u =

𝜎13
l

1 − 𝐷1
𝑡 .

(22.67.9)

 
 A new undamaged stress 𝜎𝑖𝑗

u+ is then computed following a standard elastic-
plastic stress update.  The damage at the next time step is computed according to 

𝐷𝑖
𝑡+ = max (𝐷𝑖

𝑡,
𝜀𝑖𝑖
p − 𝜀f

𝜀r − 𝜀f
) , 𝑖 = 1, 2, (22.67.10)

where 𝜀f is the plastic strain at impending failure, 𝜀r is the plastic strain at rupture and 
𝜀𝑖𝑖
p is the current plastic strain in the local 𝑖 direction.  There is also an option of defining 

a nonlinear damage curve, with this option the new damage is computed as 

𝐷𝑖
𝑡+ = max(𝐷𝑖

𝑡, 𝑓 (𝜀𝑖𝑖
p − 𝜀f)), 𝑖 = 1, 2, (22.67.11)

for a user-defined load curve 𝑓 . 
 
 The new local (damaged) stress is given by  

𝜎11
l+ = 𝜎11

u+(1 − 𝐷1
𝑡+),

𝜎22
l+ = 𝜎22

u+(1 − 𝐷2
𝑡+), 

𝜎12
l+ = 𝜎12

u+ 2 − 𝐷1
t+ − 𝐷2

t+

2 , 

𝜎23
l+ = 𝜎23

u+(1 − 𝐷2
t+), 

𝜎13
l+ = 𝜎13

u+(1 − 𝐷1
t+),

(22.67.12)

which is transformed back to the local system to obtain the new global damaged stress 
as 

𝜎𝑖𝑗
𝑡+ = 𝑞𝑖𝑘𝑞𝑗𝑙𝜎𝑘𝑙

𝑙+. (22.67.13)

 
 An integration point is completely failed, i.e., it is removed from the calculations, 
when max(𝐷1, 𝐷2) > 0.999.  The element is removed from the model when a user 
specified number of integration points in that element have failed. 
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 There are options of using visco-plasticity in the current model.  The details of 
this part of the stress update is omitted here. 
 
The Rc-Dc Damage Model 
 The Rc-Dc model is defined as the following, see the report on the Fundamental 
Study of Crack Initiation and Propagation [2003].  The damage 𝐷 is updated as 

𝐷𝑡+ = 𝐷𝑡 + 𝜔1𝜔2Δ𝜀p (22.67.14)

where Δ𝜀p is the plastic strain increment and 

𝜔1 = (1 + 𝛾𝑝)−𝛼,
𝜔2 = (2 − 𝐴𝐷)𝛽.

(22.67.15)

 
 Here 𝑝 is the pressure, 𝛼, 𝛽 and 𝛾 are material parameters and 

𝐴𝐷 =

⎩{
{⎨
{{
⎧1.9999 if  max(𝑆1, 𝑆2) ≤ 0

min (∣
𝑆1
𝑆2
∣ , ∣
𝑆2
𝑆1
∣) otherwise

. (22.67.16)

where 𝑆1 and 𝑆2 are the in-plane principal stress values.  Fracture is initiated when the 
accumulation of damage is greater than a critical damage 𝐷c given by 

𝐷c = 𝐷0(1 + 𝑏‖∇𝐷‖𝜆). (22.67.17)

Here 𝐷0, 𝑏 and λ are material parameters and ∇D is the spatial gradient of damage.  We 
have added an option to use a non-local formulation with 𝐷 as the non-local variable 
and a characteristic length 𝑙.  More information on this can be found in the LS-DYNA 
Keyword User’s Manual [Hallquist 2003].  With this option we compute 𝐷c as, 

𝐷c = 𝐷0, (22.67.18)
hence the parameters 𝑏 and 𝜆 are not used.  A fracture fraction given by  

𝐹 =
𝐷 − 𝐷c

𝐷s
(22.67.19)

defines the degradations of the material by the Rc-Dc model.  Here 𝐷s is yet another 
parameter determined by the user.  The stress update of material 82 is modified 
accordingly. 
 
 Upon entry the stress is divided by the factor 1 − 𝐹𝑡 to account for the Rc-Dc 
damage.  Before exiting the routine, the stress is multiplied by the new Rc-Fc (reversed) 
fracture fraction 1 − 𝐹𝑡+. An integration point is considered failed when min(1 − 𝐷1, 1 −
𝐷2)(1 − 𝐹) < 0.001.
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22.68  Material Model 83:  Fu-Chang’s Foam With Rate 
Effects 

 This model allows rate effects to be modeled in low and medium density foams, 
see Figure 22.68.1.  Hysteretic unloading behavior in this model is a function of the rate 
sensitivity with the most rate sensitive foams providing the largest hysteresis and visa 
versa.  The unified constitutive equations for foam materials by Fu-Chang [1995] 
provide the basis for this model.  This implementation incorporates the coding in the 
reference in modified form to ensure reasonable computational efficiency.  The 
mathematical description given below is excerpted from the reference. 
 
 The strain is divided into two parts: a linear part and a non-linear part of the 
strain  

𝐄(𝑡) = 𝐄L(𝑡) + 𝐄N(𝑡), (22.68.1)

and the strain rate becomes 

𝐄̇(𝑡) = 𝐄̇L(𝑡) + 𝐄̇N(𝑡). (22.68.2)

𝐄̇N is an expression for the past history of 𝐄N.  A postulated constitutive equation may 
be written as: 

1-V

σ

 Figure 22.68.1.  Rate effects in Fu Chang’s foam model. 
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𝛔(𝑡) = ∫ [𝐄𝑡N(𝜏), 𝐒(𝑡)]
∞

𝜏=0
𝑑𝜏, (22.68.3)

where 𝐒(𝑡) is the state variable and ∫∞𝜏=0  is a functional of all values of 𝜏 in 𝑇𝜏: 0 ≤ 𝜏 ≤
∞ and  

𝐄𝑡N(𝜏) = 𝐄N(𝑡 − 𝜏), (22.68.4)

where 𝜏 is the history parameter: 

𝐄𝑡N(𝜏 = ∞) ⇔ the virgin material. (22.68.5)

 
 It is assumed that the material remembers only its immediate past, i.e., a 
neighborhood about 𝜏 = 0.  Therefore, an expansion of 𝐄𝑡N(𝜏) in a Taylor series about 
𝜏 = 0 yields: 

𝐄𝑡N(𝜏) = 𝐄N(0) +
𝜕𝐄𝑡N

𝜕𝑡 (0)𝑑𝑡. (22.68.6)

Hence, the postulated constitutive equation becomes: 

𝛔(𝑡) = 𝛔∗(𝐄N(𝑡), 𝐄̇N(𝑡), 𝐒(𝑡)), (22.68.7)

where we have replaced ∂𝐄𝑡
N

∂𝑡  by 𝐄̇N, and 𝛔∗ is a function of its arguments. 
 
 For a special case,  

𝛔(𝑡) = 𝛔∗(𝐄̇N(𝑡), 𝐒(𝑡)), (22.68.8)

we may write 

𝐄̇𝑡N = 𝑓 (𝐒(𝑡), 𝐬(𝑡)), (22.68.9)

which states that the nonlinear strain rate is the function of stress and a state variable 
which represents the history of loading.  Therefore, the proposed kinetic equation for 
foam materials is: 

𝐄̇N =
𝛔
‖𝛔‖𝐷0exp [−𝑐0 (

tr(𝛔𝐒)
(‖𝛔‖)2 )

2𝑛0
], (22.68.10)

where 𝐷0, 𝑐0, and 𝑛0 are material constants, and 𝐒 is the overall state variable.  If either 
𝐷0 = 0 or 𝑐0 → ∞ then the nonlinear strain rate vanishes. 

𝑆𝑖̇𝑗 = [𝑐1(𝑎𝑖𝑗𝑅 − 𝑐2𝑆𝑖𝑗)𝑃 + 𝑐3𝑊𝑛1(∥𝐸̇𝑁∥)𝑛2𝐼𝑖𝑗]𝑅 (22.68.11)

𝑅 = 1 + 𝑐4
⎝
⎜⎛
∥𝐄̇N∥

𝑐5
− 1

⎠
⎟⎞

𝑛3

(22.68.12)

𝑃 = tr(𝛔𝐄̇N) (22.68.13)
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W = ∫ tr(𝛔𝑑𝐄), (22.68.14)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑛1, 𝑛2, 𝑛3, and 𝑎𝑖𝑗 are material constants and: 

‖𝛔‖ = (𝜎𝑖𝑗𝜎𝑖𝑗)
1
2,

∥𝐄̇∥ = (𝐸̇𝑖𝑗𝐸̇𝑖𝑗)
1
2, 

∥𝐄̇N∥ = (𝐸̇𝑖𝑗
N𝐸̇𝑖𝑗

N)
1
2.

(22.68.15)

 
 In the implementation by Fu Chang the model was simplified such that the input 
constants 𝑎𝑖𝑗 and the state variables 𝑆𝑖𝑗 are scalars. 
 

Viscous damping in the model follows an implementation identical to that of 
material type 57.



Material Models LS-DYNA Theory Manual 

20-182 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

22.69  Material Model 84 and 85:  Winfrith Concrete 

 Pressure is positive in compression; volumetric strain is given by the natural log 
of the relative volume and is negative in compression.  The tabulated data are given in 
order of increasing compression, with no initial zero point. 
 
 If the volume compaction curve is omitted, the following scaled curve is 
automatically used where 𝑝1 is the pressure at uniaxial compressive failure computed 
from: 

𝑝1 =
𝜎𝑐
3 , (22.69.1)

and 𝐾 is the unloading bulk modulus computed from 

𝐾 =
𝐸s

3(1 − 2𝑣), (22.69.2)

where 𝐸s is the input tangent modulus for concrete and 𝑣 is Poisson's ratio. 
 
 

Volumetric Strain Pressure (MPa) 
−𝑝1/K 1.00 × 𝑝1
-0.002 1.50 × 𝑝1
-0.004 3.00 × 𝑝1
-0.010 4.80 × 𝑝1
-0.020 6.00 × 𝑝1
-0.030 7.50 × 𝑝1
-0.041 9.45 × 𝑝1
-0.051 11.55 × 𝑝1
-0.062 14.25 × 𝑝1
-0.094 25.05 × 𝑝1

Table 19.84.1.Default pressure versus volumetric strain curve for concrete if the curve is 
not defined.
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22.70  Material Model 87:  Cellular Rubber 

 This material model provides a cellular rubber model combined with linear 
viscoelasticity as outlined by Christensen [1980]. 
 
 Rubber is generally considered to be fully incompressible since the bulk modulus 
greatly exceeds the shear modulus in magnitude.  To model the rubber as an 
unconstrained material a hydrostatic work term, 𝑊𝐻(𝐽), is included in the strain energy 
functional which is function of the relative volume, 𝐽, [Ogden, 1984]: 

𝑊(𝐽1, 𝐽2, 𝐽) = ∑ 𝐶𝑝𝑞

𝑛

𝑝,𝑞=0
(𝐽1 − 3)𝑝(𝐽2 − 3)𝑞 +𝑊𝐻(𝐽)

𝐽1 = 𝐼1𝐼3
 −

1
3⁄
 

𝐽2 = 𝐼2𝐼3
 −
2

3⁄

(22.70.1)

 
 In order to prevent volumetric work from contributing to the hydrostatic work 
the first and second invariants are modified as shown.  This procedure is described in 
more detail by Sussman and Bathe [1987]. 
 
 The effects of confined air pressure in its overall response characteristics are 
included by augmenting the stress state within the element by the air pressure. 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
sk − 𝛿𝑖𝑗𝜎air, (22.70.2)

where 𝜎𝑖𝑗
sk is the bulk skeletal stress and σair is the air pressure computed from the 

equation: 

𝜎air = −
𝑝0𝛾

1 + 𝛾 − 𝜙, (22.70.3)

where 𝑝0 is the initial foam pressure usually taken as the atmospheric pressure and 𝛾 
defines the volumetric strain  

𝛾 = 𝑉 − 1 + 𝛾0, (22.70.4)
where 𝑉 is the relative volume of the voids and 𝛾0 is the initial volumetric strain which 
is typically zero.  The rubber skeletal material is assumed to be incompressible. 
 
 Rate effects are taken into account through linear viscoelasticity by a convolution 
integral of the form: 

𝜎𝑖𝑗 = ∫ 𝑔𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.70.5)

or in terms of the second Piola-Kirchhoff stress, 𝑆𝑖𝑗, and Green's strain tensor, 𝐸𝑖𝑗, 
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𝑆𝑖𝑗 = ∫ 𝐺𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝐸𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.70.6)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) and 𝐺𝑖𝑗𝑘𝑙(𝑡 − 𝜏) are the relaxation functions for the different stress 
measures.  This stress is added to the stress tensor determined from the strain energy 
functional.   
 
 Since we wish to include only simple rate effects, the relaxation function is 
represented by one term from the Prony series: 

𝑔(𝑡) = 𝛼0 + ∑ 𝛼𝑚

𝑁

𝑚=1
𝑒−𝛽𝑡, (22.70.7)

given by, 

𝑔(𝑡) = 𝐸𝑑𝑒−𝛽1𝑡. (22.70.8)

 
 This model is effectively a Maxwell fluid which consists of a damper and spring 
in series.  We characterize this in the input by a shear modulus, 𝐺, and decay constant, 
𝛽1.   
 
 The Mooney-Rivlin rubber model is obtained by specifying 𝑛 = 1.  In spite of the 
differences in formulations with Model 27, we find that the results obtained with this 
model are nearly identical with those of 27 as long as large values of Poisson’s ratio are 
used.

Rubber Block with Entrapped Air

Air

Figure 22.70.1.  Cellular rubber with entrapped air.  By setting the initial air
pressure to zero, an open cell, cellular rubber can be simulated. 
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22.71  Material Model 88:  MTS Model 

 The Mechanical Threshhold Stress (MTS) model is due to Mauldin, Davidson, 
and Henninger [1990] and is available for applications involving large strains, high 
pressures and strain rates.  As described in the foregoing reference, this model is based 
on dislocation mechanics and provides a better understanding of the plastic 
deformation process for ductile materials by using an internal state variable called the 
mechanical threshold stress.  This kinematic quantity tracks the evolution of the 
material’s microstructure along some arbitrary strain, strain rate, and temperature-
dependent path using a differential form that balances dislocation generation and 
recovery processes.  Given a value for the mechanical threshold stress, the flow stress is 
determined using either a thermal-activation-controlled or a drag-controlled kinetics 
relationship.  An equation-of-state is required for solid elements and a bulk modulus 
must be defined below for shell elements. 
 
 The flow stress 𝜎  is given by: 

𝜎 = 𝜎̂a +
𝐺
𝐺0
[𝑠th𝜎̂ + 𝑠th,𝑖𝜎̂𝑖 + 𝑠th,𝑠𝜎̂s]. (22.71.1)

The first product in the equation for 𝜎  contains a micro-structure evolution variable, i.e., 
𝜎̂ , called the Mechanical Threshold Stress (MTS), that is multiplied by a constant-
structure deformation variable 𝑠th:𝑠th is a function of absolute temperature 𝑇 and the 
plastic strain-rates 𝜀Ṗ.  The evolution equation for 𝜎̂  is a differential hardening law 
representing dislocation-dislocation interactions: 

∂σ̂
∂𝜀p ≡ Θo

⎣
⎢⎢
⎢
⎡

1 −
tanh (α σ̂

𝜎̂εs
)

tanh(𝛼)
⎦
⎥⎥
⎥
⎤

. (22.71.2)

 
 The term, ∂𝜎̂

∂𝜀p, represents the hardening due to dislocation generation and the 
stress ratio, 𝜎̂𝜎̂εs, represents softening due to dislocation recovery.  The threshold stress at 
zero strain-hardening 𝜎̂εs is called the saturation threshold stress.  Relationships for 𝛩𝑜, 
𝜎̂εs are: 

𝛩𝑜 = 𝑎𝑜 + 𝑎1ln (
𝜀ṗ

𝜀0
) + 𝑎2√

𝜀ṗ

𝜀0
, (22.71.3)

which contains the material constants 𝑎o, 𝑎1, and 𝑎2.  The constant, 𝜎̂εs, is given as: 

𝜎̂εs = 𝜎̂εso (
𝜀𝑝̇

𝜀ε̇so
)

𝑘𝑇/𝐺𝑏3𝐴

, (22.71.4)



Material Models LS-DYNA Theory Manual 

20-186 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

which contains the input constants: 𝜎̂εso, 𝜀ε̇so, 𝑏, 𝐴, and 𝑘.  The shear modulus 𝐺 
appearing in these equations is assumed to be a function of temperature and is given by 
the correlation. 

𝐺 = 𝐺0 −
𝑏1

𝑒
𝑏2
𝑇 − 1

, (22.71.5)

which contains the constants: 𝐺0, 𝑏1, and 𝑏2.  For thermal-activation controlled 
deformation 𝑠th is evaluated via an Arrhenius rate equation of the form: 

𝑠th =

⎣
⎢
⎢
⎢
⎢
⎡

1 −

⎝
⎜⎜⎜
⎜⎜
⎛𝑘𝑇ln (𝜀0̇

𝜀ṗ)

𝐺𝑏3𝑔0
⎠
⎟⎟⎟
⎟⎟
⎞

1
𝑞

⎦
⎥
⎥
⎥
⎥
⎤

1
𝑝

. (22.71.6)

 
 The absolute temperature is given as: 

𝑇 = 𝑇ref + 𝜌𝑐p𝐸, (22.71.7)

where 𝐸 in the internal energy density per unit initial volume.
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22.72  Material Model 89:  Plasticity Polymer 

 Unlike other LS-DYNA material models, both the input stress-strain curve and 
the strain to failure are defined as total true strain, not plastic strain.  The input can be 
defined from uniaxial tensile tests; nominal stress and nominal strain from the tests 
must be converted to true stress and true strain.  The elastic component of strain must 
not be subtracted out. 
 
 The stress-strain curve is permitted to have sections steeper (i.e. stiffer) than the 
elastic modulus.  When these are encountered the elastic modulus is increased to 
prevent spurious energy generation.
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22.73  Material Model 90:  Acoustic 

 This model is appropriate for tracking low-pressure stress waves in an acoustic 
media such as air or water and can be used only with the acoustic pressure element 
formulation.  The acoustic pressure element requires only one unknown per node.  This 
element is very cost effective.
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22.74  Material Model 91:  Soft Tissue 

 The overall strain energy W is "uncoupled" and includes two isotropic deviatoric 
matrix terms, a fiber term F, and a bulk term: 

𝑊 = 𝐶1(𝐼1̃ − 3) + 𝐶2(𝐼2̃ − 3) + 𝐹(𝜆) +
1
2𝐾[ln(𝐽)]2. (22.74.1)

Here, 𝐼1̃ and 𝐼2̃ are the deviatoric invariants of the right Cauchy deformation tensor, 𝜆 is 
the deviatoric part of the stretch along the current fiber direction, and 𝐽 = det𝐅 is the 
volume ratio.  The material coefficients 𝐶1 and 𝐶2 are the Mooney-Rivlin coefficients, 
while 𝐾 is the effective bulk modulus of the material (input parameter XK). 
 
 The derivatives of the fiber term 𝐹 are defined to capture the behavior of crimped 
collagen.  The fibers are assumed to be unable to resist compressive loading - thus the 
model is isotropic when 𝜆 < 1.  An exponential function describes the straightening of 
the fibers, while a linear function describes the behavior of the fibers once they are 
straightened past a critical fiber stretch level 𝜆 ≥ 𝜆∗ (input parameter XLAM): 

∂𝐹
∂λ =

⎩{
{{
⎨
{{
{⎧0 𝜆 < 1
𝐶3
𝜆 [exp(𝐶4(𝜆 − 1)) − 1] 𝜆 < 𝜆∗

1
𝜆 (𝐶5𝜆 + 𝐶6) 𝜆 ≥ 𝜆∗

. (22.74.2)

Coefficients 𝐶3, 𝐶4, and 𝐶5 must be defined by the user.  𝐶6 is determined by LS-DYNA 
to ensure stress continuity at 𝜆 = 𝜆∗.  Sample values for the material coefficients 𝐶1 − 𝐶5 
and 𝜆∗ for ligament tissue can be found in Quapp and Weiss [1998].  The bulk modulus 
K should be at least 3 orders of magnitude larger than 𝐶1 to ensure near-incompressible 
material behavior. 
 
 Viscoelasticity is included via a convolution integral representation for the time-
dependent second Piola-Kirchoff stress 𝐒(𝐂, 𝑡): 

𝐒(𝐂, 𝑡) = 𝐒e(𝐂) + ∫ 2𝐺(𝑡 − 𝑠)
𝑡

0

∂W
∂𝐂(s) 𝑑𝑠. (22.74.3)

Here, 𝐒e is the elastic part of the second PK stress as derived from the strain energy, and 
𝐺(𝑡 − 𝑠) is the reduced relaxation function, represented by a Prony series: 

𝐺(t) = ∑S𝑖

6

𝑖=1
exp (

𝑡
𝑇𝑖

). (22.74.4)

Puso and Weiss [1998] describe a graphical method to fit the Prony series coefficients to 
relaxation data that approximates the behavior of the continuous relaxation function 
proposed by Y-C. Fung, as quasilinear viscoelasticity.
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22.75  Material Model 94:  Inelastic Spring Discrete Beam 

The yield force is taken from the load curve: 

𝐹Y = 𝐹y(Δ𝐿plastic), (22.75.1)

where 𝐿plastic is the plastic deflection.  A trial force is computed as: 

𝐹T = 𝐹n + 𝐾 ⋅ Δ𝐿̇ ⋅ Δ𝑡, (22.75.2)

and is checked against the yield force to determine F: 

𝐹 = {𝐹Y if 𝐹T > 𝐹Y
𝐹T if 𝐹T ≤ 𝐹Y

. (22.75.3)

 
 The final force, which includes rate effects and damping, is given by: 

𝐹𝑛+1 = 𝐹 ⋅ [1 + 𝐶1 ⋅ Δ𝐿̇ + 𝐶2 ⋅ sgn(Δ𝐿̇)ln (max {1. ,
∣Δ𝐿̇∣
DLE})] + DΔ𝐿̇ + 𝑔(𝛥𝐿)ℎ(𝛥𝐿̇), (22.75.4)

where 𝐶1, 𝐶2 are damping coefficients, DLE is a factor to scale time units.   
 
 Unless the origin of the curve starts at (0,0), the negative part of the curve is used 
when the spring force is negative where the negative of the plastic displacement is used 
to interpolate, 𝐹y.  The positive part of the curve is used whenever the force is positive.  
In these equations, Δ𝐿 is the change in length  

Δ𝐿 = current  length-initial  length. (22.75.5)
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22.76  Material Model 96:  Brittle Damage Model 

 A full description of the tensile and shear damage parts of this material model is 
given in Govindjee, Kay and Simo [1994,1995].  It is an anisotropic brittle damage model 
designed primarily for concrete, though it can be applied to a wide variety of brittle 
materials.  It admits progressive degradation of tensile and shear strengths across 
smeared cracks that are initiated under tensile loadings.  Compressive failure is 
governed by a simplistic J2 flow correction that can be disabled if not desired.  Damage 
is handled by treating the rank 4 elastic stiffness tensor as an evolving internal variable 
for the material.  Softening induced mesh dependencies are handled by a characteristic 
length method [Oliver 1989]. 
 
 Description of properties: 

1. 𝐸 is the Young's modulus of the undamaged material also known as the virgin 
modulus. 

2. 𝜐 is the Poisson's ratio of the undamaged material also known as the virgin 
Poisson's ratio. 

3. 𝑓𝑛 is the initial principal tensile strength (stress) of the material.  Once this 
stress has been reached at a point in the body a smeared crack is initiated there 
with a normal that is co-linear with the 1st principal direction.  Once initiated, 
the crack is fixed at that location, though it will convect with the motion of the 
body.  As the loading progresses the allowed tensile traction normal to the 
crack plane is progressively degraded to a small machine dependent constant.  

The degradation is implemented by reducing the material's modulus normal to 
the smeared crack plane according to a maximum dissipation law that incorpo-
rates exponential softening.  The restriction on the normal tractions is given by 

𝜙t = (𝐧 ⊗ 𝐧): 𝛔 − 𝑓n + (1 − 𝜀)𝑓n(1 − exp[−𝐻𝛼]) ≤ 0, (22.76.1)

where 𝐧 is the smeared crack normal, 𝜀 is the small constant, 𝐻 is the softening 
modulus, and 𝛼 is an internal variable.  𝐻 is set automatically by the program; 
see 𝑔c below.  𝛼 measures the crack field intensity and is output in the equiva-
lent plastic strain field, 𝜀p̅, in a normalized fashion. 

The evolution of alpha is governed by a maximum dissipation argument.  
When the normalized value reaches unity it means that the material's strength 
has been reduced to 2% of its original value in the normal and parallel direc-
tions to the smeared crack.  Note that for plotting purposes, it is never output 
greater than 5. 
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4. 𝑓s is the initial shear traction that may be transmitted across a smeared crack 
plane.  The shear traction is limited to be less than or equal to 𝑓s(1 − 𝛽)(1 −
exp[−𝐻𝛼]), through the use of two orthogonal shear damage surfaces.  Note 
that the shear degradation is coupled to the tensile degradation through the 
internal variable alpha which measures the intensity of the crack field. 𝛽 is the 
shear retention factor defined below.  The shear degradation is taken care of by 
reducing the material's shear stiffness parallel to the smeared crack plane. 

5. 𝑔c is the fracture toughness of the material.  It should be entered as fracture 
energy per unit area crack advance.  Once entered the softening modulus is 
automatically calculated based on element and crack geometries.  

6. 𝛽 is the shear retention factor.  As the damage progresses the shear tractions 
allowed across the smeared crack plane asymptote to the product 𝛽𝑓s. 

7. 𝜂 represents the viscosity of the material.  Viscous behavior is implemented as 
a simple Perzyna regularization method.  This allows for the inclusion of first 
order rate effects.  The use of some viscosity is recommend as it serves as regu-
larizing parameter that increases the stability of calculations. 

8. 𝜎y is a uniaxial compressive yield stress.  A check on compressive stresses is 

made using the J2 yield function s: s − √2
3 𝜎y ≤ 0, where s is the stress deviator.  

If violated, a J2 return mapping correction is executed.  This check is executed 
when (1) no damage has taken place at an integration point yet,  (2) when 
damage has taken place at a point but the crack is currently closed, and (3) 
during active damage after the damage integration (ie.  as an operator split).  
Note that if the crack is open, the plasticity correction is done in the plane-
stress subspace of the crack plane. 

 
 Remark:  A variety of experimental data has been replicated using this model 
from quasi-static to explosive situations.  Reasonable properties for a standard grade 
concrete would be 𝐸 = 3.15 × 106psi, 𝑓n = 450 psi, 𝑓s = 2100 psi, 𝑣 = 0.2, 𝑔c = 0.8 lbs/in, 
𝛽 = 0.03, 𝜂 = 0.0 psi-sec, 𝜎y = 4200 psi.  For stability, values of 𝜂 between 104 to 106 
psi/sec are recommended.  Our limited experience thus far has shown that many 
problems require nonzero values of 𝜂 to run to avoid error terminations.  Various other 
internal variables such as crack orientations and degraded stiffness tensors are 
internally calculated but currently not available for output.
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22.77  Material Model 97:  General Joint Discrete Beam 

 For explicit calculations, the additional stiffness due to this joint may require 
additional mass and inertia for stability.  Mass and rotary inertia for this beam element 
is based on the defined mass density, the volume, and the mass moment of inertia 
defined in the *SECTION_ BEAM input. 
 
 The penalty stiffness applies to explicit calculations.  For implicit calculations, 
constraint equations are generated and imposed on the system equations; therefore, 
these constants, RPST and RPSR, are not used.
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22.78  Material Model 98:  Simplified Johnson Cook 

 Johnson and Cook express the flow stress as 

𝜎𝑦 = (𝐴 + 𝐵𝜀 ̅
p𝑛

) (1 + 𝐶ln𝜀∗̇), (22.78.1)

where  
 𝐴, 𝐵, 𝐶 and 𝑛 are input constants 
 𝜀p̅ effective plastic strain 
 𝜀∗̇ = 𝜀̅̇

𝜀0̇
 effective strain rate for 𝜀0̇ = 1s−1 

 
 The maximum stress is limited by SIGMAX and SIGSAT by: 

𝜎y = min {min [𝐴 + 𝐵𝜀 ̅
p𝑛

, SIGMAX] (1 + 𝐶ln𝜀∗̇), SIGSAT}. (22.78.2)

Failure occurs when the effective plastic strain exceeds PSFAIL.     
 
 If the viscoplastic option is active, VP = 1.0, the parameters SIGMAX and SIGSAT 
are ignored since these parameters make convergence of the viscoplastic strain iteration 
loop difficult to achieve.  The viscoplastic option replaces the plastic strain in the 
forgoing equations by the viscoplastic strain and the strain rate by the viscoplastic strain 
rate.  Numerical noise is substantially reduced by the viscoplastic formulation.
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22.79  Material Model 100:  Spot Weld 

 This material model applies to beam element type 9 for spot welds.  These beam 
elements may be placed between any two deformable shell surfaces, see Figure 22.79.1, 
and tied with type 7 constraint contact which eliminates the need to have adjacent 
nodes at spot weld locations.  Beam spot welds may be placed between rigid bodies and 
rigid/deformable bodies by making the node on one end of the spot weld a rigid body 
node which can be an extra node for the rigid body.   In the same way, rigid bodies may 
also be tied together with this spot weld option.  
 
 It is advisable to include all spot welds, which provide the slave nodes, and spot 
welded materials, which define the master segments, within a single type 7 tied 
interface.  As a constraint method, multiple type 7 interfaces are treated independently 
which can lead to significant problems if such interfaces share common nodal points.  
The offset option, “o 7”, should not be used with spot welds. 
 
 The DAMAGE-FAILURE option causes one additional line to be read with the 
damage parameter and a flag that determines how failure is computed from the 
resultants.  On this line the parameter, DMG, if nonzero, invokes damage mechanics 
combined with the plasticity model to achieve a smooth drop off of the resultant forces 
prior to the removal of the spot weld.  The parameter FOPT determines the method 
used in computing resultant based failure, which is unrelated to damage. 
 
 The weld material is modeled with isotropic hardening plasticity coupled to two 
failure models.  The first model specifies a failure strain which fails each integration 
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Figure 22.79.1.  Deformable spotwelds can be arbitrarily placed within the
structure. 
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point in the spot weld independently.  The second model fails the entire weld if the 
resultants are outside of the failure surface defined by: 

(
𝑁𝑟𝑟
𝑁𝑟𝑟F

)
2

+ (
𝑁𝑟𝑠
𝑁𝑟𝑠F

)
2

+ (
𝑁𝑟𝑡
𝑁𝑟𝑡F

)
2

+ (
𝑀𝑟𝑟
𝑀𝑟𝑟F

)
2

+ (
𝑀𝑠𝑠
𝑀𝑠𝑠F

)
2

+ (
𝑇𝑟𝑟
𝑇𝑟𝑟F

)
2

− 1 = 0, (22.79.1)

where the numerators in the equation are the resultants calculated in the local 
coordinates of the cross section, and the denominators are the values specified in the 
input.  If the user defined parameter, NF, which the number of force vectors stored for 
filtering, is nonzero the resultants are filtered before failure is checked.  The default 
value is set to zero which is generally recommended unless oscillatory resultant forces 
are observed in the time history databases.  Even though these welds should not 
oscillate significantly, this option was added for consistency with the other spot weld 
options.  NF affects the storage since it is necessary to store the resultant forces as 
history variables.   
 
 If the failure strain is set to zero, the failure strain model is not used.  In a similar 
manner, when the value of a resultant at failure is set to zero, the corresponding term in 
the failure surface is ignored.  For example, if only N𝑟𝑟F is nonzero, the failure surface is 
reduced to |N𝑟𝑟| = N𝑟𝑟F.  None, either, or both of the failure models may be active 
depending on the specified input values.  
 
 The inertias of the spot welds are scaled during the first time step so that their 
stable time step size is Δ𝑡.  A strong compressive load on the spot weld at a later time 
may reduce the length of the spot weld so that stable time step size drops below Δ𝑡. If 
the value of Δ𝑡 is zero, mass scaling is not performed, and the spot welds will probably 
limit the time step size.  Under most circumstances, the inertias of the spot welds are 
small enough that scaling them will have a negligible effect on the structural response 
and the use of this option is encouraged. 
 
 Spotweld force history data is written into the SWFORC ASCII file.  In this 
database the resultant moments are not available, but they are in the binary time history 
database. 
 
 The constitutive properties for the damaged material are obtained from the 
undamaged material properties.  The amount of damage evolved is represented by the 
constant, ω, which varies from zero if no damage has occurred to unity for complete 
rupture.  For uniaxial loading, the nominal stress in the damaged material is given by  

𝜎nominal =
𝑃
𝐴, (22.79.2)

where 𝑃 is the applied load and 𝐴 is the surface area.  The true stress is given by:  

𝜎true =
𝑃

𝐴 − 𝐴loss
, (22.79.3)

where 𝐴loss is the void area.  The damage variable can then be defined: 
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𝜔 =
𝐴loss
𝐴 , 0 ≤ 𝜔 ≤ 1. (22.79.4)

 
 In this model damage is defined in terms of plastic strain after the failure strain is 
exceeded: 

𝜔 =
𝜀eff
p − 𝜀failure

p

𝜀rupture
p − 𝜀failure

p     if    𝜀failure
p ≤ 𝜀eff

p ≤ 𝜀rupture
p . (22.79.5)

After exceeding the failure strain softening begins and continues until the rupture strain 
is reached.
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22.80  Material Model 101:  GE Thermoplastics 

 The constitutive model for this approach is: 

𝜀ṗ = 𝜀0̇exp(𝐴{𝜎 − 𝑆(𝜀p)}) × exp(−𝑝𝛼𝐴), (22.80.1)

where 𝜀0̇ and A are rate dependent yield stress parameters, 𝑆(𝜀𝑝) internal resistance 
(strain hardening) and 𝛼 is a pressure dependence parameter. 
 
 In this material the yield stress may vary throughout the finite element model as 
a function of strain rate and hydrostatic stress.  Post yield stress behavior is captured in 
material softening and hardening values.  Finally, ductile or brittle failure measured by 
plastic strain or maximum principal stress respectively is accounted for by automatic 
element deletion. 
 
 Although this may be applied to a variety of engineering thermoplastics, GE 
Plastics have constants available for use in a wide range of commercially available 
grades of their engineering thermoplastics.
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22.81  Material Model 102:  Hyperbolic Sine 

 Resistance to deformation is both temperature and strain rate dependent.  The 
flow stress equation is: 

𝜎 =
1
α sinh−1

⎝
⎜⎜
⎛[
𝑍
𝐴]

1
N

⎠
⎟⎟
⎞, (22.81.1)

where 𝑍, the Zener-Holloman temperature compensated strain rate, is: 

𝑍 = 𝜀ėxp (
𝑄
𝐺𝑇). (22.81.2)

 
 The units of the material constitutive constants are as follows: 𝐴 (1/sec), N 
(dimensionless), 𝛼 (1/MPa), the activation energy for flow, 𝑄 (J/mol), and the universal 
gas constant, 𝐺 [J/(mol ⋅ K)].  The value of 𝐺 will only vary with the unit system 
chosen.  Typically it will be either 8.3145 J/(mol ⋅ K), or 40.8825 lb ⋅ in/mol ⋅ R. 
 
 The final equation necessary to complete the description of high strain rate 
deformation herein is one that allows computation of the temperature change during 
the deformation.  In the absence of a coupled thermo-mechanical finite element code we 
assume adiabatic temperature change and follow the empirical assumption that 90-95% 
of the plastic work is dissipated as heat.  Thus the heat generation coefficient is 

HC ≈
0.9
𝜌𝐶𝑣

, (22.81.3)

where 𝜌 is the material density and 𝐶𝑣 is the specific heat.
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22.82  Material Model 103:  Anisotropic Viscoplastic 

 The uniaxial stress-strain curve is given on the following form 

𝜎(𝜀eff
𝑝 , 𝜀ėff

𝑝 ) = 𝜎0 + 𝑄𝑟1[(1 − 𝑒𝑥𝑝(−𝐶𝑟1𝜀eff
𝑝 ))] + 𝑄𝑟2[1 − 𝑒𝑥𝑝(−𝐶𝑟2𝜀eff

𝑝 )]
+ 𝑄𝜒1[(1 − 𝑒𝑥𝑝(−𝐶𝜒1𝜀eff

𝑝 ))] + 𝑄𝜒2[(1 − 𝑒𝑥𝑝(−𝐶𝜒2𝜀eff
𝑝 ))] + 𝑉𝑘𝜀ėff

𝑝 𝑉𝑚, (22.82.1)

For bricks the following yield criteria is used 

𝐹(𝜎22 − 𝜎33)2 + 𝐺(𝜎33 − 𝜎11)2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝐿𝜎23
2 + 2𝑀𝜎31

2 + 2𝑁𝜎12
2

= [𝜎(𝜀eff
𝑝 , 𝜀ėff

𝑝 )]2, (22.82.2)

where 𝜀eff
𝑝  is the effective plastic strain and 𝜀ėff

𝑝  is the effective plastic strain rate.  For 
shells the anisotropic behavior is given by 𝑅00, 𝑅45 and 𝑅90.  When 𝑉𝑘 = 0 the material 
will behave elasto-plastically.  Default values are given by: 

𝐹 = 𝐺 = 𝐻 =
1
2, (22.82.3)

𝐿 = 𝑀 = 𝑁 =
3
2, (22.82.4)

𝑅00 = 𝑅45 = 𝑅90 = 1. (22.82.5)
 
 Strain rate is accounted for using the Cowper-Symonds model which, e.g., model 
3, scales the yield stress with the factor: 

1 + (
𝜀 ̇
𝐶)

1 𝑝⁄
. (22.82.6)

To convert these constants set the viscoelastic constants, 𝑉𝑘 and 𝑉𝑚, to the following 
values: 

𝑉𝑘 = 𝜎 (
1
𝐶)

1
𝑝

, 

𝑉𝑚 =
1
𝑝.

(22.82.7)

 
 This model properly treats rate effects and should provide superior results to 
models 3 and 24.
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22.83  Material Model 104:  Continuum Damage Mechanics 
Model 

 Anisotropic Damage model (FLAG = −1). At each thickness integration points, 
an anisotorpic damage law acts on the plane stress tensor in the directions of the 
principal total shell strains, ε1 and 𝜀2, as follows: 

𝜎11 = (1 − 𝐷1(𝜀1))𝜎110,
𝜎22 = (1 − 𝐷2(𝜀2))𝜎220, 

𝜎12 = (1 −
𝐷1 + 𝐷2

2 ) 𝜎120.
(22.83.1) 

 
 The transverse plate shear stresses in the principal strain directions are assumed 
to be damaged as follows: 

𝜎13 = (1 −
𝐷1
2 ) 𝜎130,

𝜎23 = (1 −
𝐷2
2 ) 𝜎230.

(22.83.2) 

 
 In the anisotropic damage formulation, 𝐷1(𝜀1) and 𝐷2(𝜀2) are anisotropic 
damage functions for the loading directions 1 and 2, respectively.  Stresses 𝜎110, 𝜎220, 
 𝜎120, 𝜎130 and 𝜎230 are stresses in the principal shell strain directions as calculated from 
the undamaged elastic-plastic material behavior.  The strains 𝜀1 and 𝜀2 are the 
magnitude of the principal strains calculated upon reaching the damage thresholds.  
Damage can only develop for tensile stresses, and the damage functions 𝐷1(𝜀1) and 
𝐷2(𝜀2) are identical to zero for negative strains 𝜀1 and 𝜀2. The principal strain directions 
are fixed within an integration point as soon as either principal strain exceeds the initial 
threshold strain in tension.  A more detailed description of the damage evolution for 
this material model is given in the description of material 82. 
 
 The Continuum Damage Mechanics (CDM) model (FLAG≥0) is based on a CDM 
model proposed by Lemaitre [1992].  The effective stress 𝜎̃ , which is the stress 
calculated over the section that effectively resist the forces and reads. 

𝜎̃ =
𝜎

1 − 𝐷, (22.83.3)

where 𝐷 is the damage variable.  The evolution equation for the damage variable is 
defined as 
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𝐷̇ =

⎩{
{⎨
{{
⎧ 𝑌
𝑆(1 − 𝐷) 𝑟 ̇ for 𝑟 > 𝑟𝐷 and 𝜎1 > 0

0 otherwise
. (22.83.4)

where 𝑟𝐷 is the damage threshold, 𝑌 is a positive material constant, 𝑆 is the strain 
energy release rate, and 𝜎1 is the maximal principal stress.  The strain energy density 
release rate is  

𝑌 =
1
2 𝐞e: 𝐂: 𝐞e =

𝜎vm2 𝑅𝑣
2𝐸(1 − 𝐷)2, (22.83.5)

where 𝜎vm is the equivalent von Mises stress.  The triaxiality function 𝑅𝑣 is defined as  

𝑅𝑣 =
2
3 (1 + 𝜈) + 3(1 − 2𝜈) (

𝜎H
𝜎vm

)
2
. (22.83.6)

 
 The uniaxial stress-strain curve is given in the following form 

𝜎(𝑟, 𝜀ėff
p ) = 𝜎0 + 𝑄1(1 − exp(−𝐶1𝑟)) + 𝑄2(1 − exp(−𝐶2𝑟)) + 𝑉𝑘𝜀ėff

p 𝑉𝑚, (22.83.7)

where 𝑟 is the damage accumulated plastic strain, which can be calculated by 

𝑟 ̇ = 𝜀ėff
p (1 − 𝐷). (22.83.8)

 
 For bricks the following yield criteria is used 

𝐹(𝜎̃22 − 𝜎̃33)2 + 𝐺(𝜎̃33 − 𝜎̃11)2 + 𝐻(𝜎̃11 − 𝜎̃22)2 + 2𝐿𝜎̃23
2 + 2𝑀𝜎̃31

2 + 2𝑁𝜎̃12
2

= 𝜎(𝑟, 𝜀ėff
p ), (22.83.9)

where 𝑟 is the damage effective viscoplastic strain and 𝜀ėff
p  is the effective viscoplastic 

strain rate.  For shells the anisotropic behavior is given by the R-values: 𝑅00, 𝑅45, and 
𝑅90.  When 𝑉𝑘 = 0 the material will behave as an elastoplastic material without rate 
effects.  Default values for the anisotropic constants are given by: 

𝐹 = 𝐺 = 𝐻 =
1
2, (22.83.10)

𝐿 = 𝑀 = 𝑁 =
3
2, (22.83.11)

𝑅00 = 𝑅45 = 𝑅90 = 1, (22.83.12)
so that isotropic behavior is obtained. 
 
 Strain rate is accounted for using the Cowper-Symonds model which scales the 
yield stress with the factor: 
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1 + (
𝜀 ̇
𝐶)

1 p⁄
. (22.83.13)

 
 To convert these constants, set the viscoelastic constants, 𝑉𝑘 and 𝑉𝑚, to the 
following values: 

𝑉𝑘 = 𝜎 (
1
𝐶)

1
𝑝

, 

𝑉𝑚 =
1
𝑝.

(22.83.14)
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22.84  Material Model 106:  Elastic Viscoplastic Thermal 

 If LCSS is not given any value the uniaxial stress-strain curve has the form 

𝜎(𝜀eff
p ) = 𝜎0 + 𝑄𝑟1(1 − exp(−𝐶𝑟1𝜀eff

p )) + 𝑄𝑟2(1 − exp(−𝐶𝑟2𝜀eff
p ))

+𝑄χ1(1 − exp(−𝐶χ1𝜀eff
p )) + Qχ2(1 − exp(−Cχ2𝜀eff

p )).
 (22.84.1)

 
 Viscous effects are accounted for using the Cowper-Symonds model, which 
scales the yield stress with the factor: 

1 + (
𝜀ėff
p

𝐶 )
1 p⁄

. (22.84.2)
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22.85  Material Model 110:  Johnson-Holmquist Ceramic 
Model 

 The Johnson-Holmquist plasticity damage model is useful for modeling 
ceramics, glass and other brittle materials.  A more detailed description can be found in 
a paper by Johnson and Holmquist [1993]. 
 
 The equivalent stress for a ceramic-type material is given in terms of the damage 
parameter 𝐷 by 

𝜎∗ = 𝜎i
∗ − 𝐷(𝜎i

∗ − 𝜎f∗). (22.85.1)
Here, 

𝜎i
∗ = 𝑎(𝑝∗ + 𝑡∗)𝑛(1 + 𝑐ln𝜀∗̇), (22.85.2)

represents the intact, undamaged behavior.   The superscript, '*', indicates a normalized 
quantity.  The stresses are normalized by the equivalent stress at the Hugoniot elastic 
limit (see below), the pressures are normalized by the pressure at the Hugoniot elastic 
limit, and the strain rate by the reference strain rate defined in the input.  In this 
equation 𝑎 is the intact normalized strength parameter, 𝑐 is the strength parameter for 
strain rate dependence, 𝜀∗̇ is the normalized plastic strain rate, and,  

𝑡∗ =
𝑇

PHEL ,

𝑝∗ =
𝑝

PHEL,
(22.85.3) 

where 𝑇 is the maximum tensile pressure strength, PHEL is the pressure component at 

the Hugoniot elastic limit, and p is the pressure. 

𝐷 = ∑ Δ𝜀p/𝜀f
p, (22.85.4)

represents the accumulated damage based upon the increase in plastic strain per 
computational cycle and the plastic strain to fracture 

𝜀f
p = 𝑑1(𝑝∗ + 𝑡∗)𝑑2, (22.85.5)

where 𝑑1 and 𝑑2 are user defined input parameters.  The equation: 
𝜎f∗ = 𝑏(𝑝∗)𝑚(1 + 𝑐ln𝜀∗̇) ≤ SFMAX, (22.85.6)

represents the damaged behavior where 𝑏 is an input parameter and SFMAX is the 
maximum normalized fracture strength.  The parameter, 𝑑1, controls the rate at which 
damage accumulates.  If it approaches 0, full damage can occur in one time step, i.e., 
instantaneously.  This rate parameter is also the best parameter to vary if one attempts 
to reproduce results generated by another finite element program. 
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 In undamaged material, the hydrostatic pressure is given by 

𝑝 = 𝑘1𝜇 + 𝑘2𝜇2 + 𝑘3𝜇3, (22.85.7)

where 𝜇 = 𝜌/𝜌0 − 1.  When damage starts to occur, there is an increase in pressure.  A 
fraction defined in the input, between 0 and 1, of the elastic energy loss, 𝛽, is converted 
into hydrostatic potential energy, which results in an increase in pressure.  The details 
of this pressure increase are given in the reference. 
 
 Given HEL and the shear modulus, 𝑔, 𝜇hel can be found iteratively from 

HEL = 𝑘1𝜇hel + 𝑘2𝜇hel
2 + 𝑘3𝜇hel

3 +
4
3 𝑔 (

𝜇hel
1 + 𝜇hel

), (22.85.8)

and, subsequently, for normalization purposes, 

PHEL = 𝑘1𝜇hel + 𝑘2𝜇hel
2 + 𝑘3𝜇hel

3 , (22.85.9)

and 
𝜎hel = 1.5(HEL − PHEL). (22.85.10)

These are calculated automatically by LS-DYNA if PHEL is zero on input.
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22.86  Material Model 111:  Johnson-Holmquist Concrete 
Model  

 This model can be used for concrete subjected to large strains, high strain rates, 
and high pressures.  The equivalent strength is expressed as a function of the pressure, 
strain rate, and damage.  The pressure is expressed as a function of the volumetric 
strain and includes the effect of permanent crushing.  The damage is accumulated as a 
function of the plastic volumetric strain, equivalent plastic strain and pressure.  A more 
detailed description of this model can be found in the paper by Holmquist, Johnson, 
and Cook [1993] 
 
 The normalized equivalent stress is defined as 

𝜎∗ =
𝜎
𝑓c′

, (22.86.1)

where 𝜎  is the actual equivalent stress, and 𝑓c′ is the quasi-static uniaxial compressive 
strength.  The yield stress is defined in terms of the input parameters 𝑎, 𝑏, 𝑐, and 𝑛 as: 

𝜎∗ = [𝑎(1 − 𝐷) + 𝑏𝑝∗𝑛][1 − 𝑐ln(𝜀∗̇)], (22.86.2)

where 𝐷 is the damage parameter, 𝑝∗ = 𝑝/𝑓c′ is the normalized pressure and 𝜀∗̇ = 𝜀/̇𝜀0̇ is 
the dimensionless strain rate.  The model accumulates damage both from equivalent 
plastic strain and plastic volumetric strain, and is expressed as 

𝐷 = ∑
Δ𝜀p + Δ𝜇p

𝐷1(𝑝∗ + 𝑇∗)𝐷2
, (22.86.3)

where Δ𝜀p and Δ𝜇p are the equivalent plastic strain and plastic volumetric strain, 𝐷1 
and 𝐷2 are material constants and 𝑇∗ = 𝑇/𝑓c′ is the normalized maximum tensile 
hydrostatic pressure where 𝑇 is the maximum tensile hydrostatic pressure. 
 
 The pressure for fully dense material is expressed as: 

𝑃 = 𝐾1𝜇̅̅̅̅ + 𝐾2𝜇̅̅̅̅2 + 𝐾3𝜇̅̅̅̅3, (22.86.4)

where 𝐾1 , 𝐾2 and 𝐾3 are material constants and the modified volumetric strain is 
defined as 

𝜇̅̅̅̅ =
𝜇 − 𝜇lock
1 + 𝜇lock

, (22.86.5)

where 𝜇lock is the locking volumetric strain.
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22.87  Material Model 115:  Elastic Creep Model 

 The effective creep strain, 𝜀c̅, given as: 

𝜀c̅ = 𝐴𝜎̅̅̅̅̅𝑛𝑡𝑚̅, (22.87.1)
where 𝐴, 𝑛, and 𝑚 are constants and 𝑡 ̅ is the effective time.  The effective stress, 𝜎̅̅̅̅̅ , is 
defined as: 

𝜎̅̅̅̅̅ = √
3
2 𝜎𝑖𝑗𝜎𝑖𝑗. (22.87.2)

 
 The creep strain, therefore, is only a function of the deviatoric stresses.  The 
volumetric behavior for this material is assumed to be elastic.  By varying the time 
constant 𝑚 primary creep (𝑚 < 1), secondary creep (𝑚 = 1), and tertiary creep (𝑚 > 1) 
can be modeled.  This model is described by Whirley and Henshall (1992).
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22.88  Material Model 116:  Composite Layup  

 This material is for modeling the elastic responses of composite lay-ups that have 
an arbitrary number of layers through the shell thickness.  A pre-integration is used to 
compute the extensional, bending, and coupling stiffness for use with the Belytschko-
Tsay resultant shell formulation.  The angles of the local material axes are specified 
from layer to layer in the *SECTION_SHELL input.  This material model must be used 
with the user defined integration rule for shells, which allows the elastic constants to 
change from integration point to integration point.  Since the stresses are not computed 
in the resultant formulation, the stress output to the binary databases for the resultant 
elements are zero. 
 
 This material law is based on standard composite lay-up theory.  The 
implementation, [Jones 1975], allows the calculation of the force, 𝐍, and moment, 𝐌, 
stress resultants from:  

⎩{
⎨
{⎧𝑁𝑥

𝑁𝑦
𝑁𝑥𝑦⎭}

⎬
}⎫

=
⎣
⎢⎡
𝐴11 𝐴12 𝐴16
𝐴21 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66⎦

⎥⎤

⎩{
{⎨
{{
⎧𝜀𝑥

0

𝜀𝑦
0

𝜀𝑧
0⎭}
}⎬
}}
⎫

+
⎣
⎢⎡

𝐵11 𝐵12 𝐵16
𝐵21 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66⎦

⎥⎤
⎩{
⎨
{⎧

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦⎭}

⎬
}⎫, (22.88.1)

⎩{
⎨
{⎧𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦⎭}

⎬
}⎫

=
⎣
⎢⎡

𝐵11 𝐵12 𝐵16
𝐵21 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66⎦

⎥⎤

⎩{
{⎨
{{
⎧𝜀𝑥

0

𝜀𝑦
0

𝜀𝑧
0⎭}
}⎬
}}
⎫

+
⎣
⎢⎡

𝐷11 𝐷12 𝐷16
𝐷21 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66⎦

⎥⎤
⎩{
⎨
{⎧

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦⎭}

⎬
}⎫, (22.88.2)

where 𝐴𝑖𝑗 is the extensional stiffness, 𝐷𝑖𝑗 is the bending stiffness, and 𝐵𝑖𝑗 is the coupling 
stiffness, which is a null matrix for symmetric lay-ups.  The mid-surface strains and 
curvatures are denoted by 𝜀𝑖𝑗

0  and 𝜅𝑖𝑗, respectively.  Since these stiffness matrices are 
symmetric, 18 terms are needed per shell element in addition to the shell resultants, 
which are integrated in time.  This is considerably less storage than would typically be 
required with through thickness integration which requires a minimum of eight history 
variables per integration point, e.g., if 100 layers are used 800 history variables would 
be stored.  Not only is memory much less for this model, but the CPU time required is 
also considerably reduced.
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22.89  Material Model 117-118:  Composite Matrix  

 This material is used for modeling the elastic responses of composites where pre-
integration, which is done outside of LS-DYNA unlike the lay-up option above, is used 
to compute the extensional, bending, and coupling stiffness coefficients for use with the 
Belytschko-Tsay and the assumed strain resultant shell formulations.  Since the stresses 
are not computed in the resultant formulation, the stresses output to the binary 
databases for the resultant elements are zero. 
 
 The calculation of the force, 𝑁𝑖𝑗, and moment, 𝑀𝑖𝑗, stress resultants is given in 
terms of the membrane strains, 𝜀𝑖

0, and shell curvatures, 𝜅𝑖, as:  

⎩{
{{
{{
⎨
{{
{{
{⎧

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦⎭}

}}
}}
⎬
}}
}}
}⎫

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎡
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46
𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56
𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66⎦

⎥⎥
⎥⎥
⎥⎥
⎤

⎩{
{{
{{
⎨
{{
{{
{⎧ 𝜀𝑥

0

𝜀𝑦
0

𝜀𝑧
0

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦⎭}

}}
}}
⎬
}}
}}
}⎫

, (22.89.1)

where 𝐶𝑖𝑗 = 𝐶𝑗𝑖.  In this model this symmetric matrix is transformed into the element 
local system and the coefficients are stored as element history variables.   
 
 In a variation of this model, *MAT_COMPOSITE_DIRECT, the resultants are 
already assumed to be given in the element local system which reduces the storage 
since the 21 coefficients are not stored as history variables as part of the element data.  
The shell thickness is built into the coefficient matrix and, consequently, within the part 
ID, which references this material ID, the thickness must be uniform.



LS-DYNA Theory Manual Material Models 

LS-DYNA DEV 06/21/18 (r:10113) 20-211 (Material Models) 

22.90  Material Model 119:  General Nonlinear 6DOF Discrete 
Beam 

 Catastrophic failure, which is based on displacement resultants, occurs if either 
of the following inequalities are satisfied: 

(
𝑢r
𝑢rtfail)

2

+ (
𝑢s
𝑢stfail)

2

+ (
𝑢t
𝑢ttfail)

2

+ (
𝜃r
𝜃rtfail)

2

+ (
𝜃s
𝜃stfail)

2

+ (
𝜃t
𝜃ttfail)

2

− 1.≥ 0, (22.90.1) 

(
𝑢r
𝑢rcfail)

2

+ (
𝑢s
𝑢scfail)

2

+ (
𝑢t
𝑢tcfail)

2

+ (
𝜃r
𝜃rcfail)

2

+ (
𝜃s
𝜃scfail)

2

+ (
𝜃t
𝜃tcfail)

2

− 1.≥ 0. (22.90.2) 

 
 After failure the discrete element is deleted.  If failure is included either the 
tension failure or the compression failure or both may be used.
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 Figure 22.90.1.  Load and unloading behavior. 
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22.91  Material Model 120:  Gurson 

 The Gurson flow function is defined as: 

𝛷 =
𝜎M2

𝜎Y2
+ 2𝑞1𝑓 ∗cosh (

3𝑞2𝜎H
2𝜎Y

) − 1 − (𝑞1𝑓 ∗)2 = 0, (22.91.1)

where 𝜎M is the equivalent von Mises stress, 𝜎Y is the Yield stress, 𝜎H is the mean 
hydrostatic stress.  The effective void volume fraction is defined as 

𝑓 ∗(𝑓 ) =

⎩{
{{
⎨
{{
{⎧

𝑓 𝑓 ≤ 𝑓c

𝑓c +
1/𝑞1 − 𝑓c

𝑓F − 𝑓c
(𝑓 − 𝑓c) 𝑓 > 𝑓c

. (22.91.2)

 
 The growth of void volume fraction is defined as 

𝑓 ̇= 𝑓Ġ + 𝑓Ṅ, (22.91.3)

where the growth of existing voids is defined as 

𝑓Ġ = (1 − 𝑓 )𝜀𝑘̇𝑘
p , (22.91.4)

and the nucleation of new voids is defined as 

𝑓Ṅ = 𝐴𝜀ṗ, (22.91.5)

where  

𝐴 =
𝑓N

𝑆N√2π
exp (−

1
2 (

𝜀p − 𝜀N
𝑆N

)
2
). (22.91.6)
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22.92  Material Model 120:  Gurson RCDC 

 The Rc-Dc model is defined as follows.  The damage 𝐷 is given by 

𝐷 = ∫𝜔1𝜔2𝑑𝜀p, (22.92.1)

where 𝜀p is the equivalent plastic strain,  

𝜔1 = (
1

1 − 𝛾𝜎m
)

𝛼
, (22.92.2)

is the triaxial stress weighting term and 

𝜔2 = (2 − 𝐴D)𝛽, (22.92.3)

is the asymmetric strain weighting term.  In the above 𝜎m is the mean stress and  

𝐴D = min (∣
𝑆2
𝑆3
∣ , ∣
𝑆3
𝑆2
∣). (22.92.4)

 
 Fracture is initiated when the accumulation of damage satisfies 

𝐷
𝐷c
> 1, (22.92.5)

where 𝐷c is the critical damage given by 

𝐷c = 𝐷0(1 + 𝑏|∇𝐷|λ). (22.92.6)
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22.93  Material Model 124:  Tension-Compression Plasticity 

 This is an isotropic elastic-plastic material where a unique yield stress versus 
plastic strain curve can be defined for compression and tension.  Failure can occur 
based on plastic strain or a minimum time step size.  Rate effects are modeled by using 
the Cowper-Symonds strain rate model. 
 
 The stress-strain behavior follows one curve in compression and another in 
tension.  The sign of the mean stress determines the state where a positive mean stress 
(i.e., a negative pressure) is indicative of tension.  Two load curves, 𝑓t(𝑝) and 𝑓c(𝑝), are 
defined, which give the yield stress, 𝜎y, versus effective plastic strain for both the 
tension and compression regimes.  The two pressure values, 𝑝t and 𝑝c, when exceeded, 
determine if the tension curve or the compressive curve is followed, respectively.  If the 
pressure, 𝑝, falls between these two values, a weighted average of the two curves are 
used: 

if   − 𝑝t ≤ 𝑝 ≤ 𝑝c     
⎩{
⎨
{⎧scale =

𝑝c − 𝑝
𝑝c + 𝑝t

𝜎y = scale ⋅ 𝑓t(𝑝) + (1 − scale) ⋅ 𝑓c(𝑝)
. (22.93.1)

 
 Strain rate is accounted for using the Cowper and Symonds model, which scales 
the yield stress with the factor 

1 + (
𝜀 ̇
𝐶)

1 p⁄
, (22.93.2)

where 𝜀 ̇is the strain rate 𝜀 ̇ = √𝜀𝑖̇𝑗𝜀𝑖̇𝑗.
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22.94  Material Model 126:  Metallic Honeycomb 

 For efficiency it is strongly recommended that the load curve ID’s: LCA, LCB, 
LCC, LCS, LCAB, LCBC, and LCCA, contain exactly the same number of points with 
corresponding strain values on the abscissa.  If this recommendation is followed the 
cost of the table lookup is insignificant.  Conversely, the cost increases significantly if 
the abscissa strain values are not consistent between load curves.  
 
 The behavior before compaction is orthotropic where the components of the 
stress tensor are uncoupled, i.e., a component of strain will generate resistance in the 
local a- direction with no coupling to the local 𝑏 and 𝑐 directions.  The elastic modulii 
vary from their initial values to the fully compacted values linearly with the relative 
volume: 

𝐸𝑎𝑎 = 𝐸𝑎𝑎𝑢 + 𝛽𝑎𝑎(𝐸 − 𝐸𝑎𝑎𝑢), 𝐺𝑎𝑏 = 𝐺𝑎𝑏𝑢 + 𝛽(𝐺 − 𝐺𝑎𝑏𝑢),
𝐸𝑏𝑏 = 𝐸𝑏𝑏𝑢 + 𝛽𝑏𝑏(𝐸 − 𝐸𝑏𝑏𝑢), 𝐺𝑏𝑐 = 𝐺𝑏𝑐𝑢 + 𝛽(𝐺 − 𝐺𝑏𝑐𝑢),
𝐸𝑐𝑐 = 𝐸𝑐𝑐𝑢 + 𝛽𝑐𝑐(𝐸 − 𝐸𝑐𝑐𝑢), 𝐺𝑐𝑎 = 𝐺𝑐𝑎𝑢 + 𝛽(𝐺 − 𝐺𝑐𝑎𝑢),

 (22.94.1)

where  

𝛽 = max [min (
1 − 𝑉
1 − 𝑉𝑓

, 1) , 0], (22.94.2)

and 𝐺 is the elastic shear modulus for the fully compacted honeycomb material 

𝐺 =
𝐸

2(1 + 𝜈) . (22.94.3)

 
 The relative volume, 𝜈, is defined as the ratio of the current volume over the 
initial volume, and typically, 𝜈 = 1 at the beginning of a calculation.  
 
 The load curves define the magnitude of the stress as the material undergoes 
deformation.  The first value in the curve should be less than or equal to zero 
corresponding to tension and increase to full compaction.  Care should be taken when 
defining the curves so the extrapolated values do not lead to negative yield stresses. 
 
 At the beginning of the stress update we transform each element’s stresses and 
strain rates into the local element coordinate system.  For the uncompacted material, the 
trial stress components are updated using the elastic interpolated modulii according to: 

𝜎𝑎𝑎𝑛+1trial
= 𝜎𝑎𝑎𝑛 + 𝐸𝑎𝑎Δ𝜀𝑎𝑎, 𝜎𝑎𝑏

𝑛+1trial
= 𝜎𝑎𝑏𝑛 + 2𝐺𝑎𝑏Δ𝜀𝑎𝑏,

𝜎𝑏𝑏
𝑛+1trial

= 𝜎𝑏𝑏
𝑛 + 𝐸𝑏𝑏Δ𝜀𝑏𝑏, 𝜎𝑏𝑐

𝑛+1trial
= 𝜎𝑏𝑐

𝑛 + 2𝐺𝑏𝑐Δ𝜀𝑏𝑐,
𝜎𝑐𝑐𝑛+1trial

= 𝜎𝑐𝑐𝑛 + 𝐸𝑐𝑐Δ𝜀𝑐𝑐, 𝜎𝑐𝑎𝑛+1trial
= 𝜎𝑐𝑎𝑛 + 2𝐺𝑐𝑎Δ𝜀𝑐𝑎,

 (22.94.4)
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 We then independently check each component of the updated stresses to ensure 
that they do not exceed the permissible values determined from the load curves, e.g., if 

∣𝜎𝑖𝑗
𝑛+1trial

∣ > 𝜆𝜎𝑖𝑗(𝜀𝑖𝑗), (22.94.5)

then 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗(𝜀𝑖𝑗)

𝜆𝜎𝑖𝑗
𝑛+1trial

∣𝜎𝑖𝑗
𝑛+1trial ∣

. (22.94.6)

 
 The components of 𝜎𝑖𝑗(𝜀𝑖𝑗) are defined by load curves.  The parameter 𝜆 is either 
unity or a value taken from the load curve number, LCSR, that defines 𝜆 as a function of 
strain-rate.  Strain-rate is defined here as the Euclidean norm of the deviatoric strain-
rate tensor. 
 
 For fully compacted material we assume that the material behavior is elastic-
perfectly plastic and updated the stress components according to: 

𝑠𝑖𝑗
trial = 𝑠𝑖𝑗

𝑛 + 2𝐺Δ𝜀𝑖𝑗
dev𝑛+1

2⁄
, (22.94.7)

where the deviatoric strain increment is defined as 

Δ𝜀𝑖𝑗
dev = Δ𝜀𝑖𝑗 −

1
3 Δ𝜀𝑘𝑘𝛿𝑖𝑗. (22.94.8)

 
 We now check to see if the yield stress for the fully compacted material is 
exceeded by comparing 

𝑠eff
trial = (

3
2 𝑠𝑖𝑗

trial𝑠𝑖𝑗
trial)

1
2⁄
, (22.94.9)

the effective trial stress to the yield stress, σy.  If the effective trial stress exceeds the 
yield stress, we simply scale back the stress components to the yield surface 

𝑠𝑖𝑗
𝑛+1 =

𝜎y
𝑠eff

trial 𝑠𝑖𝑗
trial. (22.94.10)

 
 We can now update the pressure using the elastic bulk modulus, K 

𝑝𝑛+1 = 𝑝𝑛 − 𝐾Δ𝜀𝑘𝑘
𝑛+1

2⁄ ,

𝐾 =
𝐸

3(1 − 2𝜈),
(22.94.11)

and obtain the final value for the Cauchy stress 

𝜎𝑖𝑗
𝑛+1 = 𝑠𝑖𝑗

𝑛+1 − 𝑝𝑛+1𝛿𝑖𝑗. (22.94.12)
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 After completing the stress update we transform the stresses back to the global 
configuration. 
 
 

22.94.1  Stress Update 

 If LCA < 0, a transversely anisotropic yield surface is obtained where the uniaxial 
limit stress, 𝜎y(𝜑, 𝜀vol), can be defined as a function of angle 𝜑 with the strong axis and 
volumetric strain, 𝜀vol.  Elastically, the new material model is assumed to behave exactly 
as material 126 (with the restriction 𝐸22𝑢 = 𝐸33𝑢 and 𝐺12𝑢 = 𝐺13𝑢), see the LS-DYNA 
Keyword User’s Manual [Hallquist 2003].  As for the plastic behavior, a natural 
question that arises is how to define the limit stress for a general multiaxial stress state 
that reduces to the uniaxial limit stress requirement when the stress is uniaxial.  Having 
given it some thought, we feel that it is most convenient to work with the principal 
stresses and the corresponding directions to achieve this goal. 
 
 Assume that the elastic update results in a trial stress 𝜎trial in the material 
coordinate system.  This stress tensor is diagonalized to obtain the principal stresses 
𝜎1

trial, 𝜎2
trial and 𝜎3

trial and the corresponding principal directions 𝐪1, 𝐪2 and 𝐪3 relative to 
the material coordinate system.  The angle that each direction makes with the strong 
axis of anisotropy 𝐞1 is given by  

0

Curve extends into negative strain 

quadrant since LS-DYNA will 

extrapolate using the two end points.

It is important that the extropolation 

does not extend into the negative stress 

region.

unloading and
reloading path

Unloading is based on the interpolated Young’s 

moduli which must provide an unloading 

tangent that exceeds the loading tangent.

 σij

Strain: -εij

Figure 22.94.1.  Stress quantity versus strain.  Note that the “yield stress” at a
strain of zero is nonzero.  In the load curve definition the “time” value is the
directional strain and the “function” value is the yield stress. 
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𝜑𝑖 = arccos∣𝐪𝑖 ⋅ 𝐞1∣, 𝑖 = 1, 2, 3. (22.94.13)

 
 Now a limit stress in the direction of a general multiaxial stress is determined as 
a convex combination of the uniaxial limit stress in each principal direction 

𝜎Y(𝜎trial) =
∑ 𝜎Y(𝜙j, 𝜀vol)𝜎𝑗

trial𝜎𝑗
trial3

𝑗=1

∑ 𝜎𝑘
trial𝜎𝑘

trial3
𝑘=1

, (22.94.14)

Each of the principal stresses is updated as 

𝜎𝑖 = 𝜎𝑖
trialmin

⎝
⎜⎜⎜
⎜⎜⎛1,

𝜎Y(𝜎trial)

√∑ 𝜎𝑘
trial𝜎𝑘

trial3
𝑘=1 ⎠

⎟⎟⎟
⎟⎟⎞, (22.94.15)

and the new stress is transformed back to the material coordinate system3.  
 
 This stress update is not uniquely defined when the stress tensor possesses 
multiple eigenvalues, thus the following simple set of rules is applied.  If all principal 
stresses are equal, one of the principal directions is chosen to coincide with the strong 
axis of anisotropy.  If two principal stresses are equal, then one of the directions 
corresponding to this stress value is chosen perpendicular to the strong axis of 
anisotropy. 
 

22.94.2  Support for Independent Shear and Hydrostatic Yield Stress Limit 

 The model just described turned out to be weak in shear [Okuda 2003] and there 
were no means of adding shear resistance without changing the behavior in pure 
uniaxial compression.  We propose the following modification of the model where the 
user can prescribe the shear and hydrostatic resistance in the material without changing 
the uniaxial behavior. 
 
 Assume that the elastic update results in a trial stress 𝜎trial in the material 
coordinate system.  This stress tensor is diagonalized to obtain the principal stresses 
𝜎1

trial, 𝜎2
trial and 𝜎3

trial and the corresponding principal directions 𝐪1, 𝐪2 and 𝐪3 relative to 
the material coordinate system.  For this discussion we assume that the principal stress 
values are ordered so that 𝜎1

trial ≤ 𝜎2
trial ≤ 𝜎3

trial. Two cases need to be treated.  
 

                                                 
3 Since each component of the stress tensor is scaled by the same factor in Equation 19.126.14, the stress is 
in practice not transformed back but the scaling is performed on the stress in the material coordinate 
system. 
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 If 𝜎1
trial ≤ −𝜎3

trial then the principal stress value with largest magnitude is 𝜎1
trial, 

and consequently 𝜎1
trial ≤ 0. Let  

𝜎𝑢 = 𝜎1
trial + max(∣𝜎2

trial∣, ∣𝜎3
trial∣),

𝜎p =
1
3 {−max(∣𝜎2

trial∣, ∣𝜎3
trial∣) + 𝜎2

trial + 𝜎3
trial},

(22.94.16)

and finally 

𝜎d1 = − max(∣𝜎2
trial∣, ∣𝜎3

trial∣) − 𝜎p 
𝜎d2 = 𝜎2

trial − 𝜎p, 
𝜎d3 = 𝜎3

trial − 𝜎p.
(22.94.17)

 
 The total stress is the sum of a uniaxial stress represented by 𝜎u, a hydrostatic 
stress represented by 𝜎p and a deviatoric stress represented by 𝜎d1, 𝜎d2 and 𝜎d3. The angle 
that the direction of 𝜎u makes with the strong axis of anisotropy 𝐞1 is given by 𝜙 =
arccos∣𝐪1 ⋅ 𝐞1∣. 
 
 Now a limit stress for the general multiaxial stress is determined as a convex 
combination of the three stress contributions as follows 

𝜎Y(𝜎trial)

=
𝜎uY(𝜙, 𝜀vol)𝜎u2 + 3√3𝜎pY(𝜀vol)𝜎p2 + √2𝜎dY(𝜀vol){(𝜎d1)2 + (𝜎d2)2 + (𝜎d3)2}

𝜎u2 + 3𝜎p2 + (𝜎d1)2 + (𝜎d2)2 + (𝜎d3)2
. (22.94.18)

Here 𝜎uY(𝜙, εvol) is the prescribed uniaxial stress limit, 𝜎pY(𝜀vol) is the hydrostatic stress 
limit and 𝜎dY(𝜀vol) is the stress limit in simple shear.  The input for the first of these is 
exactly as for the old model.  The other two functions are for now written 

𝜎pY(𝜀vol) = 𝜎pY + 𝜎S(𝜀vol),
𝜎dY(𝜀vol) = 𝜎dY + 𝜎S(𝜀vol),

(22.94.19)

where 𝜎pY and 𝜎dY are user prescribed constant stress limits and 𝜎S is the function 
describing the densification of the material when loaded in the direction of the strong 
material axis.  We use the keyword parameters ECCU and GCAU for the new input as 
follows. 

• ECCU σdY, average stress limit (yield) in simple shear. 

• GCAU σpY, average stress limit (yield) in hydrostatic compression (pressure). 

Both of these parameters should be positive. 
 
 Each of the principal stresses is updated as 
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𝜎𝑖 = 𝜎𝑖
trialmin

⎝
⎜⎜⎜
⎜⎜⎛1,

𝜎Y(𝜎trial)

√∑ 𝜎𝑘
trial𝜎𝑘

trial3
𝑘=1 ⎠

⎟⎟⎟
⎟⎟⎞, (22.94.20)

and the new stress is transformed back to the material coordinate system.  
 
 If σ3

trial ≥ −σ1
trial then the principal stress value with largest magnitude is σ3

trial 
and consequently σ3

trial ≥ 0.  Let  

𝜎u = 𝜎3
trial − max(∣𝜎2

trial∣, ∣𝜎1
trial∣),

𝜎p =
1
3 {max(∣𝜎2

trial∣, ∣𝜎1
trial∣) + 𝜎2

trial + 𝜎1
trial}, 

(22.94.21)

and finally 

𝜎d1 = 𝜎1
trial − 𝜎p,

𝜎d2 = 𝜎2
trial − 𝜎p, 

𝜎d3 = max(∣𝜎2
trial∣, ∣𝜎1

trial∣) − 𝜎p.
(22.94.22)

 
 The angle that the direction of 𝜎u makes with the strong axis of anisotropy 𝐞1 is 
given by 𝜙 = arccos∣𝐪3 ⋅ 𝐞1∣.  The rest of the treatment is the same as for the case when 
𝜎1

trial ≤ −𝜎3
trial.  To motivate the model, let us consider three states of stress. 

1. For a uniaxial stress 𝜎 , we have 𝜎u = 𝜎  and 𝜎p = 𝜎d1 = 𝜎d2 = 𝜎d3 = 0. This leads 
us to 𝜎Y(𝜎trial) = 𝜎uY(𝜙, 𝜀vol) and hence the stress level will be limited by the 
user prescribed uniaxial stress limit. 

2. For a simple shear 𝜎 , we have 𝜎d1 = −𝜎d3 = −𝜎  and 𝜎p = 𝜎d2 = 𝜎u = 0. Hence 
𝜎Y(𝜎trial) = √2𝜎dY(𝜀vol) and the stress level will be limited by the user pre-
scribed shear stress limit. 

3.  For a pressure 𝜎 , we have 𝜎p = 𝜎  and 𝜎u = 𝜎d1 = 𝜎d2 = 𝜎d3 = 0. Hence 
𝜎Y(𝜎trial) = √3𝜎pY(𝜀vol) and the stress level will be limited by the user pre-
scribed hydrostatic stress limit.
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22.95  Material Model 127:  Arruda-Boyce Hyperviscoelastic 
Rubber 

 This material model, described in the paper by Arruda and Boyce [1993], 
provides a rubber model that is optionally combined with linear viscoelasticity.  Rubber 
is generally considered to be fully incompressible since the bulk modulus greatly 
exceeds the shear modulus in magnitude; therefore, to model the rubber as an 
unconstrained material, a hydrostatic work term, 𝑊H(𝐽), is included in the strain 
energy functional which is a function of the relative volume, 𝐽, [Ogden, 1984]: 

𝑊(𝐽1, 𝐽2, 𝐽) = 𝑛𝑘𝜃 [
1
2 (𝐽1 − 3) +

1
20𝑁 (𝐽1

2 − 9) +
11

1050𝑁2 (𝐽1
3 − 27)]

+ 𝑛𝑘𝜃 [
19

7000𝑁3 (𝐽1
4 − 81) +

519
673750𝑁4 (𝐽1

5 − 243)] +𝑊H(𝐽), 

𝐽1 = 𝐼1𝐽−1
3⁄ , 

𝐽2 = 𝐼2𝐽. 

(22.95.1)

The hydrostatic work term is expressed in terms of the bulk modulus, 𝐾, and 𝐽, as: 

𝑊H(𝐽) =
𝐾
2 (𝐽 − 1)2. (22.95.2)

Rate effects are taken into account through linear viscoelasticity by a convolution 
integral of the form: 

𝜎𝑖𝑗 = ∫ 𝑔𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.95.3)

or in terms of the second Piola-Kirchhoff stress, 𝑆𝑖𝑗, and Green's strain tensor, 𝐸𝑖𝑗, 

𝑆𝑖𝑗 = ∫ 𝐺𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝐸𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.95.4)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) and 𝐺𝑖𝑗𝑘𝑙(𝑡 − 𝜏) are the relaxation functions for the different stress 
measures.  This stress is added to the stress tensor determined from the strain energy 
functional.   
 
 If we wish to include only simple rate effects, the relaxation function is 
represented by six terms from the Prony series: 

𝑔(𝑡) = 𝛼0 + ∑ 𝛼𝑚

𝑁

𝑚=1
𝑒−𝛽𝑡, (22.95.5)

given by, 
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𝑔(𝑡) = ∑𝐺𝑖𝑒−𝛽𝑖𝑡
𝑛

𝑖=1
. (22.95.6)

This model is effectively a Maxwell fluid which consists of a dampers and springs in 
series.  We characterize this in the input by shear modulii, 𝐺𝑖, and decay constants, 𝛽𝑖.  
The viscoelastic behavior is optional and an arbitrary number of terms may be used.
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22.96  Material Model 128:  Heart Tissue 

 This material model provides a tissue model described in the paper by Guccione, 
McCulloch, and Waldman [1991] 
 
 The tissue model is described in terms of the energy functional in terms of the 
Green strain components, 𝐸𝑖𝑗, 

𝑊(𝐸, 𝐽) =
𝐶
2 (𝑒𝑄 − 1) +𝑊H(𝐽), 

𝑄 = 𝑏1𝐸11
2 + 𝑏2(𝐸22

2 + 𝐸33
2 + 𝐸23

2 + 𝐸32
2 ) + 𝑏3(𝐸12

2 + 𝐸21
2 + 𝐸13

2 + 𝐸31
2 ), 

(22.96.1)

where the hydrostatic work term is in terms of the bulk modulus, 𝐾, and the third 
invariant 𝐽, as: 

𝑊H(𝐽) =
𝐾
2 (𝐽 − 1)2. (22.96.2)

The Green components are modified to eliminate any effects of volumetric work 
following the procedures of Ogden.
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22.97  Material Model 129:  Isotropic Lung Tissue 

 This material model provides a lung tissue model described in the paper by 
Vawter [1980]. 
 
 The material is described by a strain energy functional expressed in terms of the 
invariants of the Green Strain: 

𝑊(𝐼1, 𝐼2) =
𝐶
2𝛥 𝑒(𝛼𝐼1

2+𝛽𝐼2) +
12𝐶1

𝛥(1 + 𝐶2) [𝐴(1+𝐶2) − 1],

𝐴2 =
4
3 (𝐼1 + 𝐼2) − 1,

(22.97.1)

where the hydrostatic work term is in terms of the bulk modulus, 𝐾, and the third 
invariant 𝐽, as: 

𝑊H(𝐽) =
𝐾
2 (𝐽 − 1)2, (22.97.2)

Rate effects are taken into account through linear viscoelasticity by a convolution 
integral of the form: 

𝜎𝑖𝑗 = ∫ 𝑔𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.97.3)

or in terms of the second Piola-Kirchhoff stress, 𝑆𝑖𝑗, and Green's strain tensor, 𝐸𝑖𝑗, 

𝑆𝑖𝑗 = ∫ 𝐺𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝐸𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.97.4)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) and 𝐺𝑖𝑗𝑘𝑙(𝑡 − 𝜏)  are the relaxation functions for the different stress 
measures.  This stress is added to the stress tensor determined from the strain energy 
functional.   
 
 If we wish to include only simple rate effects, the relaxation function is 
represented by six terms from the Prony series: 

𝑔(𝑡) = 𝛼0 + ∑ 𝛼𝑚

𝑁

𝑚=1
𝑒−𝛽𝑡, (22.97.5)

given by, 

𝑔(𝑡) = ∑𝐺𝑖𝑒−𝛽𝑖𝑡
𝑛

𝑖=1
. (22.97.6)

 
 This model is effectively a Maxwell fluid which consists of a dampers and 
springs in series.  We characterize this in the input by shear moduli, 𝐺𝑖, and decay 
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constants, 𝛽𝑖.  The viscoelastic behavior is optional and an arbitrary number of terms 
may be used.
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22.98  Material Model 130:  Special Orthotropic 

The in-plane elastic matrix for in-plane plane stress behavior is given by: 

𝐂in plane =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑄11p 𝑄12p 0 0 0
𝑄12p 𝑄22p 0 0 0

0 0 𝑄44p 0 0
0 0 0 𝑄55p 0
0 0 0 0 𝑄66p⎦

⎥
⎥
⎥
⎥
⎥
⎤

, (22.98.1)

where the terms 𝑄𝑖𝑗p are defined as: 

𝑄11p =
𝐸11p

1 − ν12pν21p
,

𝑄22p =   
𝐸22p

1 − ν12pν21p
, 

𝑄12p =   
ν12pE11p

1 − ν12pν21p
, 

𝑄44p = 𝐺12p, 
𝑄55p = 𝐺23p, 
Q66p = 𝐺31p.

(22.98.2)

The elastic matrix for bending behavior is given by: 

𝐂bending =
⎣
⎢⎡

𝑄11b 𝑄12b 0
𝑄12b 𝑄22b 0

0 0 𝑄44b⎦
⎥⎤, (22.98.3)

where the terms 𝑄𝑖𝑗b are similarly defined.
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22.99  Material Model 131:  Isotropic Smeared Crack 

 The following documentation is taken nearly verbatim from the documentation 
of that by Lemmen and Meijer [2001]. 
 
 Three methods are offered to model progressive failure.  The maximum principal 
stress criterion detects failure if the maximum (most tensile) principal stress exceeds 
𝜎max.  Upon failure, the material can no longer carry stress. 
 
 The second failure model is the smeared crack model with linear softening stress-
strain curve using equivalent uniaxial strains.  Failure is assumed to be perpendicular to 
the principal strain directions.  A rotational crack concept is employed in which the 
crack directions are related to the current directions of principal strain.  Therefore crack 
directions may rotate in time.  Principal stresses are expressed as 

⎝
⎜⎛

𝜎1
𝜎2
𝜎3⎠

⎟⎞ =
⎣
⎢⎢
⎡𝐸̅̅̅̅1 0 0

0 𝐸̅̅̅̅2 0
0 0 𝐸̅̅̅̅3⎦

⎥⎥
⎤

⎝
⎜⎜⎛

𝜀1̃
𝜀2̃
𝜀3̃⎠

⎟⎟⎞ =
⎝
⎜⎜⎜
⎛𝐸̅̅̅̅1𝜀1̃

𝐸̅̅̅̅2𝜀2̃
𝐸̅̅̅̅3𝜀3̃⎠

⎟⎟⎟
⎞

, (22.99.1)

with 𝐸̅̅̅̅1, 𝐸̅̅̅̅2and 𝐸̅̅̅̅3 being secant stiffness in the terms that depend on internal variables. 
 
 In the model developed for DYCOSS it has been assumed that there is no 
interaction between the three directions in which case stresses simply follow  

𝜎𝑗(𝜀𝑗̃) =

⎩{
{{
{{
⎨
{{
{{
{⎧𝐸𝜀𝑗̃ if 0 ≤ 𝜀𝑗̃ ≤ 𝜀𝑗̃,ini

(1 −
𝜀𝑗̃ − 𝜀𝑗̃,ini

𝜀𝑗̃,ult − 𝜀𝑗̃,ini
) 𝜎̅̅̅̅̅ if 𝜀𝑗̃,ini < 𝜀𝑗̃ ≤ 𝜀𝑗̃,ult

0 if 𝜀𝑗̃ > 𝜀𝑗̃,ult

, (22.99.2)

with 𝜎̅̅̅̅̅  the ultimate stress, 𝜀𝑗̃,ini the damage threshold, and 𝜀𝑗̃,ultthe ultimate strain in 𝑗-
direction.  The damage threshold is defined as 

𝜀𝑗̃,ini =
𝜎̅̅̅̅̅
𝐸. (22.99.3)

 
 The ultimate strain is obtained by relating the crack growth energy and the 
dissipated energy 

∫ ∫ 𝜎̅̅̅̅̅ 𝑑𝜀𝑗̃,ult 𝑑𝑉 = 𝐺𝐴, (22.99.4)

with 𝐺 the energy release rate, 𝑉 the element volume and 𝐴 the area perpendicular to 
the principal strain direction.  The one-point elements in LS-DYNA have a single 
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integration point and the integral over the volume may be replaced by the volume.  For 
linear softening it follows 

𝜀𝑗̃,ult =
2𝐺𝐴
𝑉𝜎̅̅̅̅̅ , (22.99.5)

 
 The above formulation may be regarded as a damage equivalent to the 
maximum principle stress criterion. 
 
 The third model is a damage model presented by Brekelmans et.  al. [1991].  Here 
the Cauchy stress tensor 𝜎  is expressed as 

𝜎 = (1 − 𝐷)𝐸𝜀, (22.99.6)
where 𝐷 represents the current damage and the factor (1 − 𝐷) is the reduction factor 
caused by damage.  The scalar damage variable is expressed as a function of a so-called 
damage equivalent strain 𝜀d 

𝐷 = 𝐷(𝜀d) = 1 −
𝜀ini(𝜀ult − 𝜀d)
𝜀d(𝜀ult − 𝜀ini)

, (22.99.7)

with ultimate and initial strains as defined by 

𝜀d =
𝑘 − 1

2𝑘(1 − 2𝑣) 𝐽1 +
1
2𝑘
√(

𝑘 − 1
1 − 2𝑣 𝐽1)

2
+

6𝑘
(1 + 𝑣)2 𝐽2, (22.99.8)

where the constant 𝑘 represents the ratio of the strength in tension over the strength in 
compression 

𝑘 =
𝜎ult,tension

𝜎ult,compression
, (22.99.9)

𝐽1 and 𝐽2 are the first and the second invariants of the strain tensor representing the 
volumetric and the deviatoric straining, respectively 

𝐽1 = 𝜀𝑖𝑗,
𝐽2 = 𝜀𝑖𝑗

′ 𝜀𝑖𝑗
′ , (22.99.10)

where 𝜀𝑖𝑗
′  denotes the deviatoric part of the strain tensor. 

 
 If the compression and tension strength are equal the dependency on the 
volumetric strain vanishes in Equation (22.99.8) and failure is shear dominated.  If the 
compressive strength is much larger than the strength in tension, 𝑘 becomes large and 
the 𝐽1 terms in Equation (22.99.8) dominate the behavior.
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22.100  Material Model 133:  Barlat_YLD2000 

 The yield condition for this material can be written 
𝑓 (𝜎, 𝛼, 𝜀p) = 𝜎eff(𝜎𝑥𝑥 − 2𝛼𝑥𝑥 − 𝛼𝑦𝑦, 𝜎𝑦𝑦 − 2𝛼𝑦𝑦 − 𝛼𝑥𝑥, 𝜎𝑥𝑦 − 𝛼𝑥𝑦) −
                        𝜎Yt (𝜀p, 𝜀ṗ, 𝛽) ≤ 0,  (22.100.1)

where 

𝜎eff(𝑠𝑥𝑥, 𝑠𝑦𝑦, 𝑠𝑥𝑦) =
⎝
⎜⎛1

2 (𝜑′ + 𝜑′′)
⎠
⎟⎞

1
a

, 

𝜑′ = ∣𝑋′1 − 𝑋′2∣𝑎, 
𝜑′′ = ∣2𝑋′′1 + 𝑋′′2∣𝑎 + ∣𝑋′′1 + 2𝑋′′2∣𝑎.

(22.100.2)

 
 The 𝑋′𝑖 and 𝑋′′𝑖 are the eigenvalues of 𝑋′𝑖𝑗 and 𝑋′′𝑖𝑗 and are given by  

𝑋′1 =
1
2 (𝑋′11 + 𝑋′22 + √(𝑋′11 − 𝑋′22)2 + 4𝑋′12

2 ) ,

𝑋′2 =
1
2 (𝑋′11 + 𝑋′22 − √(𝑋′11 − 𝑋′22)2 + 4𝑋′12

2 ),
(22.100.3)

and  

𝑋′′1 =
1
2 (𝑋′′11 + 𝑋′′22 + √(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12

2 ) , 

𝑋′′2 =
1
2 (𝑋′′11 + 𝑋′′22 − √(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12

2 ),
(22.100.4)

respectively.  The 𝑋′𝑖𝑗 and 𝑋′′𝑖𝑗 are given by4 

⎝
⎜⎜⎜
⎛𝑋′11

𝑋′22
𝑋′12⎠

⎟⎟⎟
⎞ =

⎝
⎜⎜⎜
⎛𝐿′11 𝐿′12 0

𝐿′21 𝐿′22 0
0 0 𝐿′33⎠

⎟⎟⎟
⎞

⎝
⎜⎛

𝑠𝑥𝑥
𝑠𝑦𝑦
𝑠𝑥𝑦⎠

⎟⎞ , 

⎝
⎜⎛

𝑋′′11

𝑋′′22

𝑋′′12⎠
⎟⎞ =

⎝
⎜⎛

𝐿′′11 𝐿′′12 0
𝐿′′21 𝐿′′22 0
0 0 𝐿′′33⎠

⎟⎞
⎝
⎜⎛

𝑠𝑥𝑥
𝑠𝑦𝑦
𝑠𝑥𝑦⎠

⎟⎞, 

(22.100.5)

where 

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝐿′11
𝐿′12
𝐿′21
𝐿′22
𝐿′33⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

=
1
3

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎛

2 0 0
−1 0 0
0 −1 0
0 2 0
0 0 3⎠

⎟⎟⎟
⎟⎟⎟
⎟⎞

⎝
⎜⎛

𝛼1
𝛼2
𝛼7⎠

⎟⎞ , (22.100.6)
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⎝
⎜⎜⎜
⎜⎜⎜
⎜⎛

𝐿′′11

𝐿′′12

𝐿′′21

𝐿′′22

𝐿′′33⎠
⎟⎟⎟
⎟⎟⎟
⎟⎞

=
1
9

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎛

−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0

−2 8 2 −2 0
0 0 0 0 9⎠

⎟⎟⎟
⎟⎟⎟
⎟⎞

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎛

𝛼3
𝛼4
𝛼5
𝛼6
𝛼8⎠

⎟⎟⎟
⎟⎟⎟
⎟⎞

. 

where 𝛼1 to 𝛼8 are the parameters that determine the shape of the yield surface.  
 
 The yield stress is expressed as 

𝜎Yt (𝜀p, 𝜀ṗ, 𝛽) = 𝜎Yv(𝜀p, 𝜀ṗ) + 𝛽(𝜎0 − 𝜎Yv(𝜀p, 𝜀ṗ)), (22.100.7)

where 𝛽 determines the fraction kinematic hardening and 𝜎0 is the initial yield stress.  
The yield stress for purely isotropic hardening is given by 

𝜎Yv(𝜀p, 𝜀ṗ) = 𝜎Y(𝜀p)
⎝
⎜⎜⎜
⎛

1 + {
𝜀ṗ
𝐶}

1
p

⎠
⎟⎟⎟
⎞

, (22.100.8)

where 𝐶 and 𝑝 are the Cowper-Symonds material parameters for strain rate effects.  
 
 The evolution of back stress is given by 

𝛼̇ = 𝜆̇𝛽⎝
⎜⎛∂𝜎Y

∂𝜀p ⎝
⎜⎛1 + {

𝜀ṗ
𝐶}

1/p

⎠
⎟⎞ + 𝜎Y

1
𝑝𝐶Δ𝑡 {

𝜀ṗ
𝐶}

1/𝑝−1

⎠
⎟⎞

∂𝜎eff
∂𝑠 ⋅ ∂𝜎eff

∂𝑠

∂𝜎eff
∂𝑠 , (22.100.9)

where Δ𝑡 is the current time step size and 𝜆̇ is the rate of plastic strain multiplier. 
 
 For the plastic return algorithms, the gradient of effective stress is computed as 

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛∂𝜎eff

∂𝑠xx
∂𝜎eff
∂𝑠yy
∂𝜎eff
∂𝑠xy ⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

=
𝑎𝜎eff
𝑎−1

2 ⎝
⎜⎜⎜
⎛L′11 L′21 0

L′12 L′22 0
0 0 L′33⎠

⎟⎟⎟
⎞

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛ 𝜕𝜙′

𝜕𝑋′11
𝜕𝜙′

𝜕𝑋′22
𝜕𝜙′

𝜕𝑋′12⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

+
𝑎𝜎eff
𝑎−1

2 ⎝
⎜⎜⎜
⎛L′′11 L′′21 0

L′′12 L′′22 0
0 0 L′′33⎠

⎟⎟⎟
⎞

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛ ∂𝜙′′

∂X′′11
∂𝜙′′

∂X′′22
∂𝜙′′

∂X′′12⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

, 

(22.100.10)

with the aid of 
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𝜕𝜑′
𝜕𝑋′𝑖𝑗

= 𝑎(𝑋′1 − 𝑋′2)𝑎−1 𝜕(𝑋′1 − 𝑋′2)
𝜕𝑋′𝑖𝑗

, (22.100.11)

𝜕𝜑′′
𝜕𝑋′′𝑖𝑗

= 𝑎∣2𝑋′′1 + 𝑋′′2∣𝑎−1sgn(2𝑋′′1 + 𝑋′′2)
𝜕(2𝑋′′1 + 𝑋′′2)

𝜕𝑋′′𝑖𝑗
+

                𝑎∣2𝑋′′2 + 𝑋′′1∣𝑎−1sgn(2𝑋′′2 + 𝑋′′1)
𝜕(2𝑋′′2 + 𝑋′′1)

𝜕𝑋′′𝑖𝑗 ,
 (22.100.12)

and 

𝜕(𝑋′1 − 𝑋′2)
𝜕𝑋′11

=
𝑋′11 − 𝑋′22

√(𝑋′11 − 𝑋′22)2 + 4𝑋′12
2

, (22.100.13) 

𝜕(𝑋′1 − 𝑋′2)
𝜕𝑋′22

=
𝑋′22 − 𝑋′11

√(𝑋′11 − 𝑋′22)2 + 4𝑋′12
2

, (22.100.14) 

𝜕(𝑋′1 − 𝑋′2)
𝜕𝑋′12

=
4𝑋′12

√(𝑋′11 − 𝑋′22)2 + 4𝑋′12
2

, (22.100.15) 

𝜕(2𝑋′′1 + 𝑋′′2)
𝜕𝑋′′11

=
3
2 +

1
2

𝑋′′11 − 𝑋′′22

√(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12
2

, (22.100.16) 

𝜕(2𝑋′′1 + 𝑋′′2)
𝜕𝑋′′22

=
3
2 +

1
2

𝑋′′22 − 𝑋′′11

√(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12
2

, (22.100.17) 

𝜕(2𝑋′′1 + 𝑋′′2)
𝜕𝑋′′12

=
2𝑋′′12

√(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12
2

, (22.100.18) 

𝜕(2𝑋′′2 + 𝑋′′1)
𝜕𝑋′′11

=
3
2 −

1
2

𝑋′′11 − 𝑋′′22

√(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12
2

, (22.100.19) 

𝜕(2𝑋′′2 + 𝑋′′1)
𝜕𝑋′′22

=
3
2 −

1
2

𝑋′′22 − 𝑋′′11

√(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12
2

, (22.100.20)

𝜕(2𝑋′′2 + 𝑋′′1)
𝜕𝑋′′12

= −
2𝑋′′12

√(𝑋′′11 − 𝑋′′22)2 + 4𝑋′′12
2

. (22.100.21)

 
 The algorithm for the plane stress update as well as the formula for the tangent 
modulus is given in detail in Section 19.36.1 and is not repeated here. 
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22.100.1  Closest point projection algorithm 

 This section describes shortly the closest point projection algorithm that was 
implemented to improve accuracy, hence the implicit performance, of the model.  The 
closest point projection comes down to solving the following system of equations 

𝑓1 = 𝑡 + 𝐀𝛼 + (𝛔Yt (Δ𝜆) − 𝛔Yt (0))ℎ − 𝛔trial(Δ𝜀33) + 2𝐺Δ𝜆D∇𝜎eff(t) = 0, (22.100.22)

𝑓2 = −𝛔eff(t) + 𝛔Yt (Δ𝜆) = 0, (22.100.23)

𝑓3 = 𝜎33
trial(Δ𝜀33) + 2𝐺Δ𝜆(∇𝜎eff

1 (t) + ∇𝜎eff
2 (t)) = 0, (22.100.24)

where 

ℎ =
𝛽

∇𝜎eff(𝑡)T𝐁∇𝜎eff(𝑡)
𝐁∇𝜎eff(𝑡), (22.100.25)

in terms of the unknown variables 𝐭 (stress), Δε33 (thickness strain increment) and Δ𝜆 
(plastic strain increment).  In the above 

𝐃 =
⎣
⎢⎡

1
1

0.5⎦
⎥⎤ ,    𝐀 =

⎣
⎢⎡

2 1
1 2

1 ⎦
⎥⎤ ,    𝐁 =

⎣
⎢⎡

2 1
1 2

0.5⎦
⎥⎤ ,    𝐻 =

∂σYt

∂εp
. (22.100.26)

 
 This system of equations is solved using a Newton method with an additional 
line search for robustness.  Using the notation 

𝐟 =
⎣
⎢
⎡𝑓1

𝑓2
𝑓3⎦

⎥
⎤ ,    𝐱 =

⎣
⎢⎡

t
Δ𝜆
Δ𝜀33⎦

⎥⎤, (22.100.27)

a Newton step is completed as 

𝑥+ = 𝑥− − 𝑠 (
∂𝑓
∂𝑥)

−1
f (22.100.28)

for a step size 𝑠 ≤ 1 chosen such that the norm of the objective function is decreasing.  
The gradient of the objective function is given by 

∇𝑓 = ∇𝑓1−β + ∇𝑓β (22.100.29)

where 

∇f1−β =
⎣
⎢⎢
⎡I + 2𝐺Δ𝜆𝐷∇2𝜎eff 2𝐺𝐷∇𝜎eff −𝐶3

−(∇𝜎eff)T 𝐻 0
2𝐺Δ𝜆𝐞T∇2𝛔eff 2GeT∇σeff C33 ⎦

⎥⎥
⎤

 (22.100.30)
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∇fβ =

⎣
⎢⎢
⎢
⎡Δ𝜆𝐻

∂h
∂𝑡 𝐻ℎ 0

0T 0 0
0 0 0⎦

⎥⎥
⎥
⎤

 (22.100.31)

and 

𝐞 =
⎣
⎢⎡

1
1
0⎦
⎥⎤,    C3 = (K −

2G
3 ) e, C33 = (K +

4G
3 ), (22.100.32)

𝐺 and 𝐾 stands for the shear and bulk modulus, respectively.  This algorithm requires 
computation of the effective stress hessian.  The derivation of this is quite straightfor-
ward but the expression for it is rather long and is hence omitted in this report.



Material Models LS-DYNA Theory Manual 

20-234 (Material Models) LS-DYNA DEV 06/21/18 (r:10113) 

22.101  Material Model 134:  Viscoelastic Fabric 

 The viscoelastic fabric model is a variation on the general viscoelastic Material 
Model 76.  This model is valid for 3 and 4 node membrane elements only and is 
strongly recommended for modeling isotropic viscoelastic fabrics where wrinkling may 
be a problem.  For thin fabrics, buckling can result in an inability to support 
compressive stresses; thus, a flag is included for this option.  If bending stresses are 
important, use a shell formulation with Model 76. 
 
 Rate effects are taken into account through linear viscoelasticity by a convolution 
integral of the form: 

𝜎𝑖𝑗 = ∫ 𝑔𝑖𝑗𝑘𝑙
𝑡

0
(𝑡 − 𝜏)

𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏, (22.101.1)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏)  is the relaxation function. 
 
 If we wish to include only simple rate effects for the deviatoric stresses, the 
relaxation function is represented by six terms from the Prony series: 

𝑔(𝑡) = ∑ 𝐺𝑚

𝑁

𝑚=1
𝑒−𝛽𝑚𝑡. (22.101.2)

We characterize this in the input by shear modulii, 𝐺𝑖, and decay constants, 𝛽𝑖.  An 
arbitrary number of terms, up to 6, may be used when applying the viscoelastic model.  
 
 For volumetric relaxation, the relaxation function is also represented by the 
Prony series in terms of bulk modulii: 

𝑘(𝑡) = ∑ 𝐾𝑚

𝑁

𝑚=1
𝑒−𝛽𝑘𝑚𝑡. (22.101.3)
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22.102  Material Model 139:  Modified Force Limited 

 This material model is available for the Belytschko resultant beam element only.  
Plastic hinges form at the ends of the beam when the moment reaches the plastic 
moment.  The plastic moment versus rotation relationship is specified by the user in the 
form of a load curve and scale factor.  The points of the load curve are (plastic rotation 
in radians, plastic moment).  Both quantities should be positive for all points, with the 
first point being (zero, initial plastic moment).  Within this constraint any form of 
characteristic may be used, including flat or falling curves.  Different load curves and 
scale factors may be specified at each node and about each of the local s and t axes. 
 
 Axial collapse occurs when the compressive axial load reaches the collapse load.  
Collapse load versus collapse deflection is specified in the form of a load curve.  The 
points of the load curve are either (true strain, collapse force) or (change in length, 
collapse force).  Both quantities should be entered as positive for all points, and will be 
interpreted as compressive.  The first point should be (zero, initial collapse load). 
 
 The collapse load may vary with end moment as well as with deflections.  In this 
case several load-deflection curves are defined, each corresponding to a different end 
moment.  Each load curve should have the same number of points and the same 
deflection values.  The end moment is defined as the average of the absolute moments 
at each end of the beam and is always positive. 
 
 Stiffness-proportional damping may be added using the damping factor 𝜆.  This 
is defined as follows: 

𝜆 =
2 ∗ 𝜉
𝜔 , (22.102.1)

where 𝜉  is the damping factor at the reference frequency 𝜔 (in radians per second).  For 
example if 1% damping at 2Hz is required 

𝜆 =
2 ∗ 0.01
2π ∗ 2 = 0.001592. (22.102.2)

If damping is used, a small time step may be required.  LS-DYNA does not check this so 
to avoid instability it may be necessary to control the timestep via a load curve.  As a 
guide, the timestep required for any given element is multiplied by 0.3𝐿/𝑐𝜆 when 
damping is present (𝐿 = element length, 𝑐 = sound speed). 
 
Moment Interaction 
 Plastic hinges can form due to the combined action of moments about the three 
axes.  This facility is activated only when yield moments are defined in the material 
input.  A hinge forms when the following condition is first satisfied. 
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(
𝑀r

𝑀ryield
)

2

+ (
𝑀s

𝑀syield
)

2

+ (
𝑀t

𝑀tyield
)

2

≥ 1, (22.102.3)

where, 
 𝑀r,𝑀s,𝑀t= current moments 
 𝑀ryield, 𝑀syield,𝑀tyield= yield moments 
Note that scale factors for hinge behavior defined in the input will also be applied to the 
yield moments:  for example, 𝑀syield in the above formula is given by the input yield 
moment about the local axis times the input scale factor for the local s-axis.  For strain-
softening characteristics, the yield moment should generally be set equal to the initial 
peak of the moment-rotation load curve. 
 
 On forming a hinge, upper limit moments are set.  These are given by  

𝑀rupper = MAX
⎝
⎜⎛𝑀r,

𝑀ryield
2 ⎠

⎟⎞, (22.102.4)

and similarly for 𝑀s and 𝑀t.  Thereafter the plastic moments will be given by: 
 𝑀rp = min (𝑀rcurve,𝑀rcurve)  
and similarly for 𝑠 and 𝑡, where 
 𝑀rp = current plastic moment 
 𝑀rcurve = moment taken from load curve at the current rotation scaled according 
to the scale factor. 
 
 The effect of this is to provide an upper limit to the moment that can be 
generated; it represents the softening effect of local buckling at a hinge site.  Thus if a 
member is bent about its local s-axis it will then be weaker in torsion and about its local 
𝑡-axis.  For moment-softening curves, the effect is to trim off the initial peak (although if 
the curves subsequently harden, the final hardening will also be trimmed off). 
 
 It is not possible to make the plastic moment vary with the current axial load, but 
it is possible to make hinge formation a function of axial load and subsequent plastic 
moment a function of the moment at the time the hinge formed.  This is discussed in the 
next section. 
 
Independent plastic hinge formation 
 In addition to the moment interaction equation, Cards 7 through 18 allow plastic 
hinges to form independently for the s-axis and t-axis at each end of the beam and also 
for the torsional axis.  A plastic hinge is assumed to form if any component of the 
current moment exceeds the yield moment as defined by the yield moment vs.  axial 
force curves input on cards 7 and 8.  If any of the 5 curves is omitted, a hinge will not 
form for that component.  The curves can be defined for both compressive and tensile 
axial forces.  If the axial force falls outside the range of the curve, the first or last point in 
the curve will be used.  A hinge forming for one component of moment does not affect 
the other components. 
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 Upon forming a hinge, the magnitude of that component of moment will not be 
permitted to exceed the current plastic moment.  The current plastic moment is 
obtained by interpolating between the plastic moment vs.  plastic rotation curves input 
on cards 10, 12, 14, 16, or 18.  Curves may be input for up to 8 hinge moments, where 
the hinge moment is defined as the yield moment at the time that the hinge formed.  
Curves must be input in order of increasing hinge moment and each curve should have 
the same plastic rotation values.  The first or last curve will be used if the hinge moment 
falls outside the range of the curves.  If no curves are defined, the plastic moment is 
obtained from the curves on cards 4 through 6.  The plastic moment is scaled by the 
scale factors on lines 4 to 6. 
 
 A hinge will form if either the independent yield moment is exceeded or if the 
moment interaction equation is satisfied.  If both are true, the plastic moment will be set 
to the minimum of the interpolated value and 𝑀rp.

M1
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M8

Strain (or change in length, see AOPT)

A
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Figure 22.102.1.  The force magnitude is limited by the applied end moment.
For an intermediate value of the end moment LS-DYNA interpolates between
the curves to determine the allowable force value. 
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22.103  Material Model 141:  Rate Sensitive Polymer  

𝜀𝑖𝑗 = 𝐷oexp [−
1
2 (
𝑍o2

3𝐾2
)]

⎝
⎜⎛
𝑆𝑖𝑗 − 𝛺𝑖𝑗

√𝐾2 ⎠
⎟⎞, (22.103.1)

where 𝐷o is the maximum inelastic strain rate, 𝑍o is the isotropic initial hardness of 
material, 𝛺𝑖𝑗 is the internal stress, 𝑆𝑖𝑗 is the deviatoric stress component, and 𝐾2 is 
defined as follows: 

𝐾2 =
1
2 (𝑆𝑖𝑗 − 𝛺𝑖𝑗)(𝑆𝑖𝑗 − 𝛺𝑖𝑗), (22.103.2)

and represent the second invariant of the overstress tensor.  The elastic components of 
the strain are added to the inelastic strain to obtain the total strain.  The following 
relationship defines the internal stress variable rate: 

𝛺𝑖𝑗 =
2
3 𝑞𝛺m𝜀𝑖̇𝑗

I − 𝑞𝛺𝑖𝑗𝜀ė
I , (22.103.3)

where 𝑞 is a material constant, 𝛺m is a material constant that represents the maximum 
value of the internal stress, and 𝜀ė

I  is the effective inelastic strain.
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22.104  Material Model 142: Transversely Anisotropic 
Crushable Foam 

 A new material model for low density, transversely isotropic crushable foams, 
has been developed at DaimlerChrysler by Hirth, Du Bois, and Weimar.  Hirth, Du Bois, 
and Weimar determined that material model 26, MAT_HONEYCOMB, which is 
commonly used to model foams, can systematically over estimate the stress when it is 
loaded off-axis.  Their new material model overcomes this problem without requiring 
any additional input.  Their new model can possibly replace the MAT_HONEYCOMB 
material, which is currently used in the frontal offset and side impact barriers. 
 
 Many polymers used for energy absorption are low density, crushable foams 
with no noticeable Poisson effect.  Frequently manufactured by extrusion, they are 
transversely isotropic.  This class of material is used to enhance automotive safety in 
low velocity (bumper impact) and medium velocity (interior head impact) applications.  
These materials require a transversely isotropic, elastoplastic material with a flow rule 
allowing for large permanent volumetric deformations.   
 
 The MAT_HONEYCOMB model uses a local coordinate system defined by the 
user.  One of the axes of the local system coincides with the extrusion direction of the 
honeycomb in the undeformed configuration.  As an element deforms, its local 
coordinate system rotates with its mean rigid body motion.  Each of the six stress 
components is treated independently, and each has its own law relating its flow stress 
to its plastic strain. 
 
 The effect of off-axis loading on the MAT_HONEYCOMB model can be 
estimated by restricting our considerations to plane strain in two dimensions.  Our 
discussion is restricted to the response of the foam before it becomes fully compacted.  
After compaction, its response is modeled with conventional 𝐽2 plasticity.  The model 
reduces to  

|σ11| ≤ 𝜎11
y (𝜀V),

|𝜎22| ≤ 𝜎22
y (𝜀V), 

|𝜎12| ≤ 𝜎12
y (𝜀V),

(22.104.1)

where 𝜀V is the volumetric strain.  For a fixed value of volumetric strain, the individual 
stress components respond in an elastic-perfectly plastic manner, i.e., the foam doesn’t 
have any strain hardening.  
 
 In two dimensions, the stress tensor transforms according to 

[𝜎] = [𝑅(𝜃)]T[𝜎𝜃][𝑅(𝜃)], (22.104.2)
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[𝑅(𝜃)] = [cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃) ],

where 𝜃 is the angle of the local coordinate system relative to the global system.  For 
uniaxial loading along the global 1-axis, the stress will be (accounting for the sign of the 
volume strain), 

𝜎11 = {[cos(𝜃)]2𝜎11
y + [sin(𝜃)]2𝜎22

y + 2 ⋅ sin(𝜃)cos(𝜃)𝜎12
y }sgn(𝜀V)}, (22.104.3)

assuming the strain is large enough to cause yielding in both directions. 
 
 If the shear strength is neglected, 𝜎11 will vary smoothly between 𝜎11

y  and 𝜎22
y  

and never exceed the maximum of the two yield stresses.  This behavior is intuitively 
what we would like to see.  However, if the value of shear yield stress isn’t zero, 𝜎11 
will be greater than either 𝜎11

y  or 𝜎22
y . To illustrate, if 𝜎11

y  and 𝜎22
y  are equal (a nominally 

isotropic response) the magnitude of the stress is 

|𝜎11| = 𝜎11
y + 2 ⋅ sin(𝜃)cos(𝜃)𝜎12

y , (22.104.4)

and achieves a maximum value at 45 degrees of  

|𝜎11| = 𝜎11
y + 𝜎12

y . (22.104.5)

 
 For cases where there is anisotropy, the maximum occurs at a different angle and 
will have a different magnitude, but it will exceed the maximum uniaxial yield stress.  
In fact, a simple calculation using Mohr’s circle shows that the maximum value will be 

𝜎max
y =

1
2 (𝜎11

y + 𝜎22
y ) +

1
2
√(𝜎11

y − 𝜎22
y )2 + 4𝜎12

y , (22.104.6)

 
 To correct for the systematic overestimation of the off-axis strength by MAT_ 
HONEYCOMB, MAT_TRANSVERSELY_ISOTROPIC_CRUSHABLE_FOAM has been 
implemented in LS-DYNA.  It uses a single yield surface, calculated dynamically from 
the six yield stresses specified by the user.  The yield surface hardens and softens as a 
function of the volumetric strain through the yield stress functions.  While the cost of 
the model is higher than for MAT_HONEYCOMB, its superior response off-axis makes 
it the model of choice for critical applications involving many types of low-density 
foams.
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22.105  Material Model 143:  Wood Model 

 The wood model is a transversely isotropic material and is available for solid 
elements.  The development of this model was done by Murray [2002], who provided 
the documentation that follows, under a contract from the FHWA.   
 
 The general constitutive relation for an orthotropic material, written in terms of 
the principal material directions [Bodig & Jayne, 1993] is: 

⎣
⎢⎢
⎢⎢
⎢
⎡

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦

⎥⎥
⎥⎥
⎥
⎤

 =

⎣
⎢⎢
⎢⎢
⎢⎢
⎡
𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0

0 0 0 2𝐶44 0 0
0 0 0 0 2𝐶55 0
0 0 0 0 0 2𝐶66⎦

⎥⎥
⎥⎥
⎥⎥
⎤

=

⎣
⎢⎢
⎢⎢
⎢
⎡

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6⎦

⎥⎥
⎥⎥
⎥
⎤

. (22.105.1)

The subscripts 1, 2, and 3 refer to the longitudinal, tangential, and radial, stresses and 
strains (1 = 11,2 = 22,3 = 33, 1 = 11, 2 = 22, 3 = 33), respectively.  The 
subscripts 4, 5, and 6 are in a shorthand notation that refers to the shearing stresses and 
strains 4 = 12,5 =  13,6 = 23, 4 = 12, 5 = 13, 6 = 23). As an alternative 
notation for wood, it is common to substitute L (longitudinal) for 1, T (tangential) for 2, 
and R (radial) for 3. The components of the constitutive matrix, 𝐶𝑖𝑗, are listed here in 
terms of the nine independent elastic constants of an orthotropic material:  

C11 =  
E11(1 − ν23ν32)

Δ ,

C22 =
E22(1 − ν31ν13)

Δ , 

C33 =
E33(1 − ν12ν21)

Δ , 

C12 =
(ν21  + ν31ν23)E11

Δ , 

C13 =
(ν31  + ν21ν32)E11

Δ , 

C23 =
(ν32  + ν12ν31)E22

Δ , 
C44 = G12, 
C55 = G13, 
C66 = G23, 

Δ = 1 − ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13.

(22.105.2)

 
 The following identity, relating the dependent (minor Poisson’s ratios ν21, ν31, 
and ν32) and independent elastic constants, is obtained from symmetry considerations 
of the constitutive matrix: 
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𝜈𝑖𝑗

𝐸𝑖
=

𝜈𝑗𝑖

𝐸𝑗
for 𝑖, 𝑗 = 1, 2, 3. (22.105.3)

 
 One common assumption is that wood materials are transversely isotropic.  This 
means that the properties in the tangential and radial directions are modeled the same, 
i.e. 𝐸22 =  𝐸33, 𝐺12 = 𝐺13, and 12 = 13.  This reduces the number of independent elastic 
constants to five, 𝐸11, 𝐸22, 12, 𝐺12, and 𝐺23.  Further, Poisson's ratio in the isotropic 
plane, 23, is not an independent quantity.  It is calculated from the isotropic relation: 
 = (𝐸 − 2𝐺)/2𝐺 where E = 𝐸22 =  𝐸33 and 𝐺 = 𝐺23. Transverse isotropy is a reasonable 
assumption because the difference between the tangential and radial properties of 
wood (particularly Southern yellow pine and Douglas fir) is small in comparison with 
the difference between the tangential and longitudinal properties.  
 
 The yield surfaces parallel and perpendicular to the grain are formulated from 
six ultimate strength measurements obtained from uniaxial and pure-shear tests on 
wood specimens:  

XT Tensile strength parallel to the grain 
XC Compressive strength parallel to the grain 
YT Tensile strength perpendicular to the grain 
YC Compressive strength perpendicular to the grain 
S|| Shear strength parallel to the grain 
S Shear strength perpendicular to the grain 

 
 Here 𝑋 and 𝑌 are the strengths parallel and perpendicular to the grain, 
respectively, and S are the shear strengths.  The formulation is based on the work of 
Hashin [1980]. 
 
 For the parallel modes, the yield criterion is composed of two terms involving 
two of the five stress invariants of a transversely isotropic material.  These invariants 
are 𝐼1 = 𝜎11 and 𝐼4 = 𝜎12

2 + 𝜎13
2   This criterion predicts that the normal and shear stresses 

are mutually weakening, i.e. the presence of shear stress reduces the strength below that 
measured in uniaxial stress tests.  Yielding occurs when 𝑓||  ≥  0, where:  

𝑓|| =
𝜎11

2

𝑋2 +
(𝜎12

2 + 𝜎13
2 )

𝑆||
2 − 1 𝑋 = {𝑋𝑡 for 𝜎11 > 0

𝑋𝑐 for 𝜎11 < 0. (22.105.4)

 
 For the perpendicular modes, the yield criterion is also composed of two terms 
involving two of the five stress invariants of a transversely isotropic material.  These 
invariants are 𝐼2 =  22 + 33 and 𝐼3 = 𝜎23

2 − 𝜎22𝜎33.  Yielding occurs when 𝑓  0, where: 

𝑓⊥ =
(𝜎22 + 𝜎33)2

𝑌2 +
(𝜎23

2 − 𝜎22𝜎33)
𝑆⊥2

− 1 𝑌 = {𝑌t for 𝜎22 + 𝜎33 > 0
𝑌c for 𝜎22 + 𝜎33 < 0 (22.105.5)
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Each yield criterion is plotted in 3D in Figure 22.105.1 in terms of the parallel and 
perpendicular stresses.  Each criterion is a smooth surface (no corners). 
 
 The plasticity algorithms limit the stress components once the yield criteria in 
[Murry 2002] are satisfied.  This is done by returning the trial elastic stress state back to 
the yield surface.  The stress and strain tensors are partitioned into elastic and plastic 
parts.  Partitioning is done with a return mapping algorithm which enforces the plastic 
consistency condition.  
 
 Separate plasticity algorithms are formulated for the parallel and perpendicular 
modes by enforcing separate consistency conditions.  The solution of each consistency 
condition determines the consistency parameters,  and .  The  solutions, in 
turn, determine the stress updates.  No input parameters are required. 
 
 The stresses are readily updated from the total strain increments and the 
consistency parameters, as follows: 

𝜎̅̅̅̅̅𝑖𝑗
𝑛+1 =  𝜎𝑖𝑗

∗𝑛+1 − 𝐶𝑖𝑗𝑘𝑙Δ𝜆
𝜕𝑓

𝜕𝜎𝑘𝑙
∣
𝑛

(22.105.6)

𝜎𝑖𝑗
∗𝑛+1 = 𝜎𝑖𝑗

𝑛 + 𝐶𝑖𝑗𝑘𝑙Δ𝜀𝑘𝑙 (22.105.7)

Figure 22.105.1.  The yield criteria for wood produces smooth surfaces in
stress space. 
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Here 𝑛 denotes the nth time step in the finite element analysis, and 𝜎𝑖𝑗
∗are the trial elastic 

stress updates calculated from the total strain increments, Δ𝜀𝑖𝑗, prior to application of 
plasticity.  Each normal stress update depends on the consistency parameters and yield 
surface functions for both the parallel ( = || and 𝑓 = 𝑓||) and perpendicular ( =
 and 𝑓 = 𝑓) modes.  Each shear stress update depends on just one consistency 
parameter and yield surface function.  If neither parallel nor perpendicular yielding 
occurs (𝑓||∗ < 0 and 𝑓⊥∗ < 0) then  = 0 and the stress update is trivial: 𝜎̂𝑖𝑗

𝑛+1 = 𝜎𝑖𝑗
∗𝑛+1. 

 
 Wood exhibits pre-peak nonlinearity in compression parallel and perpendicular 
to the grain.  Separate translating yield surface formulations are modeled for the 
parallel and perpendicular modes, which simulate gradual changes in moduli.  Each 
initial yield surface hardens until it coincides with the ultimate yield surface.  The initial 
location of the yield surface determines the onset of plasticity.  The rate of translation 
determines the extent of the nonlinearity. 
 
 For each mode (parallel and perpendicular), the user inputs two parameters: the 
initial yield surface location in uniaxial compression, 𝑁, and the rate of translation, 𝑐.  
Say the user wants pre-peak nonlinearity to initiate at 70% of the peak strength.  The 
user will input 𝑁 = 0.3 so that 1 − 𝑁 = 0.7.  If the user wants to harden rapidly, then a 
large value of 𝑐 is input, like 𝑐 = 1 msec.  If the user wants to harden gradually, then a 
small value of 𝑐 is input, like 𝑐 = 0.2 msec.  
 
 The state variable that defines the translation of the yield surface is known as the 
back stress, and is denoted by 𝑖𝑗.  Hardening is modeled in compression, but not shear, 
so the only back stress required for the parallel modes is 11.  The value of the back 
stress is 11 = 0 upon initial yield and 11 = −𝑁|| 𝑋𝑐 at ultimate yield (in uniaxial 
compression).  The maximum back stress occurs at ultimate yield and is equal to the 
total translation of the yield surface in stress space.  The back stress components 
required for the perpendicular modes are 22 and 33.  The value of the backstress sum 

(a) Initial and ultimate yield surfaces (b) Stress-strain behavior 
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 Figure 22.105.2.  Pre-peak nonlinearity in compression is modeled with
translating yield surfaces that allow the user to specify the hardening response.
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is 22 + 33 = 0 upon initial yield and 22 + 33 = −𝑁 𝑌𝑐 at ultimate yield (biaxial 
compression without shear). 
 
 Separate damage formulations are modeled for the parallel and perpendicular 
modes.  These formulations are loosely based on the work of Simo and Ju [1987].  If 
failure occurs in the parallel modes, then all six stress components are degraded 
uniformly.  This is because parallel failure is catastrophic, and will render the wood 
useless.  If failure occurs in the perpendicular modes, then only the perpendicular stress 
components are degraded.  This is because perpendicular failure is not catastrophic: we 
expect the wood to continue to carry load in the parallel direction.  Based on these 
assumptions, the following degradation model is implemented:  

𝑑m =  max(𝑑(𝜏||), 𝑑(𝜏⊥)) ,
𝑑|| = 𝑑(𝜏||), 

𝜎11 = (1 − 𝑑||)𝜎̅̅̅̅̅11, 
𝜎22 = (1 − 𝑑m)𝜎̅̅̅̅̅22, 
𝜎33 = (1 − 𝑑m)𝜎̅̅̅̅̅33, 
σ12 = (1 − 𝑑||)𝜎̅̅̅̅̅12, 
𝜎13 = (1 − 𝑑||)𝜎̅̅̅̅̅13, 
𝜎23 = (1 − 𝑑m)𝜎̅̅̅̅̅23.

(22.105.8)

Here, each scalar damage parameter, 𝑑, transforms the stress tensor associated with the 
undamaged state, 𝜎̅̅̅̅̅𝑖𝑗, into the stress tensor associated with the damaged state, 𝑖𝑗. The 
stress tensor 𝜎̅̅̅̅̅𝑖𝑗 is calculated by the plasticity algorithm prior to application of the 
damage model.  Each damage parameter ranges from zero for no damage and 
approaches unity for maximum damage.  Thus 1 − 𝑑 is a reduction factor associated 
with the amount of damage.  Each damage parameter evolves as a function of a strain 
energy-type term.  Mesh size dependency is regulated via a length scale based on the 
element size (cube root of volume).  Damage-based softening is brittle in tension, less 
brittle in shear, and ductile (no softening) in compression, as demonstrated in Figure 
22.105.1. 
 
 Element erosion occurs when an element fails in the parallel mode, and the 
parallel damage parameter exceeds 𝑑|| = 0.99.   Elements do not automatically erode 
when an element fails in the perpendicular mode.  A flag is available, which, when set, 
allows elements to erode when the perpendicular damage parameter exceeds 𝑑 = 0.99. 
Setting this flag is not recommended unless excessive perpendicular damage is causing 
computational difficulties. 
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(a) Tensile softening. 

 
 

(b) Shear softening. 

 
 

(c) Compressive yielding. 
 

Figure 19.143.3.  Softening response modeled for parallel modes of Southern yellow 
pine. 

 
 Data available in the literature for pine [Reid & Peng, 1997] indicates that 
dynamic strength enhancement is more pronounced in the perpendicular direction than 
in the parallel direction.  Therefore, separate rate effects formulations are modeled for 



LS-DYNA Theory Manual Material Models 

LS-DYNA DEV 06/21/18 (r:10113) 20-247 (Material Models) 

the parallel and perpendicular modes.  The formulations increase strength with 
increasing strain rate by expanding each yield surface:   

𝜎11 =  𝑋 + 𝐸11𝜀 ̇ 𝜂|| Parallel
𝜎22 = 𝑌 + 𝐸22𝜀 ̇ 𝜂⊥ Perpendicular. (22.105.9)

Here 𝑋 and 𝑌 are the static strengths, 11 and 22 are the dynamic strengths, and 
𝐸11𝜀 ̇𝜂|| and 𝐸22𝜀 ̇𝜂⊥ are the excess stress components.  The excess stress components 
depend on the value of the fluidity parameter, , as well as the stiffness and strain rate.  
The user inputs two values, 0 and 𝑛, to define each fluidity parameter: 

𝜂|| =
𝜂0||

𝜀𝑛̇||
,

𝜂⊥ =
𝜂0⊥
𝜀𝑛̇⊥.

(22.105.10)

 
 The two parameter formulation [Murray, 1997] allows the user to model a 
nonlinear variation in dynamic strength with strain rate.  Setting 𝑛 = 0 allows the user 
to model a linear variation in dynamic strength with strain rate.
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22.106  Material Model 144:  Pitzer Crushable Foam 

The logarithmic volumetric strain is defined in terms of the relative volume, 𝑉, as: 
𝛾 = −ln(𝑉). (22.106.1)

In defining the curves the stress and strain pairs should be positive values starting with 
a volumetric strain value of zero. 
 
Viscous damping in the model follows an implementation identical to that of material 
type 57.
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22.107  Material Model 147:  FHWA Soil Model 

 A brief discussion of the FHWA soil model is given.  The elastic properties of the 
soil are isotropic.  The implementation of the modified Mohr-Coulomb plasticity surface 
is based on the work of Abbo and Sloan [1995].  The model is extended to include excess 
pore water effects, strain softening, kinematic hardening, strain rate effects, and element 
deletion.  
 
 The modified yield surface is a hyperbola fitted to the Mohr-Coulomb surface.  
At the crossing of the pressure axis (zero shear strength) the modified surface is a 
smooth surface and it is perpendicular to the pressure axis.  The yield surface is given 
as  

𝐹 = −𝑃sin𝜙 + √𝐽2𝐾(𝜃)2 + AHYP2sin2𝜙 − 𝑐cos𝜙 = 0, (22.107.1)

where 𝑃 is the pressure, 𝜙 is the internal friction angle, 𝐾(𝜃) is a function of the angle in 

𝐹 = −𝑃sin𝜑 + √𝐽2𝐾(𝜃)2 + AHYP2sin2𝜑 − 𝑐cos𝜑 = 0, (22.107.2)

deviatoric plane, √𝐽2 is the square root of the second invariant of the stress deviator, 𝑐 is 
the amount of cohesion and  

cos3𝜃 =
3√3𝐽3

2𝐽2

3
2

, (22.107.3)

J3 is the third invariant of the stress deviator, AHYP is a parameter for determining how 
close to the standard Mohr-Coulomb yield surface the modified surface is fitted.  If the 
user defined parameter, AHYP, is input as zero, the standard Mohr-Coulomb surface is 
recovered.  The parameter aℎypshould be set close to zero, based on numerical 
considerations, but always less than 𝑐 cot𝜙.  It is best not to set the cohesion, 𝑐, to very 
small values as this causes excessive iterations in the plasticity routines.  
 
 To generalize the shape in the deviatoric plane, we have changed the standard 
Mohr- Coulomb 𝐾(𝜃) function to a function used by Klisinski [1985] 

𝐾(𝜃) =
4(1 − 𝑒2)cos2𝜃 + (2𝑒 − 1)2

2(1 − 𝑒2)cos𝜃 + (2𝑒 − 1)[4(1 − 𝑒2)cos2𝜃 + 5𝑒2 − 4𝑒]
1
2
, (22.107.4)

where 𝑒 is a material parameter describing the ratio of triaxial extension strength to 
triaxial compression strength.  If e is set equal to 1, then a circular cone surface is 
formed.  If 𝑒 is set to 0.55, then a triangular surface is found, 𝐾(𝜃) is defined for 0.5 <
𝑒 ≤ 1.0. 
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 To simulate non-linear strain hardening behavior the friction, angle 𝜙 is 
increased as a function of the effective plastic strain,  

Δ𝜑 = 𝐸t (1 −
𝜑 − 𝜑init
𝐴𝑛𝜑max

) Δ𝜀eff plas. (22.107.5)

where 𝜀eff  plas is the effective plastic strain. 𝐴𝑛 is the fraction of the peak strength 
internal friction angle where nonlinear behavior begins, 0 < 𝐴𝑛 ≤ 1.  The input 
parameter 𝐸𝑡 determines the rate of the nonlinear hardening.  
 
 To simulate the effects of moisture and air voids including excess pore water 
pressure, both the elastic and plastic behaviors can be modified.  The bulk modulus is   

𝐾 =
𝐾𝑖

1 + 𝐾𝑖𝐷1𝑛cur
. (22.107.6)

where  
𝐾𝑖 = initial bulk modulus 

𝑛cur = current porosity =  Max[0, (𝑤 − 𝜀v)] 
𝑤 = volumetric strain corresponding to the volume of air voids = 𝑛(1 − 𝑆) 
𝜀v = total volumetric strain 

𝐷1 = material constant controlling the stiffness before the air voids are collapsed 
𝑛 = porosity of the soil =  

𝑒
1 + 𝑒 

Figure 22.107.1.  Pressure versus volumetric strain showing the effects of D1
parameter. 
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𝑒 = void ratio =  
γsp(1 + mc)

ρ − 1 

𝑆 = degree of saturation =  
𝜌𝑚c

𝑛(1 + 𝑚c)
 

and 𝜌, 𝛾, 𝑚c are the soil density, specific gravity, and moisture content, respectively. 
 
 Figure 22.107.1 shows the effect of the 𝐷1 parameter on the pressure-volumetric 
strain relationship (bulk modulus).  The bulk modulus will always be a monotonically 
increasing value, i.e.,  

𝐾𝑗+1 =
⎩{
⎨
{⎧ 𝐾𝑖

1 + 𝐾𝑖𝐷1𝑛cur
if 𝜀𝑣 𝑗+1 > 𝜀𝑣𝑗

𝐾𝑗 if 𝜀𝑣 𝑗+1 ≤ 𝜀𝑣𝑗

. (22.107.7)

 
 Note that the model is following the standard practice of assuming compressive 
stresses and strains are positive.  If the input parameter 𝐷1 is zero, then the standard 
linear elastic bulk modulus behavior is used. 
 
 To simulate the loss of shear strength due to excess pore water effects, the model 
uses a standard soil mechanics technique [Holtz and Kovacs, 1981] of reducing the total 
pressure, 𝑃, by the excess pore water pressure, 𝑢, to get an “ effective pressure”, 𝑃′; 
therefore, 

𝑃′ = 𝑃 − 𝑢. (22.107.8)
 
 Figure 22.107.2 shows pore water pressure will affect the algorithm for the 
plasticity surface.  The excess pore water pressure reduces the total pressure, which will 

u

p

 Figure 22.107.2.  The effect on pressure due to pore water pressure. 
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lower the shear strength, √𝐽2.  A large excess pore water pressure can cause the effective 
pressure to become zero. 
 
 To calculate the pore water pressure, 𝑢, the model uses an equation similar to the 
equation used for the moisture effects on the bulk modulus. 

𝑢 =
𝐾sk

1 + 𝐾sk𝐷2𝑛cur
𝜀𝑣, (22.107.9)

where  
𝐾sk = bulk modulus for soil without air voids (skeletal bulk modulus) 
𝑛cur = current porosity =  Max[0, (𝑤 − 𝜀𝑣)] 

𝑤 = volumetric strain corresponding to the volume of air voids = 𝑛(1 − 𝑆) 
𝜀v = total volumetric strain 

𝐷2 = material constant controlling the pore water pressure before  
             the air voids are collapsed to 𝐷2 ≥ 0 

𝑛 = porosity of the soil =
𝑒

1 + 𝑒 

𝑒 = void ratio =  
γsp(1 + mc)

ρ − 1 

𝑆 = degree of saturation =  
𝜌𝑚c

𝑛(1 + 𝑚c)
 

and 𝜌, 𝛾, 𝑚c are the soil density, specific gravity, and moisture content, respectively.  
The pore water pressure will not be allowed to become negative, 𝑢 ≥ 0.  
 
 Figure 22.107.3 is a plot of the pore pressure versus volumetric strain for 
different parameter values.  With the 𝐷2 parameter set relatively high compared to 𝐾sk 
there is no pore pressure until the volumetric strain is greater than the strains associated 
with the air voids.  However, as 𝐷2 is lowered, the pore pressure starts to increase 
before the air voids are totally collapsed.  The 𝐾sk parameter affects the slope of the 
post-void collapse pressure - volumetric behavior. 
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 The parameter 𝐷2 can be found from Skempton pore water pressure parameter 
𝐵, where 𝐵 is defined as [Holtz and Kovacs, 1981]: 

𝐵 =
1

1 + 𝑛𝐾sk𝐾v

,

𝐷2 =
1 − 𝐵

𝐵𝐾sk[𝑛(1 − 𝑆)].

(22.107.10)

 
 To simulate strain softening behavior the FHWA soil model uses a continuum 
damage algorithm.  The strain-based damage algorithm is based on the work of J. W. Ju 
and J. C. Simo [1987, 1989].  They proposed a strain based damage criterion, which is 
uncoupled from the plasticity algorithm.   
 
 For the damage criterion,  

𝜉 = −
1
𝐾𝑖

∫ 𝑃̅̅̅̅̅𝑑𝜀pv, (22.107.11)

where 𝑃̅̅̅̅̅ is the pressure and 𝜀pv is the plastic volumetric strain, the damaged stress is 
found from the undamaged stresses.  

𝜎 = (1 − 𝑑)𝜎̅̅̅̅̅ , (22.107.12)
where 𝑑 is the isotropic damage parameter.  The damage parameter is found at step 𝑗 +
1 as: 

 Figure 22.107.3.  The effects of 𝐷2 and 𝐾sk parameters on pore water pressure.
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𝑑𝑗+1 = 𝑑𝑗   if 𝜉𝑗+1 ≤ 𝑟𝑗

𝑑𝑗+1 =
𝜉𝑗+1 − 𝜉0

𝛼 − 𝜉0
if 𝜉𝑗+1 > 𝑟𝑗

, (22.107.13)

where 𝑟t is a damage threshold surface, 𝑟𝑗+1 = max{𝑟𝑗, 𝜉𝑗+1), and 𝜉0 = 𝑟0 (DINT).  The 
mesh sensitivity parameter, 𝛼, will be described below. 
 
 Typically, the damage, 𝑑, varies from 0 to a maximum of 1.  However, some soils 
can have a residual strength that is pressure dependent.  The residual strength is 
represented by 𝜙res, the minimum internal friction angle. 
 
 The maximum damage allowed is related to the internal friction angle of residual 
strength by: 

𝑑max =
sin𝜙 − sin𝜙res

sin𝜙 , (22.107.14)

If 𝜙res > 0, then 𝑑max, the maximum damage, will not reach 1, and the soil will have 
some residual strength. 
 
 When material models include strain softening, special techniques must be used 
to prevent mesh sensitivity.  Mesh sensitivity is the tendency of the finite element 
model/analysis to produce significantly different results as the element size is reduced.  
The mesh sensitivity occurs because the softening in the model concentrates in one 
element.  As the element size is reduced the failure becomes localized in smaller 
volumes, which causes less energy to be dissipated by the softening leading to 
instabilities or at least mesh sensitive behavior.  
 
 To eliminate or reduce the effects of strain softening mesh sensitivity, the 
softening parameter, α (the strain at full damage), must be modified as the element size 
changes.   The FHWA soil model uses an input parameter, “void formation”, 𝐺f, that is 
like fracture energy material property for metals.  The void formation parameter is the 
area under the softening region of the pressure volumetric strain curve times the cube 
root of the element volume, 𝑉

1
3.   

𝐺f = 𝑉
1
3 ∫ 𝑃

𝛼

𝜉0
𝑑𝜀v =

𝑃peak(𝛼 − 𝜉0)𝑉
1
3

2 , (22.107.15)

with 𝜉0, the volumetric strain at peak pressure (strain at initial damage, DINT).  Then 𝛼 
can be found as a function of the volume of the element 𝑉: 

𝛼 =
2𝐺f

𝐾𝜉0𝑉
1

3⁄
+ 𝜉0. (22.107.16)

 



LS-DYNA Theory Manual Material Models 

LS-DYNA DEV 06/21/18 (r:10113) 20-255 (Material Models) 

 If 𝐺f is made very small relative to 𝐾𝜉0𝑉
1

3⁄ , then the softening behavior will be 
brittle.  
Strain-rate enhanced strength is simulated by a two-parameter Devaut-Lions 
viscoplastic update algorithm, developed by Murray [1997].  This algorithm interpolates 
between the elastic trial stress (beyond the plasticity surface) and the inviscid stress.  
The inviscid stresses (𝜎̅̅̅̅̅) are on the plasticity surface.   

𝜎̅̅̅̅̅vp = (1 − 𝜍)𝜎̅̅̅̅̅ + 𝜍𝜎̅̅̅̅̅trial, (22.107.17)

where 𝜍 = 𝜂
Δ𝑡+𝜂, and 𝜂 = (𝛾r𝜀̇ )

(𝑣𝑛−1)/𝑣𝑛. 
 
 As 𝜁  approaches 1, then the viscoplastic stress becomes the elastic trial stress.  
Setting the input value 𝛾r = 0 eliminates any strain-rate enhanced strength effects.  
 
 The model allows element deletion, if needed.  As the strain softening  (damage) 
increases, the effective stiffness of the element can get very small, causing severe 
element distortion and hourglassing.  The element can be “deleted” to remedy this 
behavior.  There are two input parameters that affect the point of element deletion.  
DAMLEV is the damage threshold where element deletion will be considered.  
EPSPRMAX is the maximum principal strain where element will be deleted.  Therefore, 

𝑑 ≥ DAMLEV    and 𝜀prmax > EPSPRMAX, (22.107.18)

for element deletion to occur.  If DAMLEV is set to zero, there is no element deletion.  
Care must be taken when employing element deletion to assure that the internal forces 
are very small (element stiffness is zero) or significant errors can be introduced into the 
analysis.  
 
 The keyword option, NEBRASKA, gives the soil parameters used to validate the 
material model with experiments performed at University of Nebraska at Lincoln.  The 
units for this default inputs are milliseconds, kilograms, and millimeters.  There are no 
required input parameters except material id (MID).  If different units are desired the 
unit conversion factors that need to multiply the default parameters can be input.
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22.108  Material Model 154:  Deshpande-Fleck Foam 

𝛷 = 𝜎̂ − 𝜎Y, (22.108.1)
The equivalent stress, 𝜎̂ , is given by: 

𝜎̂2 =
𝜎VM2 + 𝛼2𝜎m2

1 + (𝛼/3)2 , (22.108.2)

where, 𝜎VM, is the von Mises effective stress, 

𝜎VM = √
3
2 𝛔dev: 𝛔dev, (22.108.3)

and, 𝜎mand 𝛔dev, is the mean and deviatoric stress 
𝜎m = tr(𝛔)

𝛔dev = 𝛔 − σm𝐈. (22.108.4)

 
 The yield stress 𝜎Y can be expressed as 

𝜎Y = 𝜎p + 𝛾
𝜀 ̂

𝜀D
+ 𝛼2 (

1
1 − (𝜀/̂𝜀D)𝛽

), (22.108.5)

Here, 𝜎p, 𝛼2, 𝛾 and 𝛽 are material parameters.  The densification strain, 𝜀D, is defined as 

𝜀D = −ln (
𝜌f
𝜌f0

), (22.108.6)

where 𝜌f is the foam density and 𝜌f0 is the density of the virgin material.
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22.109  Material Model 156:  Muscle  

 The material behavior of the muscle model is adapted from 
*MAT_SPRING_MUSCLE, the spring muscle model and treated here as a standard 
material.  The initial length of muscle is calculated automatically.  The force, relative 
length and shortening velocity are replaced by stress, strain and strain rate.  A new 
parallel damping element is added. 
 
 The strain and normalized strain rate are defined respectively as 

𝜀 =
𝑙
𝑙𝑜

− 1 = 𝐿 − 1 

𝜀 ̇ =
𝑙 ̇

𝑙o  𝜀ṁax
=

𝑉M

𝑙𝑜 ∗ (SRM ∗ SFR) =
𝑉M

(𝑙𝑜 ∗ SRM) ∗ SFR =
𝑉M

𝑉max ∗ SFR = 𝑉, 
(22.109.1)

where 𝑙𝑜 is the original muscle length. 
 
 From the relation above, it is known: 

𝑙𝑜 =
𝑙0

1 + 𝜀0
, (22.109.2)

where 𝜀0 = SNO; 𝑙0 = muscle length at time 0.  Stress of Contractile Element is: 
𝜎1 = 𝜎max 𝑎(𝑡)𝑓 (𝜀) 𝑔(𝜀)̇, (22.109.3)

where 𝜎max =PIS; 𝑎(𝑡) =ALM; 𝑓 (𝜀) =SVS; 𝑔(𝜀)̇ =SVR.  Stress of Passive Element is: 
𝜎2 = 𝜎maxℎ(ε). (22.109.4)

For exponential relationship:  

ℎ(ε) =

⎩{
{{
{{
⎨
{{
{{
{⎧

    

0 𝜀 ≤ 0

1
exp(𝑐) − 1 [ exp (

𝑐𝜀
𝐿max

) − 1 ] 𝜀 > 0    𝑐 ≠ 0

𝜀 𝐿max⁄ 𝜀 > 0 𝑐 = 0

   (22.109.5)

where 𝐿max = 1 + SSM; and 𝑐 =CER.  Stress of Damping Element is: 
𝜎3 = 𝐷𝜀ṁax𝜀 ̇ (22.109.6)

 
 Total Stress is: 

𝜎 = 𝜎1 + 𝜎2 + 𝜎3. (22.109.7)
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22.110  Material Model 158:  Rate Sensitive Composite Fabric 

 See material type 58, Laminated Composite Fabric, for the treatment of the 
composite material. 
 
 Rate effects are taken into account through a Maxwell model using linear 
viscoelasticity by a convolution integral of the form: 

𝜎𝑖𝑗 = ∫ 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏

𝑡

0
, (22.110.1)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) is the relaxation function for different stress measures.  This stress is 
added to the stress tensor determined from the strain energy functional.  Since we wish 
to include only simple rate effects, the relaxation function is represented by six terms 
from the Prony series: 

𝑔(𝑡) = ∑ 𝐺𝑚𝑒−𝛽𝑚𝑡
𝑁

𝑚=1
. (22.110.2)

 
 We characterize this in the input by the shear moduli, 𝐺𝑖, and the decay 
constants, 𝛽𝑖.  An arbitrary number of terms, not exceeding 6, may be used when 
applying the viscoelastic model.  The composite failure is not directly affected by the 
presence of the viscous stress tensor.
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22.111  Material Model 159:  Continuous Surface Cap Model 

 This is a cap model with a smooth intersection between the shear yield surface 
and hardening cap, as shown in Figure 22.111.1.   The initial damage surface coincides 
with the yield surface.  Rate effects are modeled with viscoplasticity.   
 
Stress Invariants. The yield surface is formulated in terms of three stress invariants: 𝐽1 
is the first invariant of the stress tensor, 𝐽′2 is the second invariant of the deviatoric 
stress tensor, and 𝐽′3 is the third invariant of the deviatoric stress tensor.  The invariants 
are defined in terms of the deviatoric stress tensor, 𝑆𝑖𝑗 and pressure, 𝑃, as follows: 

𝐽1 = 3𝑃,

𝐽′
2 =

1
2 𝑆𝑖𝑗𝑆𝑖𝑗, 

𝐽′
3 =

1
3 𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖.

(22.111.1)

 
Plasticity Surface.  The three invariant yield function is based on these three invariants, 
and the cap hardening parameter, 𝑘, as follows: 

𝑓 (𝐽1, 𝐽′2, 𝐽′3, 𝜅) = 𝐽′2 − ℜ2𝐹f2𝐹c. (22.111.2)

Here 𝐹f is the shear failure surface, 𝐹c is the hardening cap, and  is the Rubin three-
invariant reduction factor.  The cap hardening parameter 𝜅 is the value of the pressure 
invariant at the intersection of the cap and shear surfaces.  
 
 Trial elastic stress invariants are temporarily updated via the trial elastic stress 
tensor, 𝜎T These are denoted 𝐽1

𝑇 , 𝐽2
′𝑇 and 𝐽3

′𝑇.  Elastic stress states are modeled when 
 𝑓 (𝐽1, 𝐽′2, 𝐽′3, 𝜅𝑇) < 0.  Elastic-plastic stress states are modeled when 𝑓 (𝐽1, 𝐽′2, 𝐽′3, 𝜅𝑇) > 0.  

Figure 22.111.1.  General Shape of the concrete model yield surface in two-
dimensions. 
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In this case, the plasticity algorithm returns the stress state to the yield surface such that 
𝑓 (𝐽1

𝑃, 𝐽′2𝑃, 𝐽′3𝑃, 𝜅𝑃) = 0.  This is accomplished by enforcing the plastic consistency 
condition with associated flow. 
 
Shear Failure Surface.  The strength of concrete is modeled by the shear surface in the 
tensile and low confining pressure regimes: 

𝐹f(𝐽1) = 𝛼 − 𝜆𝑒−𝛽𝐽1 + 𝜃𝐽1. (22.111.3)

Here the values of 𝛼, 𝛽, 𝜆, and 𝜃 are selected by fitting the model surface to strength 
measurements from triaxial compression (txc) tests conducted on plain concrete 
cylinders.  
 
Rubin Scaling Function.  Concrete fails at lower values of √3𝐽2

′  (principal stress 
difference) for triaxial extension (txe) and torsion (tor) tests than it does for txc tests 
conducted at the same pressure.  The Rubin scaling function ℜ determines the strength 
of concrete for any state of stress relative to the strength for txc, via ℜ𝐹𝑓 .  Strength in 
torsion is modeled as 𝑄1𝐹f.  Strength in txe is modeled as 𝑄2𝐹f, where: 

𝑄1 = 𝛼1 − 𝜆1𝑒−𝛽1𝐽1 + 𝜃1𝐽1,
𝑄2 = 𝛼2 − 𝜆2𝑒−𝛽2𝐽1 + 𝜃2𝐽1.

(22.111.4)

 
Cap Hardening Surface. The strength of concrete is modeled by a combination of the 
cap and shear surfaces in the low to high confining pressure regimes.  The cap is used to 
model plastic volume change related to pore collapse (although the pores are not 
explicitly modeled).   The isotropic hardening cap is a two-part function that is either 
unity or an ellipse: 

𝐹c( 𝐽1, 𝜅 ) = 1 −
[𝐽1 − 𝐿 (𝜅)][|𝐽1 − 𝐿(𝜅)| + 𝐽1 − 𝐿(𝜅)]

2[𝑋(𝜅) − 𝐿 (𝜅)] 2 , (22.111.5)

where 𝐿(𝜅) is defined as: 

L(κ) = {𝜅 if 𝜅 > 𝜅0
𝜅0 otherwise . (22.111.6)

 
 The equation for 𝐹c is equal to unity for 𝐽1  𝐿(𝜅).  It describes the ellipse for 𝐽1 >
𝐿(𝜅). The intersection of the shear surface and the cap is at 𝐽1 = 𝜅.  𝜅0 is the value of 𝐽1 at 
the initial intersection of the cap and shear surfaces before hardening is engaged (before 
the cap moves).  The equation for 𝐿(𝜅) restrains the cap from retracting past its initial 
location at 𝜅0.   
 
 The intersection of the cap with the 𝐽1 axis is at 𝐽1 = 𝑋(𝜅).  This intersection 
depends upon the cap ellipticity ratio 𝑅, where 𝑅 is the ratio of its major to minor axes: 

𝑋(𝜅) = 𝐿(𝜅) + 𝑅𝐹f(𝐿(𝜅)). (22.111.7)
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The cap moves to simulate plastic volume change.  The cap expands (𝑋(𝜅) 
and𝜅increase) to simulate plastic volume compaction.  The cap contracts (𝑋(𝜅) and 𝜅 
decrease) to simulate plastic volume expansion, called dilation.  The motion (expansion 
and contraction) of the cap is based upon the hardening rule:  

𝜀𝑣
p = 𝑊(1 − 𝑒−𝐷1(𝑋−𝑋0)−𝐷2(𝑋−𝑋0)2). (22.111.8)

Here 𝜀v
p the plastic volume strain, 𝑊 is the maximum plastic volume strain, and 𝐷1 and 

𝐷2 are model input parameters.  𝑋0 is the initial location of the cap when 𝜅 = 𝜅0. 
 
 The five input parameters (𝑋0, 𝑊, 𝐷1, 𝐷2, and 𝑅) are obtained from fits to the 
pressure-volumetric strain curves in isotropic compression and uniaxial strain. 𝑋0 

determines the pressure at which compaction initiates in isotropic compression. 𝑅 
combined with 𝑋0, determines the pressure at which compaction initiates in uniaxial 
strain. 𝐷1 and 𝐷2 determine the shape of the pressure-volumetric strain curves.  𝑊 
determines the maximum plastic volume compaction. 
 
Shear Hardening Surface.  In unconfined compression, the stress-strain behavior of 
concrete exhibits nonlinearity and dilation prior to the peak.  Such behavior is be 
modeled with an initial shear yield surface, 𝑁H𝐹f, which hardens until it coincides with 
the ultimate shear yield surface, 𝐹f.  Two input parameters are required.  One 
parameter, 𝑁H, initiates hardening by setting the location of the initial yield surface.  A 
second parameter, 𝐶H, determines the rate of hardening (amount of nonlinearity). 
 
Damage.  Concrete exhibits softening in the tensile and low to moderate compressive 
regimes. 

𝜎𝑖𝑗
𝑑 = (1 − 𝑑)𝜎𝑖𝑗

vp, (22.111.9)

A scalar damage parameter, 𝑑, transforms the viscoplastic stress tensor without 
damage, denoted 𝜎vp, into the stress tensor with damage, denoted 𝜎d.  Damage 
accumulation is based upon two distinct formulations, which we call brittle damage 
and ductile damage.  The initial damage threshold is coincident with the shear plasticity 
surface, so the threshold does not have to be specified by the user.   
 
Ductile Damage.   Ductile damage accumulates when the pressure (𝑃) is compressive 
and an energy-type term, 𝜏c, exceeds the damage threshold, 𝜏0c.  Ductile damage 
accumulation depends upon the total strain components, 𝜀𝑖𝑗, as follows:  

𝜏c = √
1
2 𝜎𝑖𝑗𝜀𝑖𝑗 (22.111.10)

The stress components 𝜎𝑖𝑗  are the elasto-plastic stresses (with kinematic hardening) 
calculated before application of damage and rate effects. 
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Brittle Damage.  Brittle damage accumulates when the pressure is tensile and an 
energy-type term, 𝜏t, exceeds the damage threshold, 𝜏0t.  Brittle damage accumulation 
depends upon the maximum principal strain, 𝜀max, as follows: 

𝜏t = √𝐸𝜀max
2 . (22.111.11)

 
Softening Function.  As damage accumulates, the damage parameter 𝑑 increases from 
an initial value of zero, towards a maximum value of one, via the following 
formulations: 
Brittle Damage: 

𝑑(𝜏1) =
0.999

𝐷 (
1 + 𝐷

1 + 𝐷exp[−𝐶(𝜏𝑡 − 𝜏0𝑡)] − 1). (22.111.12)

 
Ductile Damage: 

𝑑(𝜏1) =
𝑑max

𝐵 (
1 + 𝐵

1 + 𝐵exp[−𝐴(𝜏c − 𝜏0c)] − 1). (22.111.13)

 
 The damage parameter that is applied to the six stresses is equal to the current 
maximum of the brittle or ductile damage parameter.  The parameters 𝐴 and 𝐵 or 𝐶 and 
𝐷 set the shape of the softening curve plotted as stress-displacement or stress-strain.  
The parameter 𝑑max is the maximum damage level that can be attained.  It is internally 
calculated and is less than one at moderate confining pressures.  The compressive 
softening parameter, 𝐴, may also be reduced with confinement, using the input 
parameter PMOD, as follows:  

𝐴 = 𝐴(𝑑max + 0.001)PMOD. (22.111.14)

 
Regulating Mesh Size Sensitivity.  The concrete model maintains constant fracture 
energy, regardless of element size.  The fracture energy is defined here as the area 
under the stress-displacement curve from peak strength to zero strength.  This is done 
by internally formulating the softening parameters 𝐴 and 𝐶 in terms of the element 
length, 𝑙 (cube root of the element volume), the fracture energy, 𝐺f, the initial damage 
threshold, 𝜏0t or 𝜏0c, and the softening shape parameters, 𝐷 or 𝐵. 
 
 The fracture energy is calculated from up to five user-specified input parameters 
(𝐺fc, 𝐺ft, 𝐺fs, pwrc, pwrc).  The user specifies three distinct fracture energy values.  
These are the fracture energy in uniaxial tensile stress, 𝐺ft, pure shear stress, 𝐺fs, and 
uniaxial compressive stress, 𝐺fc.  The model internally selects the fracture energy from 
equations which interpolate between the three fracture energy values as a function of 
the stress state (expressed via two stress invariants).  The interpolation equations 
depend upon the user-specified input powers PWRC and PWRT, as follows. 

if the pressure is tensile (22.111.15)
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 𝐺f = 𝐺fs + trans(𝐺ft − 𝐺fs)  where trans =
⎝
⎜⎜⎜
⎛ −𝐽1

√3𝐽′
2⎠
⎟⎟⎟
⎞
PWRT

 

if the pressure is compressive  

𝐺f = 𝐺fs + trans(𝐺fc − 𝐺fs) where trans =
⎝
⎜⎜⎜
⎛ 𝐽1

√3𝐽′2⎠
⎟⎟⎟
⎞
PWRC

 

The internal parameter trans is limited to range between 0 and 1. 
 
Element Erosion.  An element loses all strength and stiffness as 𝑑 → 1.  To prevent 
computational difficulties with very low stiffness, element erosion is available as a user 
option.  An element erodes when 𝑑 > 0.99 and the maximum principal strain is greater 
than a user supplied input value, 1-erode. 
 
Viscoplastic Rate Effects.  At each time step, the viscoplastic algorithm interpolates 
between the elastic trial stress, 𝜎𝑖𝑗

T, and the inviscid stress (without rate effects), 𝜎𝑖𝑗
p, to 

set the viscoplastic stress (with rate effects), 𝜎𝑖𝑗
vp:   

𝜎𝑖𝑗
vp = (1 − 𝛾)𝜎𝑖𝑗

T + 𝛾𝜎𝑖𝑗
p, (22.111.16)

with 𝛾 = Δ𝑡/𝜂
1+Δ𝑡/𝜂. 

 
 This interpolation depends upon the effective fluidity coefficient, , and the time 
step, 𝑡.  The effective fluidity coefficient is internally calculated from five user-supplied 
input parameters and interpolation equations: 

if the pressure is tensile 

𝜂 = 𝜂s + trans(𝜂t − 𝜂s)          trans =
⎝
⎜⎜⎜
⎛ −𝐽1

√3𝐽′
2⎠
⎟⎟⎟
⎞
pwrt

 

if the pressure is compressive  

𝜂 = 𝜂s + trans(𝜂c − 𝜂s)          trans =
⎝
⎜⎜⎜
⎛ 𝐽1

√3𝐽′
2⎠
⎟⎟⎟
⎞
pwrc

 

 𝜂t =
𝜂0t

𝜀Ṅt
     𝜂c =

𝜂0c

𝜀Ṅc
𝜂s = SRATE 𝜂t

(22.111.17)

The input parameters are 𝜂0t and 𝑁t for fitting uniaxial tensile stress data, 𝜂0c and 𝑁c for 
fitting the uniaxial compressive stress data, and SRATE for fitting shear stress data.  The 
effective strain rate is 𝜀.̇ 
 
 This viscoplastic model may predict substantial rate effects at high strain rates 
(𝜀 ̇ > 100).  To limit rate effects at high strain rates, the user may input overstress limits 
in tension (OVERT) and compression (OVERC).  These input parameters limit 
calculation of the fluidity parameter, as follows: 
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If 𝐸𝜀𝜂̇ > OVER, then  = over
𝛦𝜀̇  (22.111.18)

where OVER = OVERT when the pressure is tensile, and OVER = OVERC when the 
pressure is compressive. 
 
 The user has the option of increasing the fracture energy as a function of effective 
strain rate via the REPOW input parameter, as follows: 

𝐺frate = 𝐺f (1 +
𝐸𝜀𝜂̇

𝑓′
)
REPOW

(22.111.19)

Here 𝐺frate is the fracture energy enhanced by rate effects, and 𝑓′ is the yield strength 
before application of rate effects (which is calculated internally by the model).  The term 
in brackets is greater than, or equal to one, and is the approximate ratio of the dynamic 
to static strength.



LS-DYNA Theory Manual Material Models 

LS-DYNA DEV 06/21/18 (r:10113) 20-265 (Material Models) 

22.112  Material Models 161 and 162:  Composite MSC 

 The unidirectional and fabric layer failure criteria and the associated property 
degradation models for material 161 are described as follows.  All the failure criteria are 
expressed in terms of stress components based on ply level stresses 
(𝜎𝑎, 𝜎𝑏, 𝜎𝑐, 𝜏𝑎𝑏, 𝜏𝑏𝑐, 𝜏𝑐𝑎) and the associated elastic moduli are (𝐸𝑎, 𝐸𝑏, 𝐸𝑐, 𝐺𝑎𝑏, 𝐺𝑏𝑐, 𝐺𝑐𝑎).  
Note that for the unidirectional model, 𝑎, 𝑏 and 𝑐 denote the fiber, in-plane transverse 
and out-of-plane directions, respectively, while for the fabric model, 𝑎, 𝑏 and 𝑐 denote 
the in-plane fill, in-plane warp and out-of-plane directions, respectively.  
 
Unidirectional Lamina Model 
 Three criteria are used for fiber failure, one in tension/shear, one in compression 
and another one in crush under pressure.  They are chosen in terms of quadratic stress 
forms as follows: 
 
Tensile/shear fiber mode:  

𝑓1 = (
〈𝜎𝑎〉
𝑆𝑎T

)
2

+ (
𝜏𝑎𝑏2 + 𝜏𝑐𝑎2

𝑆FS2 ) − 1 = 0. (22.112.1)

Compression fiber mode: 

𝑓2 = (
〈𝜎𝑎′〉
𝑆𝑎C

)
2

− 1 = 0, 𝜎𝑎′ = −𝜎𝑎 + ⟨−
𝜎𝑏 + 𝜎𝑐

2 ⟩. (22.112.2)

Crush mode: 

𝑓3 = (
〈𝑝〉
𝑆FC

)
2

− 1 = 0, 𝑝 = −
𝜎𝑎 + 𝜎𝑏 + 𝜎𝑐

3 . (22.112.3)

where ⟨ ⟩ are Macaulay brackets, 𝑆𝑎T and 𝑆𝑎C are the tensile and compressive strengths 
in the fiber direction, and 𝑆FS and 𝑆FC are the layer strengths associated with the fiber 
shear and crush failure, respectively.  
 
 Matrix mode failures must occur without fiber failure, and hence they will be on 
planes parallel to fibers.  For simplicity, only two failure planes are considered: one is 
perpendicular to the planes of layering and the other one is parallel to them.  The matrix 
failure criteria for the failure plane perpendicular and parallel to the layering planes, 
respectively, have the forms: 
Perpendicular matrix mode: 

𝑓4 = (
⟨𝜎𝑏⟩
𝑆𝑏T

)
2

+ (
𝜏𝑏𝑐
𝑆𝑏𝑐

′ )
2

+ (
𝜏𝑎𝑏
𝑆𝑎𝑏

)
2

− 1 = 0. (22.112.4)

 
Parallel matrix mode (Delamination): 
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𝑓5 = 𝑆2

⎩{⎨
{⎧(
⟨𝜎𝑐⟩
𝑆𝑏T

)
2 

+ (
𝜏𝑏𝑐

𝑆𝑏𝑐
" )

2

+ (
𝜏𝑐𝑎
𝑆𝑐𝑎

)
2

⎭}⎬
}⎫ − 1 = 0, (22.112.5)

where 𝑆𝑏T is the transverse tensile strength.  Based on the Coulomb-Mohr theory, the 
shear strengths for the transverse shear failure and the two axial shear failure modes are 
assumed to be the forms, 

𝑆𝑎𝑏 = 𝑆𝑎𝑏
(0) + tan(𝜑)⟨−𝜎𝑏⟩,

𝑆𝑏𝑐
′ = 𝑆𝑏𝑐

(0) + tan(𝜑)⟨−𝜎𝑏⟩, 
𝑆𝑐𝑎 = 𝑆𝑐𝑎(0) + tan(𝜑)⟨−𝜎𝑐⟩, 
𝑆𝑏𝑐
" = 𝑆𝑏𝑐

(0) + tan(𝜑)⟨−𝜎𝑐⟩,

(22.112.6)

where 𝜑 is a material constant as tan(𝜑) is similar to the coefficient of friction, and 𝑆𝑎𝑏
(0), 

𝑆𝑐𝑎(0) and 𝑆𝑏𝑐
(0)are the shear strength values of the corresponding tensile modes.  

 
 Failure predicted by the criterion of 𝑓4 can be referred to as transverse matrix 
failure, while the matrix failure predicted by 𝑓5, which is parallel to the layer, can be 
referred as the delamination mode when it occurs within the elements that are adjacent 
to the ply interface.  Note that a scale factor 𝑆 is introduced to provide better correlation 
of delamination area with experiments.  The scale factor 𝑆 can be determined by fitting 
the analytical prediction to experimental data for the delamination area. 
 
 When fiber failure in tension/shear mode is predicted in a layer by 𝑓1, the load 
carrying capacity of that layer is completely eliminated.  All the stress components are 
reduced to zero instantaneously (100 time steps to avoid numerical instability).  For 
compressive fiber failure, the layer is assumed to carry a residual axial load, while the 
transverse load carrying capacity is reduced to zero.  When the fiber compressive 
failure mode is reached due to 𝑓2, the axial layer compressive strength stress is assumed 
to reduce to a residual value SRC (=SFFC ∗ SAC).  The axial stress is then assumed to 
remain constant, i.e., 𝜎𝑎 = −𝑆RC, for continuous compressive loading, while the 
subsequent unloading curve follows a reduced axial modulus to zero axial stress and 
strain state.  When the fiber crush failure occurs, the material is assumed to behave 
elastically for compressive pressure, 𝑝 > 0, and to carry no load for tensile pressure, 𝑝 <
0.  
 
 When a matrix failure (delamination) in the a-b plane is predicted, the strength 
values for 𝑆𝑐𝑎(0)and 𝑆𝑏𝑐

(0) are set to zero.  This results in reducing the stress components 𝜎𝑐, 
𝜏𝑏𝑐 and 𝜏𝑐𝑎 to the fractured material strength surface.  For tensile mode, 𝜎𝑐 > 0, these 
stress components are reduced to zero.  For compressive mode, 𝜎𝑐 < 0, the normal 
stress 𝜎𝑐 is assumed to deform elastically for the closed matrix crack.  Loading on the 
failure envelop, the shear stresses are assumed to ‘slide’ on the fractured strength 
surface (frictional shear stresses) like in an ideal plastic material, while the subsequent 
unloading shear stress-strain path follows reduced shear moduli to the zero shear stress 
and strain state for both 𝜏𝑏𝑐 and 𝜏𝑐𝑎 components.  
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 The post failure behavior for the matrix crack in the a-c plane due to 𝑓4 is 
modeled in the same fashion as that in the a-b plane as described above.  In this case, 
when failure occurs, 𝑆𝑎𝑏

(0)and 𝑆𝑏𝑐
(0)are reduced to zero instantaneously.  The post fracture 

response is then governed by failure criterion of f5 with 𝑆𝑎𝑏
(0) = 0 and 𝑆𝑏𝑐

(0) = 0.  For tensile 
mode, 𝜎𝑏, , 𝜏𝑎𝑏 and 𝜏𝑏𝑐 are zero.  For compressive mode, 𝜎𝑏 < 0, 𝜎𝑏 is assumed to be 
elastic, while 𝜏𝑎𝑏 and 𝜏𝑏𝑐 ‘slide’ on the fracture strength surface as in an ideal plastic 
material, and the unloading path follows reduced shear moduli to the zero shear stress 
and strain state.  It should be noted that 𝜏𝑏𝑐 is governed by both the failure functions 
and should lie within or on each of these two strength surfaces. 
 
Fabric Lamina Model 
 The fiber failure criteria of Hashin for a unidirectional layer are generalized to 
characterize the fiber damage in terms of strain components for a plain weave layer.  
The fill and warp fiber tensile/shear failure are given by the quadratic interaction 
between the associated axial and shear stresses, i.e. 

𝑓6 = (
⟨𝜎𝑎⟩
𝑆𝑎T

)
2

+
(𝜏𝑎𝑏2 + 𝜏𝑐𝑎2 )
𝑆𝑎FS2 − 1 = 0, (22.112.7)

𝑓7 = (
⟨𝜎𝑏⟩
𝑆𝑏T

)
2

+
(𝜏𝑎𝑏2 + 𝜏𝑏𝑐

2 )
𝑆𝑏FS

2 − 1 = 0, (22.112.8)

where 𝑆𝑎T and 𝑆𝑏T are the axial tensile strengths in the fill and warp directions, 
respectively, and 𝑆𝑎FS and 𝑆𝑏FS are the layer shear strengths due to fiber shear failure in 
the fill and warp directions.  These failure criteria are applicable when the associated 𝜎𝑎 
or 𝜎𝑏 is positive.  It is assumed 𝑆aFS = SFS, and  

𝑆𝑏FS = SFS ∗
𝑆𝑏T
𝑆𝑎T

. (22.112.9)

 
 When 𝜎𝑎 or 𝜎𝑏is compressive, it is assumed that the in-plane compressive failure 
in both the fill and warp directions are given by the maximum stress criterion, i.e. 

𝑓8 = [
⟨𝜎𝑎′⟩
𝑆𝑎C
]

2

− 1 = 0, 𝜎𝑎′ = −𝜎𝑎 + ⟨−𝜎𝑐⟩, (22.112.10)

𝑓9 = [
⟨𝜎𝑏

′⟩
𝑆𝑏C
]

2

− 1 = 0, 𝜎𝑏
′ = −𝜎𝑏 + ⟨−𝜎𝑐⟩. (22.112.11)

where 𝑆𝑎C and 𝑆𝑏C are the axial compressive strengths in the fill and warp directions, 
respectively.  The crush failure under compressive pressure is 

𝑓10 = (
⟨𝑝⟩
𝑆FC

)
2

− 1 = 0, 𝑝 = −
𝜎𝑎 + 𝜎𝑏 + 𝜎𝑐

3 . (22.112.12)
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 A plain weave layer can fail under in-plane shear stress without the occurrence 
of fiber breakage.  This in-plane matrix failure mode is given by 

𝑓11 = (
𝜏𝑎𝑏
𝑆𝑎𝑏

)
2

− 1 = 0, (22.112.13)

where 𝑆𝑎𝑏 is the layer shear strength due to matrix shear failure. 
 
 Another failure mode, which is due to the quadratic interaction between the 
thickness stresses, is expected to be mainly a matrix failure.  This through the thickness 
matrix failure criterion is 

𝑓12 = 𝑆2 {(
⟨𝜎𝑐⟩
𝑆𝑐𝑇

)
2

+ (
𝜏𝑏𝑐
𝑆𝑏𝑐

)
2

+ (
𝜏𝑐𝑎
𝑆𝑐𝑎

)
2
} − 1 = 0, (22.112.14)

where 𝑆𝑐T is the through the thickness tensile strength, and 𝑆𝑏𝑐, and 𝑆𝑐𝑎 are the shear 
strengths assumed to depend on the compressive normal stress sc, i.e., 

{𝑆𝑐𝑎𝑆𝑏𝑐
}  =  {𝑆𝑐𝑎

(0)

𝑆𝑏𝑐
(0)} + tan(𝜑)⟨−𝜎𝑐⟩. (22.112.15)

 
 When failure predicted by this criterion occurs within elements that are adjacent 
to the ply interface, the failure plane is expected to be parallel to the layering planes, 
and, thus, can be referred to as the delamination mode.  Note that a scale factor 𝑆 is 
introduced to provide better correlation of delamination area with experiments.  The 
scale factor 𝑆 can be determined by fitting the analytical prediction to experimental data 
for the delamination area. 
 
 Similar to the unidirectional model, when fiber tensile/shear failure is predicted 
in a layer by 𝑓6 or 𝑓7, the load carrying capacity of that layer in the associated direction is 
completely eliminated.  For compressive fiber failure due to 𝑓8 or 𝑓9, the layer is 
assumed to carry a residual axial load in the failed direction, while the load carrying 
capacity transverse to the failed direction is assumed unchanged.  When the 
compressive axial stress in a layer reaches the compressive axial strength 𝑆𝑎C or 𝑆𝑏C, the 
axial layer stress is assumed to be reduced to the residual strength 𝑆aRC or 𝑆bRC where 
𝑆aRC  =  SFFC ∗ SaC and SbRC  =  SFFC ∗ SbC.  The axial stress is assumed to remain 
constant, i.e., 𝜎𝑎 = −𝑆aCR or 𝜎𝑏 = −SbCR, for continuous compressive loading, while the 
subsequent unloading curve follows a reduced axial modulus.  When the fiber crush 
failure has occurred, the material is assumed to behave elastically for compressive 
pressure, 𝑝 > 0, and to carry no load for tensile pressure, 𝑝 < 0. 
 
 When the in-plane matrix shear failure is predicted by f11 the axial load carrying 
capacity within a failed element is assumed unchanged, while the in-plane shear stress 
is assumed to be reduced to zero. 
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 For through the thickness matrix (delamination) failure given by equations 𝑓12, 
the in-plane load carrying capacity within the element is assumed to be elastic, while 
the strength values for the tensile mode, 𝑆𝑐𝑎(0)and 𝑆𝑏𝑐

(0), are set to zero.  For tensile mode, 
𝜎𝑐 > 0, the through the thickness stress components are reduced to zero.  For 
compressive mode, 𝜎𝑐 < 0, 𝜎𝑐 is assumed to be elastic, while 𝜏𝑏𝑐 and 𝜏𝑐𝑎 ‘slide’ on the 
fracture strength surface as in an ideal plastic material, and the unloading path follows 
reduced shear moduli to the zero shear stress and strain state. 
 
 The effect of strain-rate on the layer strength values of the fiber failure modes is 
modeled by the strain-rate dependent functions for the strength values {IRT} as 

{SRT } = {S0 }( 1 + Crate1 ln
{ε̅}̇
ε0̇

), (22.112.16)

{𝑆RT } =

⎩{
{{
{⎨
{{
{{
⎧𝑆𝑎T
𝑆𝑎C
𝑆𝑏T
𝑆𝑏C
𝑆FC
𝑆FS⎭}

}}
}⎬
}}
}}
⎫

 and  {𝜀 ̅}̇ =

⎩{
{{
{{
⎨
{{
{{
{⎧ ∣𝜀𝑎̇∣

∣𝜀𝑎̇∣
∣𝜀𝑏̇∣
∣𝜀𝑏̇∣
∣𝜀𝑐̇∣

(𝜀𝑐̇𝑎2 + 𝜀𝑏̇𝑐
2 )

1
2⎭}
}}
}}
⎬
}}
}}
}⎫

, (22.112.17)

where 𝐶rate is the strain-rate constants, and {𝑆0 }are the strength values of {𝑆RT } at the 
reference strain-rate 𝜀0̇. 
 
Damage Model 
 The damage model is a generalization of the layer failure model of Material 161 
by adopting the MLT damage mechanics approach, Matzenmiller et al.  [1995], for 
characterizing the softening behavior after damage initiation.  Complete model 
description is given in Yen [2001].  The damage functions, which are expressed in terms 
of ply level engineering strains, are converted from the above failure criteria of fiber 
and matrix failure modes by neglecting the Poisson’s effect.  Elastic moduli reduction is 
expressed in terms of the associated damage parameters 𝜛𝑖: 

E𝑖
′ = (1 − ϖ𝑖)E𝑖 (22.112.18)

ϖ𝑖 = 1 − exp(−𝑟𝑖
𝑚𝑖/𝑚𝑖)  𝑟𝑖 ≥ 0  𝑖 = 1, . . . ,6, (22.112.19)

where 𝐸𝑖 are the initial elastic moduli, 𝐸𝑖
′ are the reduced elastic moduli, 𝑟𝑖 are the 

damage thresholds computed from the associated damage functions for fiber damage, 
matrix damage and delamination, and mi are material damage parameters, which are 
currently assumed to be independent of strain-rate.  The damage function is formulated 
to account for the overall nonlinear elastic response of a lamina including the initial 
‘hardening’ and the subsequent softening beyond the ultimate strengths. 
 
 In the damage model (Material 162), the effect of strain-rate on the nonlinear 
stress-strain response of a composite layer is modeled by the strain-rate dependent 
functions for the elastic moduli {𝐸RT } as 
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{𝐸RT } = {𝐸0 }( 1 + {𝐶rate} ln
{𝜀 ̅}̇
𝜀0̇

), (22.112.20)

{𝐸RT } =

⎩{
{{
{⎨
{{
{{
⎧ 𝐸𝑎

𝐸𝑏
𝐸𝑐
𝐺𝑎𝑏
𝐺𝑏𝑐
𝐺𝑐𝑎⎭

}}
}}
⎬
}}
}}
⎫

 , {𝜀 ̅}̇ =

⎩{
{{
{⎨
{{
{{
⎧ ∣𝜀𝑎̇∣
∣𝜀𝑏̇∣
∣𝜀𝑐̇∣
∣𝜀𝑎̇𝑏∣
∣𝜀𝑏̇𝑐∣
∣𝜀𝑐̇𝑎∣⎭

}}
}}
⎬
}}
}}
⎫

 and {𝐶rate} =

⎩{
{{
{⎨
{{
{{
⎧𝐶rate2
𝐶rate2
𝐶rate4
𝐶rate3
𝐶rate3
𝐶rate3⎭}

}}
}⎬
}}
}}
⎫

, (22.112.21)

where {𝐶rate} are the strain-rate constants.  {𝐸0} are the modulus values of {𝐸RT } at the 
reference strain-rate 𝜀0̇.
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22.113  Material Model 163:  Modified Crushable Foam 

 The volumetric strain is defined in terms of the relative volume, 𝑉, as: 𝛾 =
 1. −𝑉.  The relative volume is defined as the ratio of the current to the initial volume.  
In place of the effective plastic strain in the D3PLOT database, the integrated volumetric 
strain is output. 
 
 This material is an extension of material 63, *MAT_CRUSHABLE_FOAM.  It 
allows the yield stress to be a function of both volumetric strain rate and volumetric 
strain.  Rate effects are accounted for by defining a table of curves using 
*DEFINE_TABLE.  Each curve defines the yield stress versus volumetric strain for a 
different strain rate.  The yield stress is obtained by interpolating between the two 
curves that bound the strain rate. 
 
 To prevent high frequency oscillations in the strain rate from causing similar 
high frequency oscillations in the yield stress, a modified volumetric strain rate is used 
when interpolating to obtain the yield stress.  The modified strain rate is obtained as 
follows.  If NCYCLE is > 1, then the modified strain rate is obtained by a time average 
of the actual strain rate over NCYCLE solution cycles.  For SRCLMT > 0, the modified 
strain rate is capped so that during each cycle, the modified strain rate is not permitted 
to change more than SRCLMT multiplied by the solution time step.

1-V

σ

Figure 22.113.1.  Rate effects are defined by a family of curves giving yield
stress versus volumetric strain. 
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22.114  Material Model 164:  Brain Linear Viscoelastic 

 The shear relaxation behavior is described by the Maxwell model as: 

𝐺(𝑡) = 𝐺 + (𝐺0 − 𝐺∞)𝑒−𝛽𝑡. (22.114.1)

 
 A Jaumann rate formulation is used 

𝜎′𝑖𝑗
𝛻

= 2 ∫ 𝐺(𝑡 − 𝜏) 𝐷′𝑖𝑗(𝜏)𝑑𝑡
𝑡

0
. (22.114.2)

where the prime denotes the deviatoric part of the stress rate, 𝜎𝛻𝑖𝑗, and the strain rate 𝐷𝑖𝑗 
.  For the Kelvin model the stress evolution equation is defined as: 

𝑠𝑖̇𝑗 +
1
𝜏 𝑠𝑖𝑗 = (1 + 𝛿𝑖𝑗) (𝐺0 +

𝐺∞
𝜏 ) 𝑒𝑖̇𝑗. (22.114.3)

The strain data as written to the LS-DYNA database may be used to predict damage, see 
[Bandak 1991].
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22.115  Material Model 166:  Moment Curvature Beam 

 Curvature rate can be decomposed into elastic part and plastic part: 

𝜀 ̇ = 𝜀ė + 𝜀ṗ  ⇒  
𝜀 ̇
𝑦 =

𝜀ṗ

𝑦 +
𝜀ṗ

𝑦 ⇒ 𝜅̇ = 𝜅ė + 𝜅p. (22.115.1)

Moment rate is the product of elastic bending stiffness and elastic curvature: 

𝑀̇ = ∫ 𝜎̇𝑦𝑑𝐴
𝐴

= ∫ 𝐸e𝜀ė𝑦𝑑𝐴
𝐴

= ∫ 𝐸e𝜅ė𝑦2𝑑𝐴
𝐴

= ∫ 𝐸e(𝜅̇ − 𝜅ṗ)𝑦2𝑑𝐴
𝐴

 

= 𝐸e(𝜅̇ − 𝜅ṗ) ∫ 𝑦2𝑑𝐴 = (𝐸𝐼)e(𝜅̇ − 𝜅ṗ)
𝐴

.
(22.115.2)

Plastic flow rule: 𝜓 = |𝑀| (Isotropic hardening) 

𝜅ṗ = 𝜆̇
𝜕𝜓
𝜕𝑀 = 𝜆̇sign(𝑀), 𝜅̅ṗ = √𝜅ṗ𝜅ṗ = 𝜆̇. (22.115.3)

 
 Yield condition: 

𝑓 = |𝑀| −𝑀Y(𝜅p̅) = 0. (22.115.4)
Loading and unloading conditions: 

𝜆̇ ≥ 0, 𝑓 ≤ 0, 𝜆̇𝑓 = 0. (22.115.5)

Consistency condition: 

𝑓 ̇= 0 ⇒ 𝑀̇ sign(𝑀) −
∂𝑀Y
∂𝜅p̅ 𝜅p̅ = 0

⇒ 𝜆̇ ≡ 𝜅̅ṗ 

=
𝑀sign(𝑀)

(𝐸𝐼)p =
(𝐸𝐼)e

(𝐸𝐼)p (𝜅̇ − 𝜅ṗ) sign(𝑀) 

=
(𝐸𝐼)e

(𝐸𝐼)p [𝜅̇ − 𝜆̇ sign(𝑀)]sign(𝑀) 

 ⇒  𝜆̇ ≡ 𝜅̅̇ =
(𝐸𝐼)e𝜅 ̇sign(𝑀)
(𝐸𝐼)p + (𝐸𝐼)e

(22.115.6)

 
 Moment rate is also the product of tangential bending stiffness and total 
curvature: 

𝑀̇ = (𝐸𝐼)ep𝜅.̇ (22.115.7)
Elastic, plastic, and tangential stiffnesses are obtained from user-defined curves: 

(𝐸𝐼)ep =
𝑑𝑀
𝑑𝜅 , (𝐸𝐼)p =

𝑑𝑀
𝑑𝜅p̅. (22.115.8)

Both are obtained from user-defined curves. 
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(𝐸𝐼)e =
(𝐸𝐼)ep(𝐸𝐼)p

(𝐸𝐼)p − (𝐸𝐼)ep. (22.115.9)

For Torsion-Twist, simply replace 𝑀 by 𝑇, 𝜅 by 𝛽, (𝐸𝐼) by (𝐺𝐽).  For Force-Strain, 
simply replace 𝑀 by 𝑁, 𝜅 by 𝜀, (𝐸𝐼) by (𝐸𝐴).
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22.116  Material Model 169:  Arup Adhesive 

 The through-thickness direction is identified from the smallest dimension of each 
element.  It is expected that this dimension will be much smaller than in-plane 
dimensions (typically 2mm compared with 10mm). 
 
 In-plane stresses are set to zero: it is assumed that the stiffness and strength of 
the substrate is large compared with that of the adhesive, given the relative thicknesses.  
If the substrate is modeled with shell elements, it is expected that these will lie at the 
mid-surface of the substrate geometry.  Therefore the solid elements representing the 
adhesive will be thicker than the actual bond.  The yield and failure surfaces are treated 
as a power-law combination of direct tension and shear across the bond: (𝜎/
𝜎max)PWRT + (𝜏/𝜏max)PWRS = 1.0 at yield.  The stress-displacement curves for tension 
and shear are shown in the diagrams below.  In both cases, 𝐺c is the area under the 
curve.  Because of the algorithm used, yielding in tension across the bond does not 
require strains in the plane of the bond – unlike the plasticity models, plastic flow is not 
treated as volume-conserving.  
 
 The Plastic Strain output variable has a special meaning: 

• 0 < ps < 1: ps is the maximum value of the yield function experienced since time 
zero 

•  1 < ps < 2: the element has yielded and the strength is reducing towards 
failure – yields at ps = 1, fails at ps = 2.

Area = Gcten

TENMAX

Tension

dft

Failure

Displacement

Stress

Area = Gcshr

dp = SHRP.dfs

dp dfs

Failure

Displacement

Shear

SHRMAX

Stress

 Figure 22.116.1.   
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22.117  Material Model 170: Resultant Anisotropic 

 The in-plane elastic matrix for in-plane plane stress behavior is given by: 

𝐂in plane =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑄11p 𝑄12p 0 0 0
𝑄12p 𝑄22p 0 0 0

0 0 𝑄44p 0 0
0 0 0 𝑄55p 0
0 0 0 0 𝑄66p⎦

⎥
⎥
⎥
⎥
⎥
⎤

. (22.117.1)

 
 The terms Q𝑖𝑗p are defined as: 

𝑄11p =
𝐸11p

1 − 𝜈12p𝜈21p
,

𝑄22p =
𝐸22p

1 − 𝜈12p𝜈21p
, 

𝑄12p =
𝜈12p𝐸11p

1 − 𝜈12p𝜈21p
, 

𝑄44p = 𝐺12p, 
𝑄55p = 𝐺23p, 
𝑄66p = 𝐺31p.

(22.117.2)

 
 The elastic matrix for bending behavior is given by: 

𝐂bending =
⎣
⎢⎡

𝑄11b 𝑄12b 0
𝑄12b 𝑄22b 0

0 0 𝑄44b⎦
⎥⎤. (22.117.3)

The terms 𝑄𝑖𝑗b are similarly defined.
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22.118  Material Model 175:  Viscoelastic Maxwell 

 Rate effects are taken into accounted through linear viscoelasticity by a 
convolution integral of the form: 

𝜎𝑖𝑗 = ∫ 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝜕𝜀𝑘𝑙
𝜕𝜏 𝑑𝜏

𝑡

0
, (22.118.1)

where 𝑔𝑖𝑗𝑘𝑙(𝑡 − 𝜏) is the relaxation function for different stress measures.  This stress is 
added to the stress tensor determined from the strain energy functional.   
 
 If we wish to include only simple rate effects, the relaxation function is 
represented by six terms from the Prony series: 

𝑔(𝑡) = ∑ 𝐺𝑚𝑒−𝛽𝑚𝑡
𝑁

𝑚=1
. (22.118.2)

 
 We characterize this in the input by shear moduli, 𝐺𝑖, and the decay constants, 𝛽𝑖.  
An arbitrary number of terms, up to 6, may be used when applying the viscoelastic 
model. 
 
 For volumetric relaxation, the relaxation function is also represented by the 
Prony series in terms of bulk moduli: 

𝑘(𝑡) = ∑ 𝐾𝑚𝑒−𝛽𝑘𝑚𝑡
𝑁

𝑚=1
. (22.118.3)

 
 The Arrhenius and Williams-Landau-Ferry (WLF) shift functions account for the 
effects of the temperature on the stress relaxation.  A scaled time, 𝑡′, 

𝑡′ = ∫ 𝛷(𝑇)𝑑𝑡
𝑡

0
, (22.118.4)

is used in the relaxation function instead of the physical time.  The Arrhenius shift 
function is 

𝛷(𝑇) = exp (−𝐴{
1
𝑇 −

1
𝑇REF

}), (22.118.5)

and the Williams-Landau-Ferry shift function is 

𝛷(𝑇) = exp (−𝐴
𝑇 − TREF

𝐵 + 𝑇 − 𝑇REF
). (22.118.6)
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22.119  Material Model 176:  Quasilinear Viscoelastic 

The equations for this model are given as: 

𝜎(𝑡) = ∫𝐺(𝑡 − 𝜏)
𝑡

0

𝜕𝜎𝜀[𝜀(𝜏)]
𝜕𝜀

𝜕𝜀
𝜕𝜏 𝑑𝜏, 

𝐺(𝑡) = ∑𝐺𝑖

𝑛

𝑖=1
𝑒−𝛽𝑡, 

𝜎𝜀(𝜀) = ∑𝐶𝑖

𝑘

𝑖=1
𝜀𝑖,

(22.119.1)

where G is the shear modulus.  In place of the effective plastic strain in the D3PLOT 
database, the effective strain is output:  

𝜀effective = √
2
3 𝜀𝑖𝑗𝜀𝑖𝑗. (22.119.2)

The polynomial for instantaneous elastic response should contain only odd terms if 
symmetric tension-compression response is desired.
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22.120  Material Models 177 and 178:  Hill Foam and 
Viscoelastic Hill Foam 

22.120.1  Hyperelasticity Using the Principal Stretch Ratios 

 Material types 177 and 178 in LS-DYNA are highly compressible Ogden models 
combined with viscous stress contributions.  The latter model also allows for an 
additive viscoelastic stress contribution.  As for the rate independent part, the 
constitutive law is determined by a strain energy function that is expressed in terms of 
the principal stretches, i.e., 𝑊 = 𝑊(𝜆1, 𝜆2, 𝜆3). To obtain the Cauchy stress 𝜎𝑖𝑗, as well as 
the constitutive tensor of interest, 𝐶𝑖𝑗𝑘𝑙

TC, they are first calculated in the principal basis 
after which they are transformed back to the “base frame”, or standard basis.  The 
complete set of formulas is given by Crisfield [1997] and is for the sake of completeness 
recapitulated here. 
 
 The principal Kirchhoff stress components are given by 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

(no sum), (22.120.1)

that are transformed to the standard basis using the standard formula 

𝜏𝑖𝑗 = 𝑞𝑖𝑘𝑞𝑗𝑙𝜏𝑘𝑙
E. (22.120.2)

 
 The 𝑞𝑖𝑗 are the components of the orthogonal tensor containing the eigenvectors 
of the principal basis.  The Cauchy stress is then given by  

𝜎𝑖𝑗 = 𝐽−1𝜏𝑖𝑗, (22.120.3)

where 𝐽 = 𝜆1𝜆2𝜆3 is the relative volume change. 
 
 The constitutive tensor that relates the rate of deformation to the Truesdell 
(convected) rate of Kirchhoff stress in the principal basis can be expressed as 

𝐶𝑖𝑖𝑗𝑗
TKE = 𝜆𝑗

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑗
− 2𝜏𝑖𝑖

E𝛿𝑖𝑗

𝐶𝑖𝑗𝑖𝑗
TKE =

𝜆𝑗
2𝜏𝑖𝑖
E − 𝜆𝑖

2𝜏𝑗𝑗
E

𝜆𝑖
2 − 𝜆𝑗

2 ,    𝑖 ≠ 𝑗, 𝜆𝑖 ≠ 𝜆𝑗

𝐶𝑖𝑗𝑖𝑗
TKE =

𝜆𝑖
2 (

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑖
−

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑗
), 𝑖 ≠ 𝑗, 𝜆𝑖 = 𝜆𝑗⎭}

}}
}}
}⎬
}}
}}
}}
⎫

   (no sum). (22.120.4)

 
 These components are transformed to the standard basis according to 
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𝐶𝑖𝑗𝑘𝑙
TK = 𝑞𝑖𝑝𝑞𝑗𝑞𝑞𝑘𝑟𝑞𝑙𝑠𝐶𝑝𝑞𝑟𝑠

TKE, (22.120.5)

and finally the constitutive tensor relating the rate of deformation to the Truesdell rate 
of Cauchy stress is obtained through 

𝐶𝑖𝑗𝑘𝑙
TC = 𝐽−1𝐶𝑖𝑗𝑘𝑙

TK. (22.120.6)

 

22.120.2  Hill’s Strain Energy Function 

 The strain energy function for materials 177 and 178 is given by 

𝑊 = ∑
𝜇𝑚
𝛼𝑚

[𝜆1
𝛼𝑚 + 𝜆2

𝛼𝑚 + 𝜆3
𝛼𝑚 − 3 +

1
𝑛 (𝐽−𝑛𝛼𝑚 − 1)]

𝑛

𝑚=1
. (22.120.7)

where 𝑛, 𝜇𝑚 and 𝛼𝑚 are material parameters.  To apply the formulas in the previous 
section, we require 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

= ∑
𝜇𝑚
𝐽 (𝜆𝑖

𝛼𝑚 − 𝐽−𝑛𝛼𝑚).
𝑛

𝑚=1
(22.120.8)

 
 Proceeding with the constitutive tensor, we have 

𝜆𝑗
𝜕𝜏𝑖𝑖

E

𝜕𝜆𝑗
= ∑ 𝜇𝑚𝛼𝑚(𝜆𝑖

𝛼𝑚𝛿𝑖𝑗 + 𝑛𝐽−𝑛𝛼𝑚)
𝑛

𝑚=1
. (22.120.9)

 
 In addition to the hyperelastic stress described above, a viscous stress is added.  
Converting to Voigt notation, this stress can be written, 

𝛔 = 𝐂𝐃, (22.120.10)
where 𝛔 denotes Cauchy stress, 𝐃 is the rate-of-deformation and 𝐂 is an isotropic 
constitutive matrix representing the viscosity.  In element m, the constitutive matrix 
depends on the element deformation according to 

𝐂 =
𝑑𝑚
𝐽 𝐂𝟎, (22.120.11)

where 𝑑𝑚 is the diameter4 of element m and 𝐂𝟎 is a constitutive matrix that depends 
only on the material parameters.  The stress contribution to the internal force can be 
written 

𝑓 int = ∫ 𝐁T𝛔𝑑𝛺𝑚,
𝛺𝑚

(22.120.12)

and the corresponding material time derivative is 

                                                 
4 Experiments indicate that d୫ is the smallest dimension of the element. 
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𝑓 ṁat = ∫ 𝐁T𝛔∇𝑇𝑑𝛺𝑚
𝛺𝑚

. (22.120.13)

Here 𝛺𝑚 is the current configuration of element m, 𝐁 is the strain-displacement matrix 
and ∇𝑇 denotes the Truesdell rate of Cauchy stress.  The aim is to identify the material 
tangent modulus through 

𝑓 ṁat = ∫ 𝐁T𝐂mat𝐁𝑑𝛺𝑚
𝛺𝑚

𝑢,̇ (22.120.14)

for the viscous stress with u̇ being the nodal velocity.  The Truesdell rate of the viscous 
stress can be written, 

𝛔𝛁𝐓 = 𝐂𝐃̇ + 𝐂𝐃̇ + tr(𝐃)𝛔 − 𝐋𝛔 − 𝛔𝐋𝐓, (22.120.15)

where Lis the velocity gradient.  The terms on the right hand side can be treated as 
follows. 
 
 For the first term, we can assume that 𝑑𝑚 ∝ J1/3 and then approximate  

𝐂̇ = −
2
3 tr(𝐃)𝐂. (22.120.16)

 
 Using Equation (22.120.10), Equation (22.120.13), the first term on the right hand 
side of Equation (22.120.15), Equation (22.120.16) and the expression  

𝐃 = 𝐁𝐮̇, (22.120.17)
a material tangent modulus contribution can be identified in Equation (22.120.14) as 

−
2
3 𝛔𝛅T, (22.120.18)

where 𝛅 denotes the identity matrix in Voigt notation.  
 
 For the second term in Equation (22.120.15), we differentiate Equation (22.120.17) 
to see that 

𝐃̇ = 𝐁̇𝐮̇ + 𝐁𝐮̈. (22.120.19)
 
 Post-poning the treatment of the first term, the second of these two terms can be 
treated easily as this gives the following contribution to the material time derivative  

∫ 𝐁T𝐂𝐁𝑑𝛺𝑚𝑢̇
𝛺𝑚

𝛾
𝛽Δ𝑡, (22.120.20)

where γ and 𝛽 are parameters in the Newmark scheme and Δ𝑡 is the time step.  From 
this expression, a material tangent modulus can through Equation (22.120.14) be 
identified as, 
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𝐂mat =
𝛾
𝛽Δ𝑡𝐂. (22.120.21)

 
 The third term in Equation (22.120.15) contributes to the material tangent 
modulus as 

𝛔𝛅T (22.120.22)

resulting in a material tangent modulus given so far by 
𝛾
𝛽Δ𝑡𝐂 +

1
3 𝛔𝛅T. (22.120.23)

22.120.3  Viscous Stress 

 From the remaining terms, i.e., the last two terms in Equation (22.120.15) and the 
first term in Equation (22.120.19), we see it impossible to identify contributions to a 
material tangent modulus.  We believe that these terms must be treated in some other 
manner.  We are thus left with two choices, either to approximate these terms within the 
existing framework or to attempt a thorough implementation of the correct tangent 
stiffness using a different, and probably demanding, approach.  We reason as follows.  
 
 Since this stress contribution is viscous and proportional to the mesh size, it is 
our belief that it serves as a stabilizing stress in the occurrence of a coarse mesh and/or 
large deformation rates, and really has little or nothing to do with the actual material 
models.  If only the simulation process is slow (which it often is in an implicit analysis) 
and/or the mesh is sufficiently fine, this stress should be negligible compared to the 
other stress(es).  With this in mind, we feel that it is not crucial to derive an exact 
tangent for this stress but we can be satisfied with an approximation.  Even if 
attempting a more thorough derivation of the tangent stiffness, we would most 
certainly have to make approximations along the way.  Hence we do not see this as an 
attractive approach.  
 
 In the implementation we have simply neglected all terms involving stresses 
since the experience from earlier work is that such terms generally have a negative 
effect on the tangent if they are not absolutely correct.  In addition, most of the terms 
involving stresses contribute to a nonsymmetric tangent stiffness, which cannot be 
supported by LS-DYNA at the moment.  Hence the material tangent modulus for the 
viscous stress is given by Equation (22.120.21). We are aware of that this may be a crude 
approximation, and if experiments show that it is a poor one, we will take a closer look 
at it. 
 
 In material type 178, the viscous stress acts only in the direction of the principal 
stretches and in compression.  With C being an isotropic tensor, we evaluate the tangent 
stiffness modulus in the principal basis according to Equation (22.120.21), modify it to 
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account for the mentioned conditions and then transform it back to the global frame of 
reference. 
 

22.120.4  Viscoelastic Stress Contribution 

 For material 178, an optional viscoelastic stress contribution can be added.  The 
evolution of this stress in time can be stated as 

𝜎𝑖𝑗
∇ = ∑ 2𝐺𝑚𝑠𝑖𝑗

m∇
12

𝑚=1
, (22.120.24)

where 

𝑠𝑖𝑗
m∇ = 𝐷𝑖𝑗 − 𝛽𝑚𝑠𝑖𝑗

m, (22.120.25)

Here 𝐺𝑚 and 𝛽𝑚 are material constants, and 𝐷𝑖𝑗 is the rate-of-deformation tensor.  
Referring to Borrvall [2002], we state that the tangent stiffness modulus for this stress 
contribution can be written 

𝐶𝑖𝑗𝑘𝑙 = ∑ 𝐺𝑚

12

𝑚=1
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). (22.120.26)

Just as for the viscous stress, this stress acts only in the direction of the principal 
stretches.  Hence the tangent modulus is formed in the principal basis, modified to 
account for this condition and then transformed back to the global frame of reference. 
 

22.120.5  Material Tangent Modulus for the Fully Integrated Brick 

 To avoid locking tendencies for the fully integrated brick element in LS-DYNA, 
the stress is modified as 

𝛔S/R = 𝛔 + (𝑝 − 𝑝)̅𝐈, (22.120.27)

where 𝑝 is the pressure and 𝑝 ̅ is the mean pressure in the element.  This affects the 
tangent stiffness since one has to take into account that the pressure is constant in the 
element.  Deriving the material time derivative of the internal force results in 

𝑓 ṁat = ∫ 𝐁T𝐂𝐁𝑑𝛺𝑚
𝛺𝑚

𝑢̇ + ∫ (𝑝 − 𝑝)̅𝐁T(𝐈 ⊗ 𝐈)𝐁𝑑𝛺𝑚
𝛺𝑚

𝑢̇

                 −2 ∫ (𝑝 − 𝑝)̅𝐁T𝐁𝑑𝛺𝑚
𝛺𝑚

𝑢̇ + ∫ (ṗ − ṗ̅̅̅̅)BTdΩm
Ωm

. 
(22.120.28)

 
 To implement this tangent, the last term is the most difficult to deal with as it 
involves the time derivative (or variation) of the pressure.  For certain types of material 
models, for instance material type 77 in LS-DYNA, the pressure is a function of the 
relative volume 

𝑝 = 𝑝(𝐽), (22.120.29)
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and with the approximation 

𝑝̅ = 𝑝(𝐽)̅, (22.120.30)

the last term can be evaluated to 

∫ 𝐽𝑝′(𝐽)𝐁T(𝐈 ⊗ 𝐈)𝐁𝑑𝛺𝑚𝑢̇
𝛺𝑚

− ∫ 𝐽𝑝̅′(𝐽)̅𝐁̅̅̅̅̅T(𝐈 ⊗ 𝐈)𝐁̅̅̅̅̅𝑑𝛺𝑚𝑢̇
𝛺𝑚

, (22.120.31)

and a symmetric tangent stiffness can quite easily be implemented.  We have here used 
𝐽  ̅and 𝐁̅̅̅̅̅ for the mean values of 𝐽 and 𝐁, respectively.  For other types of material models, 
such as the ones described in this document or material type 27 in LS-DYNA, the 
expression for the pressure is more complicated.  A characterizing feature is that a non-
zero pressure can occur under constant volume.  This will in general complicate the 
implementation of the last term and will also contribute to a non-symmetric tangent 
stiffness that cannot be handled in LS-DYNA at the moment.  For material 27, 
neglecting this had a tremendous impact on the performance of the implicit solution 
procedure, (see material type 27).  For the current material models, it seems to be of less 
importance, and we believe that this is due to the higher compressibility allowed. 

22.120.6  Viscous damping 

Viscous damping in the model follows an implementation identical to that of material 
type 57.
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22.121  Material Models 179 and 180:  Low Density Synthetic 
Foam 

 Material types 179 and 180 in LS-DYNA are highly compressible synthetic foam 
models with no Poisson’s ratio effects combined with an optional visco-elastic and a 
stabilizing viscous stress contribution.  The tensile behavior of the materials is linear 
where the stress cannot exceed a user prescribed cutoff stress.  In compression the 
materials show a hysteresis on unloading similar to material 57. In addition, the first 
load cycle damages the material so that the stress level on reloading is significantly 
reduced.  For material 179 the damage is isotropic while it is orthotropic for material 
180. Viscous damping in the model follows an implementation identical to that of 
material type 57. 
 

22.121.1  Hyperelasticity Using the Principal Stretch Ratios 

 As for the rate independent part of the stress, the constitutive law is mainly 
determined by a strain energy function that is expressed in terms of the principal 
stretches, i.e., 𝑊 = 𝑊(𝜆1, 𝜆2, 𝜆3). To obtain the Cauchy stress 𝜎𝑖𝑗, as well as the 
constitutive tensor of interest, 𝐶𝑖𝑗𝑘𝑙

TC, they are first calculated in the principal basis after 
which they are transformed back to the “base frame”, or standard basis.  The complete 
set of formulas is given by Crisfield [1997] and is for the sake of completeness 
recapitulated here. 
 
 The principal Kirchhoff stress components are given by 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

(no sum), (22.121.1)

that are transformed to the standard basis using the standard formula 

𝜏𝑖𝑗 = 𝑞𝑖𝑘𝑞𝑗𝑙𝜏𝑘𝑙
E. (22.121.2)

 
 The 𝑞𝑖𝑗 are the components of the orthogonal tensor containing the eigenvectors 
of the principal basis.  The Cauchy stress is then given by , 

𝜎𝑖𝑗 = 𝐽−1𝜏𝑖𝑗, (22.121.3)

where 𝐽 = 𝜆1𝜆2𝜆3 is the relative volume change. 
 
 The constitutive tensor that relates the rate of deformation to the Truesdell 
(convected) rate of Kirchhoff stress can in the principal basis be expressed as 
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𝐶𝑖𝑖𝑗𝑗
TKE = 𝜆𝑗

𝜕τii
E

𝜕𝜆𝑗
− 2𝜏𝑖𝑖

E𝛿𝑖𝑗

𝐶𝑖𝑗𝑖𝑗
TKE =

𝜆𝑗
2𝜏𝑖𝑖
E − 𝜆𝑖

2𝜏𝑗𝑗
E

𝜆𝑖
2 − 𝜆𝑗

2 ,    𝑖 ≠ 𝑗, 𝜆𝑖 ≠ 𝜆𝑗

𝐶𝑖𝑗𝑖𝑗
TKE =

𝜆𝑖
2 (

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑖
−

𝜕𝜏𝑖𝑖
E

𝜕𝜆𝑗
), 𝑖 ≠ 𝑗, 𝜆𝑖 = 𝜆𝑗

 (no sum). (22.121.4)

 
 These components are transformed to the standard basis according to 

𝐶𝑖𝑗𝑘𝑙
TK = 𝑞𝑖𝑝𝑞𝑗𝑞𝑞𝑘𝑟𝑞𝑙𝑠𝐶𝑝𝑞𝑟𝑠

TKE, (22.121.5)

and finally the constitutive tensor relating the rate of deformation to the Truesdell rate 
of Cauchy stress is obtained through. 

𝐶𝑖𝑗𝑘𝑙
TC = 𝐽−1𝐶𝑖𝑗𝑘𝑙

TK . (22.121.6)

 

22.121.2  Strain Energy Function 

 The strain energy function for materials 179 and 180 is given by  

W = ∑ 𝑤(λm)
3

m=1
, (22.121.7)

where 

𝑤(𝜆) =

⎩{
{{
{{
⎨
{{
{{
{⎧𝑠 (𝜆 − 1 −

𝑠
2𝐸) if  𝜆 ≥

𝑠
𝐸 + 1

𝐸
2 (𝜆 − 1)2 if  1 ≤ 𝜆 <

𝑠
𝐸 + 1

∫ 𝑓s(1 − 𝜇)𝑑𝜇
𝜆

1
otherwise

 (22.121.8)

Here s is the nominal tensile cutoff stress and 𝐸 is the stiffness coefficient relating a 
change in principal stretch to a corresponding change in nominal stress.  The function 
𝑓s(≤ 0) gives the nominal compressive stress as a function of the strain in compression 
for the second and all subsequent load cycles and is supplied by the user.  To apply the 
formulas in the previous section, we require 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑤
𝜕𝜆𝑖

=

⎩{
{{
⎨
{{{
⎧𝑠𝜆𝑖 if  𝜆𝑖 ≥

𝑠
𝐸 + 1

𝐸𝜆𝑖(𝜆𝑖 − 1) if  1 ≤ 𝜆𝑖 <
𝑠
𝐸 + 1

𝜆𝑖𝑓𝑠(1 − 𝜆𝑖) otherwise

 (22.121.9)

 
 Proceeding with the constitutive tensor, we have 
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𝜆𝑗
𝜕𝜏𝑖𝑖

E

𝜕𝜆𝑗
= 𝛿𝑖𝑗

⎩{
{{
⎨
{{
{⎧𝑠𝜆𝑖 if 𝜆𝑖 ≥

𝑠
𝐸 + 1

𝐸𝜆𝑖(2𝜆𝑖 − 1) if  1 ≤ 𝜆𝑖 <
𝑠
𝐸 + 1

𝜆𝑖(𝑓𝑠(1 − 𝜆𝑖) − 𝜆𝑖𝑓 ′𝑠(1 − 𝜆𝑖)) otherwise

 (22.121.10)

 

22.121.3  Modeling of the Hysteresis 

 The hyperelastic part of the Cauchy stress is scaled by a factor 𝜅 given by 

𝜅 =
𝐸
𝐸̅̅̅̅

, (22.121.11)

where 

𝐸 = ∫ 𝐽𝛔: 𝑑𝛆, (22.121.12)

is the stored energy in the material and 

𝐸̅̅̅̅ = 𝐸maxexp(−𝛽(𝑡 − 𝑠)). (22.121.13)

Here 𝑠 stands for the time point when E has its maximum 𝐸max in the interval [0, 𝑡]. The 
factor κ is introduced to model the hysteresis that characterizes this material (and 
material 57).  The decay coefficient 𝛽 is introduced to get a reloading curve similar to 
the original loading curve. 
 
 This factor κ is treated as a constant in the determination of the tangent stiffness 
matrix. 
 

22.121.4  Viscous Stress 

 In addition to the hyperelastic stress described above, a viscous stress is added.  
Converting to Voigt notation, this stress can be written 

𝛔 = 𝐂𝐃, (22.121.14)
where 𝛔 denotes Cauchy stress, 𝐃 is the rate-of-deformation and 𝐂 is an isotropic 
constitutive matrix representing the viscosity.  In element m, the constitutive matrix 
depends on the element deformation according to 

𝐂 =
𝑑𝑚
𝐽 𝐂0, (22.121.15)

where 𝑑𝑚 is the diameter5 of element m and 𝐂0 is a constitutive matrix that depends 
only on the material parameters.  Following material models 177 and 178 we use the 
following material tangent stiffness for this stress contribution 

                                                 
5 Experiments indicate that d୫ is the smallest dimension of the element. 
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𝐂mat =
𝛾
𝛽Δ𝑡𝐂, (22.121.16)

where 𝛾 and 𝛽 are parameters in the Newmark scheme and Δ𝑡 is the time step. 
 

22.121.5  Viscoelastic Stress Contribution 

 An optional viscoelastic stress contribution can be added.  The evolution of this 
stress in time can be stated as 

𝜎𝑖𝑗
∇ = 𝐸d𝑠𝑖𝑗

∇, (22.121.17)

where 

𝑠𝑖𝑗
∇ = 𝐷𝑖𝑗 − 𝛽1𝑠𝑖𝑗. (22.121.18)

Here 𝐸d and 𝛽1 are material constants, 𝐷𝑖𝑗 is the rate-of-deformation tensor and ∇ 
stands for an objective rate.  Referring to material models 177 and 178, we state that the 
tangent stiffness modulus for this stress contribution can be written 

𝐶𝑖𝑗𝑘𝑙 =
𝐸d
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). (22.121.19)

 
 This stress acts only in the direction of the principal stretches.  Hence the tangent 
modulus is formed in the principal basis, modified to account for this condition and 
then transformed back to the global frame of reference. 
 

22.121.6  Stress Corresponding to First Load Cycle 

We define a contribution to the principal Kirchhoff stress as  

  1 𝜏𝑖𝑖
E = 𝜆𝑖{𝑔s(1 − 𝜆𝑖) − 𝑓s(1 − 𝜆𝑖)}𝜉 . (22.121.20)

 
 When the damage is isotropic the factor 𝜉  is given by 

𝜉 = max (0,1 −
𝜀h

0.0001 + 𝜀m
). (22.121.21)

where 𝜀h is the damage parameter that is initially zero and 𝜀m is the maximum 
compressive volumetric strain during the entire simulation thus far.  Damage evolves 
when the material is in compression and unloads  

Δ𝜀h = {0 if  𝐽 ≥ 1
max(0, Δ𝐽) otherwise, (22.121.22)

where 𝐽 is the jacobian of the deformation.  The first load cycle will result in a total 
stress that follows load curve 𝑔𝑠 since there is no damage.  After a complete load cycle, 
i.e., unloading has occurred, the material is completely damaged, i.e., 𝜀h ≈ 𝜀m, and the 
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nominal stress will for the second and subsequent load cycles be given by the load 
curve 𝑓s. 
 
 In the orthotropic case the principal Kirchhoff stress contribution is instead given 
by 

  1 𝜏𝑖𝑖
E = 𝜆𝑖{𝑔𝑠(1 − 𝜆𝑖) − 𝑓𝑠(1 − 𝜆𝑖)}𝜉𝑖. (22.121.23)

 
 For the damage to be orthotropic we introduce a symmetric and positive definite 
damage tensor 𝜀h

𝑖𝑗. This tensor is initially the zero tensor corresponding to no damage.  
The evolution of damage begins with a half step Jaumann rotation of the tensor to 
maintain objectivity.  After that the local increment is performed.  As for the isotropic 
case, damage evolves in compression in combination with unloading.  We introduce the 
local damage increment as 

Δ𝜀loc
𝑖𝑗 = 𝛿𝑖𝑗 {0 if  𝜆𝑖 ≥ 1

max(0, Δ𝜆𝑖) otherwise, (22.121.24)

which is a diagonal tensor.  The global damage tensor increment is given by 

Δ𝜀ℎ
𝑖𝑗 = 𝑞𝑖𝑘𝑞𝑗𝑙Δ𝜀loc𝑘𝑙 , (22.121.25)

which is used to increment the damage tensor 𝜀ℎ
𝑖𝑗. The factor 𝜉𝑖 is now given by 

𝜉𝑖 = max
⎝
⎜⎛0,1 −

𝑞𝑘𝑖𝑞𝑙𝑖𝜀ℎ
𝑘𝑙

0.0001 + 𝜀m⎠
⎟⎞. (22.121.26)

where the quantity 𝜀m in the orthotropic case is the maximum compressive principal 
strain in any direction during the simulation thus far.  As for the isotropic case, the 
material is completely damaged after one load cycle and reloading will follow load 
curve 𝑓s. In addition, the directions corresponding to no loading will remain unaffected. 
 
 The factors 𝜉  and 𝜉𝑖 are treated as constants in the determination of the tangent 
stiffness so the contribution is regarded as hyperelastic and follows the exposition given 
in Section 19.179.1. 
 
 The reason for not differentiating the coefficients 𝜅, 𝜉  and 𝜉𝑖 is that they are 
always non-differentiable.  Their changes depend on whether the material is loaded or 
unloaded, i.e., the direction of the load.  Even if they were differentiable their 
contributions would occasionally result in a non-symmetric tangent stiffness matrix and 
any attempt to symmetrize this would probably destroy its properties.  After all, we 
believe that the one-dimensional nature and simplicity of this foam will be enough for 
good convergence properties even without differentiating these coefficients.
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22.122  Material Model 181:  Simplified Rubber/Foam 

 Material type 181 in LS-DYNA is a simplified “quasi”-hyperelastic rubber or 
foam model defined by a single uniaxial load curve or by a family of curves at discrete 
strain rates.  The term “quasi” is used because there is really no strain energy function 
for determining the stresses used in this model.  Rather the stress response mimics the 
gradient of the strain energy potential in the Ogden rubber (see material 77).  For 
deriving the tangent stiffness matrix we use the formulas as if a strain energy function 
were present, with appropriate modifications. 
This model is equipped with various features related to dissipation and damage, but 
not all of those are described in detail. 

 

22.122.1  Hyperelasticity Using the Principal Stretch Ratios 

 A hyperelastic constitutive law is determined by a strain energy function that we 
assume is expressed in terms of the principal stretches, i.e., 𝑊 = 𝑊(𝜆1, 𝜆2, 𝜆3). To obtain 
the Cauchy stress 𝜎𝑖𝑗 this is first calculated in the principal basis after which it is 
transformed back to the “base frame”, or standard basis.  The complete set of formulas 
is given by Crisfield [1997] and is for the sake of completeness recapitulated here.  For 
the following discussion we refer to figure 20-122 
 
 The principal Kirchhoff stress components are given by 

𝜏𝑖𝑖
E = 𝜆𝑖

𝜕𝑊
𝜕𝜆𝑖

(no sum), (22.122.1)

that are transformed to the standard basis using the standard formula 

 

 

𝐴 

𝐿

𝐷 

𝑑

𝑙

𝑃
𝑔(𝜆) = 𝑃/𝐴
𝜆 = 𝜆1 = 𝑙/𝐿 
𝜆2 = 𝜆3 = 𝑑/𝐷 

20-122 Uniaxial test parameters. 
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𝜏𝑖𝑗 = 𝑞𝑖𝑘𝑞𝑗𝑙𝜏𝑘𝑙
E. (22.122.2)

 
 The 𝑞𝑖𝑗 are the components of the orthogonal tensor containing the eigenvectors 
of the principal basis.  The Cauchy stress is then given by 

𝜎𝑖𝑗 = 𝐽−1𝜏𝑖𝑗, (22.122.3)

where 𝐽 = 𝜆1𝜆2𝜆3 is the relative volume change. 
 
 Now, the Ogden strain energy potential results in a Kirchhoff stress on the form 

𝜏𝑖𝑖
𝐸 = 𝑓 (𝜆̃𝑖) + 𝐾𝑚(𝐽 − 1) −

1
3 ∑ 𝑓 (𝜆̃𝑘)

3

𝑘=1
(22.4)

 

for a (large) bulk modulus 𝐾𝑚 and where 𝜆̃𝑖 = 𝜆𝑖/𝐽1/3 are the isochoric stretches.  In the 
Ogden material, 𝑓  has a specific form a priori that requires a least square approximation 
for fitting test data.  This is of course a restriction and the idea in material 181 is to let 𝑓  
be determined directly from input data.  The ansatz for the compressible foam option is 
to let  

𝜏𝑖𝑖
𝐸 = 𝑓 (𝜆𝑖) − 𝑓 (𝐽− 𝜈

1−2𝜈) 

 
(22.5)

 

for a given Poisson’s ratio 𝜈, a decision that will be made clear below.  So assume that 
𝑔(𝜆) is the curve providing the engineering stress as function of stretch in a uniaxial 
test, see figure 20-122, then the principal Kirchhoff stresses are 

𝜏11
𝐸 = 𝜆𝑔(𝜆) 

𝜏22
𝐸 = 𝜏33

𝐸 = 0 
 

 

(22.6)
 

What follows is the determination of the internal function 𝑓  for the rubber and foam 
option. 

22.122.1.1  Determination of f, rubber option 
For incompressibility we deduce that the principal stretches are 

𝜆1 = 𝜆
𝜆2 = 𝜆3 = 𝜆−1/2 

 
(22.7)
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which coincide with the isochoric counterparts.  Using these expressions when equating 
(22.4) and (22.6), one must determine 𝑓  from 

𝜆𝑔(𝜆) =
2
3 (𝑓 (𝜆) − 𝑓 (𝜆−1/2)) + 𝐾𝑚(𝐽 − 1) 

0 =
1
3 (𝑓 (𝜆−1/2) − 𝑓 (𝜆)) + 𝐾𝑚(𝐽 − 1). 

 

 

(22.8)
 

By subtracting these two equations to eliminate the influence of the pressure we get 
 

𝜆𝑔(𝜆) = 𝑓 (𝜆) − 𝑓 (𝜆−1
2) 

 
(22.9)

 

that can be rewritten as  
𝑓 (𝜆) = 𝜆𝑔(𝜆) + 𝑓 (𝜆−1/2). 

 
(22.10)

 

This in turn can be recursively expanded as 
𝑓 (𝜆) = 𝜆𝑔(𝜆) + 𝜆−1/2𝑔(𝜆−1/2) + 𝜆1/4𝑔(𝜆1/4) + ⋯ + 𝑓 (𝜆(−1/2)𝑛) 

 
 

(22.11)
) 

 

 
and by letting 𝑛 be large enough the function 𝑓  can be determined since the last term 
tends to zero. 

22.122.1.2  Determination of f, foam option 
Similarly, for a given Poisson’s ratio 𝜈, the principal stretches in a uniaxial tension test 
are 

𝜆1 = 𝜆
𝜆2 = 𝜆3 = 𝜆−𝜈 

 

 
(22.12)

 

and using (22.5) and (22.6) the equation to solve is now 
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𝜆𝑔(𝜆) = 𝑓 (𝜆) − 𝑓 (𝜆−𝜈)
 

 
(22.13)

 

Note that the equation corresponding to the second of (22.6) vanishes because of the 
ansatz in (22.5). The same technique as for the rubber option is used, recursive 
expansion gives 

𝑓 (𝜆) = 𝜆𝑔(𝜆) + 𝜆−𝜈𝑔(𝜆−𝜈) + 𝜆𝜈
2
𝑔(𝜆𝜈

2
) + ⋯ + 𝑓 (𝜆(−𝜈)𝑛) 

 
 

(22.14)
 

which for a large 𝑛 gives a sufficiently accurate representation of 𝑓 . 

22.122.2  Some Remarks 

22.122.2.1  Strain rates 
 The function 𝑓  introduced in the previous section depends not only on the 
stretches but for some choices of input also on the strain rate.  In this case each test 
curve 𝑔𝑖(𝜆) corresponding to a particular strain rate 𝜀𝑖̇ is converted to an internal 
function 𝑓𝑖(𝜆) following the procedure described in the previous section.  These internal 
functions are then used for determining the response for a given strain rate 𝜀 ̇ by 
interpolation.  Strain rates are treated in various ways depending on user defined 
parameters and we refer to Section and the Keyword Manual for more info. 

22.122.2.2  Modeling of the Frequency Independent Damping 
 An elastic-plastic stress 𝜎𝑑 is added to model the frequency independent 
damping properties of rubber.  This stress is deviatoric and determined by the shear 
modulus 𝐺 and the yield stress 𝜎𝑌. This part of the stress is updated incrementally as 

𝝈̃𝑑
𝑛+1 = 𝝈𝑑𝑛 + 2𝑮𝑰dev𝛥𝜺, (22.122.15)

where 𝛥𝜺 is the strain increment.  The trial stress is then radially scaled (if necessary) to 
the yield surface according to 

𝜎𝑑
𝑛+1 = 𝜎̃𝑑

𝑛+1min (1,
𝜎𝑌
𝜎eff

), (22.122.16)

where 𝜎eff is the effective von Mises stress for the trial stress 𝜎̃𝑑
𝑛+1.
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22.123  Material Model 187:  Semi-Analytical Model for the 
Simulation of Polymers 

22.123.1  Material law formulation 

 Choice of a yield surface formulation 
 All plastics are to some degree anisotropic.  The anisotropic characteristic can be 
due to fibre reinforcement, to the moulding process or it can be load induced in which 
case the material is at least initially isotropic.  Therefore a quadratic form in the stress 
tensor is often used to describe the yield surface.  We restrict the scope of this work to 
isotropic formulations.  However, the choice of this yield surface was made in view of 
later anisotropic generalisations.  In the isotropic case the most general quadratic yield 
surface can be written as 

𝑓 = 𝛔T𝐅𝛔 + 𝐁𝛔 + 𝐹0 ≤ 0, (22.123.1)

where 

𝛔 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

σ𝑥𝑥
σ𝑦𝑦
σ𝑧𝑧
σ𝑥𝑦
σ𝑦𝑧
σ𝑧𝑥⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

, 

𝐅 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝐹11 𝐹12 𝐹12 0 0 0
𝐹12 𝐹11 𝐹12 0 0 0
𝐹12 𝐹12 𝐹11 0 0 0
0 0 0 𝐹44 0 0
0 0 0 0 𝐹44 0
0 0 0 0 0 𝐹44⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

, 

𝐁 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛

𝐹1 0 0 0 0 0
0 𝐹1 0 0 0 0
0 0 𝐹1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

. 

(22.123.2)

Some restrictions apply to the choice of the coefficients.  The existence of a stress-free 
state and the equivalence of pure shear and biaxial tension/compression require 
respectively 

𝐹0 ≤ 0  and 𝐹44 = 2(𝐹11 − 𝐹12). (22.123.3)
Although 4 independent coefficients remain in the expression for the isotropic yield 
surface at this point, however the yield condition is not affected if all coefficients are 
multiplied by a constant.  Consequently only 3 coefficients can be freely chosen and 3 
experiments under different states of stress can be fitted by this formulation. 
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 Without loss of generality the expression for the yield surface can be 
reformulated in terms of the first two stress invariants: pressure and von Mises stress: 

𝑝 = −
σ𝑥𝑥 + σ𝑦𝑦 + σ𝑧𝑧

3 ,

σvm = √
3
2 ((σ𝑥𝑥 + 𝑝)2 + (σ𝑦𝑦 + 𝑝)2 + (σ𝑧𝑧 + 𝑝)2 + 2σ𝑥𝑦

2 + 2σ𝑦𝑧
2 + 2σ𝑧𝑥

2 )
. (22.123.4)

The expression for the yield surface then becomes 

𝑓 = σvm2 − 𝐴0 − 𝐴1𝑝 − 𝐴2𝑝2 ≤ 0, (22.123.5)

and identification of the coefficients gives 
𝐴0 = −𝐹0  ,   𝐴1 = 3𝐹1 and 𝐴2 = 9(1 − 𝐹11), (22.123.6)

or equivalently 

𝐹0 = −𝐴0, 𝐹1 =
𝐴1
3 , 𝐹11 = 1 −

𝐴2
9 , 𝐹44 = 3 and 𝐹12 = 𝐹11 −

𝐹44
2 = − (

1
2 +
𝐴2
9 ). (22.123.7)

Since there is no loss of generality, the simpler formulation in invariants is adopted 
from this point on.  In principle the coefficients of the yield surface can now be 
determined from 3 experiments.  Typically we would perform uniaxial tension, uniaxial 
compression and simple shear tests: 
 
 This allows computation of the coefficients in function of the test results: 

3σs2 = 𝐴0

σt2 = 3σs2 − 𝐴1
σt
3 + 𝐴2

σt2

9

σc2 = 3σs2 + 𝐴1
σc
3 + 𝐴2

σc2

9 ⎭}
}}
}⎬
}}
}}
⎫

⇒

⎩{
{{
{⎨
{{
{{
⎧𝐴0 = 3σs2

𝐴1 = 9σs2 (
σc − σt

σcσt
)

𝐴2 = 9(
σcσt − 3σs2

σcσt
)

. (22.123.8)

Alternatively we can also compute the coefficients relating to the formulation in stress 
space: 

 Figure 22.1.  Recommended tests for material data in SAMP 
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𝐹0 + 𝐹1𝜎t + 𝐹11σt2 = 0

𝐹0 − 𝐹1σc + 𝐹11σc2 = 0

𝐹0 + 𝐹44σs2 = 0
⎭}
}}
}}
⎬
}}
}}
}⎫

⇒

⎩{
{{
{{
⎨
{{
{{
{⎧𝐹1 = 𝐹0 (

1
σc

−
1
σt

)

𝐹11 = −
𝐹0

σtσc
𝐹44 = −

𝐹0
σs2

. (22.123.9)

Both are easily seen to be equivalent. 
 
 Conditions for convexity of the yield surface 
 Usually the yield surface is required to be convex, i.e. 

𝑓 (σ1) ≤ 0
𝑓 (σ2) ≤ 0
0 ≤ α ≤ 1⎭}

⎬
}⎫   ⇒  𝑓 (ασ1 + (1 − α)σ2) ≤ 0. (22.123.10)

The second derivative of 𝑓  is computed as 

𝑓 = 𝛔T𝐅𝛔 + 𝐁𝛔 + 𝐹0 →
∂2𝑓
∂σ2 = 2𝐅 (22.123.11)

A sufficient condition for convexity in 6D stress space is then that the matrix F should 
be positive semidefinite.  This means all eigenvalues of F should be positive or zero.  
The conditions for convexity will now be examined in physical terms for two cases: 
plane stress and general 3D. 
 
The plane stress case 
 In the plane stress case the yield condition reduces to: 

𝑓 = 𝛔T𝐅𝛔 + 𝐁𝛔 + 𝐹0, (22.123.12)

where 

𝛔 =
⎝
⎜⎜⎛

σ𝑥𝑥
σ𝑦𝑦
σ𝑥𝑦⎠

⎟⎟⎞   𝐅 =
⎝
⎜⎜⎛

𝐹11 𝐹12 0
𝐹12 𝐹11 0
0 0 𝐹44⎠

⎟⎟⎞   𝐁 =
⎝
⎜⎛

𝐹1 0 0
0 𝐹1 0
0 0 0⎠

⎟⎞, (22.123.13)

And convexity requires the eigenvalues of F to be non-negative: 
𝐹11 + 𝐹12 ≥ 0
𝐹11 − 𝐹12 ≥ 0
𝐹44 ≥ 0 ⎭}

⎬
}⎫ ⇒ {4σs2 ≥ σtσc

−𝐹0 ≥ 0 . (22.123.14)

 
The 3D case 
 In the full 3D case, the convexity condition is generally more stringent.  Again we 
require the eigenvalues of F to be non-negative, where F is now the full 6 by 6 matrix: 

𝐹11 + 2𝐹12 ≥ 0
𝐹11 − 𝐹12 ≥ 0
𝐹44 ≥ 0 ⎭}

⎬
}⎫ ⇒ {3σs2 ≥ σtσc

−𝐹0 ≥ 0 . (22.123.15)
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Leading to 

σs ≥
√σtσc
√3

>
√σtσc

2 . (22.123.16)

Alternatively a yield surface containing a linear rather than a quadratic term was 
implemented in SAMP-1.  

𝑓 = σvm − 𝐴0 − 𝐴1𝑝 − 𝐴2𝑝2 ≤ 0. (22.123.17)

As it will be difficult in general to guarantee a reasonable flow behaviour from three 
independent measurements in shear, tension and compression, a simplified flow rule 
has been implemented as the default in SAMP-1. The generally non-associated flow 
surface is given as: 

𝑔 = σvm2 + α𝑝2. (22.123.18)

This flow rule is associated if: 
𝐴1 = 0,
𝐴2 = −α (= cte). (22.123.19)

And clearly leads to a constant value for the plastic Poisson ratio: 

ν𝑝 =
9 − 2α

18 + 2α ⇒ α =
9
2

1 − 2ν𝑝

1 + ν𝑝
. (22.123.20)

Plausible flow behaviour just means that: 

0 ≤ α ≤
9
2 ⇒ 0 ≤ ν𝑝 ≤ 0.5. (22.123.21)

In SAMP-1 the value of the plastic Poisson coefficient is given by the user, either as a 
constant or as a load curve in function of the uniaxial plastic strain.  This allows 
adjusting the flow rule of the material to measurements of transversal deformation 
during uniaxial tensile or compressive testing.  This can be important for plastics since 
often a non-isochoric behaviour is measured. 
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 The possible values for the plastic Poisson ratio and the resulting flow behaviour 
are illustrated in Figure 22.2. 
 
 In SAMP-1 the formulation is slightly modified and based on a flow rule given 
as: 

𝑔′ = √σvm2 + α𝑝2. (22.123.22)

The plastic strain rate computation is not normalized: 

εṗ = λ̇
∂𝑔′

∂σ. (22.123.23)

The volumetric and deviatoric plastic strain rates in this case are given as : 

εv̇p = λ̇(−2α𝑝) 2𝑔′⁄ =
λ̇(−2α𝑝)

√4σvm2 + 4α𝑝2
,

εḋp = λ̇3s 2𝑔′⁄ =
λ̇3s

√4σvm2 + 4α𝑝2
, 

(22.123.24)

which amounts to a different definition of the plastic consistency parameter which of 
course has to be considered when equivalent plastic strain values are computed. 
 

22.123.2  Hardening formulation 

 The hardening formulation is the attractive part of SAMP-1.  The formulation is 
fully tabulated and consequently the user can directly input measurement results from 
uniaxial tension, uniaxial compression and simple shear tests in terms of load curves 
giving the yield stress as a function of the corresponding plastic strain.  No fitting of 
coefficients is required.  The test results that are reflected in the load curves will be used 
exactly by SAMP-1 without fitting to any analytical expression.  Consequently the 

 Figure 22.2.  Influence of the flow rule on the plastic Poisson ratio 
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hardening will be dependent upon the state of stress and not only upon the plastic 
strain. 
 

22.123.3  Rate effects 

 Plastics are usually highly rate dependent.  A proper viscoplastic consideration 
of the rate effects is therefore important in the numerical treatment of the material law.  
Data to determine the rate dependency are based on uniaxial dynamic testing.  If 
dynamic tests are available, then the load curve defining the yield stress in uniaxial 
tension is simply replaced by a table definition containing multiple load curves 
corresponding to different values of the plastic strain rate.  This is illustrated in the 
Figure 22.3. 
 

22.123.4  Damage and failure 

 Numerous damage models can be found in the literature.  Probably the simplest 
concept is elastic damage where the damage parameter (usually written as 𝑑) is a 
function of the elastic energy and effectively reduces the elastic modulus of the 
material.  In the case of ductile damage, 𝑑 is a function of plastic straining and affects 
the yield stress rather than the elastic modulus.  This is equivalent to plastic softening.  
In more sophisticated damage models, d depends on both the plastic straining and the 
elastic energy (and maybe other factors) and effects yield stress as well as elastic 
modulus. 
 
 A simple damage model was added to the SAMP-1 material law where the 
damage parameter d is a function of plastic strain only.  A load curve must be provided 
by the user giving d as a function of the (true) plastic strain under uniaxial tension.  The 
value of the critical damage Dc leading to rupture is then the only other required 
additional input.  The implemented damage model is isotropic. 
 

 Figure 22.3.  Tensile hardening curve from dynamic tensile tests 
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 The implemented model then uses the notion of effective cross section, which is 
the true cross section of the material minus the cracks that have developed.  We will use 
the following notation: 

𝐴0 → undeformed cross section 
𝐴 → deformed or current cross section 
𝐴0 → undeformed cross section 

 
 We define the effective stress as the force divided by the effective cross section: 

σ =
𝑓
𝐴 ,

σeff =
𝑓
𝐴eff

=
𝑓

𝐴(1 − 𝑑) =
σ

1 − 𝑑,
(22.25)

which allows defining an effective yield stress: 

σy,eff =
σy

1 − 𝑑. (22.26)

 Figure 22.4.  Damage parameter from uniaxial tensile test 
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22.124  Material Model 196:  General Spring Discrete Beam 

 If TYPE = 0, elastic behavior is obtained.  In this case, if the linear spring 
stiffness is used, the force, 𝐹, is given by: 

𝐹 = 𝐹0 + 𝐾Δ𝐿 + 𝐷Δ𝐿̇, (22.124.1)

but if the load curve ID is specified, the force is then given by: 

𝐹 = 𝐹0 + 𝐾 𝑓 (Δ𝐿)
⎣
⎢⎡1 + 𝐶1 ⋅ Δ𝐿̇ + 𝐶2 ⋅ sgn(Δ𝐿̇)ln

⎝
⎜⎛max

⎩{⎨
{⎧1. ,

∣Δ𝐿̇∣
𝐷𝐿𝐸⎭}⎬

}⎫

⎠
⎟⎞

⎦
⎥⎤ + 𝐷Δ𝐿̇

+ 𝑔(Δ𝐿)ℎ(Δ𝐿̇). 
(22.124.2)

 
 In these equations, Δ𝐿 is the change in length  

Δ𝐿 = current length − initial length. (22.124.3)
 
 If TYPE = 1, inelastic behavior is obtained.  In this case, the yield force is taken 
from the load curve: 

𝐹Y = 𝐹y(Δ𝐿plastic), (22.124.4)

where 𝐿plastic is the plastic deflection.  A trial force is computed as: 

𝐹T = 𝐹n + KΔ𝐿̇Δ𝑡, (22.124.5)

and is checked against the yield force to determine F: 

𝐹 = {𝐹Y if 𝐹T > 𝐹Y
𝐹T if 𝐹T ≤ 𝐹Y

. (22.124.6)

 
 The final force, which includes rate effects and damping, is given by: 

𝐹𝑛+1 = 𝐹 ⋅
⎣
⎢⎡1 + 𝐶1 ⋅ Δ𝐿̇ + 𝐶2 ⋅ sgn(Δ𝐿̇)ln

⎝
⎜⎛max

⎩{⎨
{⎧1. ,

∣Δ𝐿̇∣
𝐷𝐿𝐸⎭}⎬

}⎫

⎠
⎟⎞

⎦
⎥⎤ + 𝐷Δ𝐿̇

+ 𝑔(Δ𝐿)ℎ(Δ𝐿̇).
(22.124.7)

Unless the origin of the curve starts at (0,0), the negative part of the curve is used 
when the spring force is negative where the negative of the plastic displacement is 
used to interpolate, 𝐹y.  The positive part of the curve is used whenever the force is 
positive.  
 
 The cross sectional area is defined on the section card for the discrete beam 
elements, See *SECTION_BEAM.  The square root of this area is used as the contact 
thickness offset if these elements are included in the contact treatment.
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23    
Equation of State Models 

 LS-DYNA has 10 equation of state models which are described in this section. 
 
 1. Linear Polynomial 
 2. JWL High Explosive 
 3. Sack “Tuesday” High Explosive 
 4. Gruneisen 
 5. Ratio of Polynomials 
 6. Linear Polynomial With Energy Deposition 
 7. Ignition and Growth of Reaction in High Explosives 
 8. Tabulated Compaction 
 9. Tabulated 
 10. Propellant-Deflagration 
 
 The forms of the first five equations of state are given in the KOVEC user’s 
manual [Woodruff 1973] as well as below. 

23.1  Equation of State Form 1:  Linear Polynomial 

 This polynomial equation of state, linear in the internal energy per initial 
volume, 𝐸, is given by 

𝑝 = 𝐶0 + 𝐶1𝜇 + 𝐶2𝜇2 + 𝐶3𝜇3 + (𝐶4 + 𝐶5𝜇 + 𝐶6𝜇2)𝐸 (23.1.1)

Here 𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 and 𝐶6 are user defined constants and  

𝜇 =
1
𝑉 − 1. (23.1.2)

where 𝑉 is the relative volume.  In expanded elements, the coefficients of 𝜇2 are set to 
zero, i.e., 

𝐶2 = 𝐶6 = 0. (23.1.3)
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 The linear polynomial equation of state may be used to model gas with the 
gamma law equation of state.  This may be achieved by setting: 

𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = 𝐶6 = 0, (23.1.4)
and 

𝐶4 = 𝐶5 = 𝛾 − 1, (23.1.5)
where 𝛾 is the ratio of specific heats.  The pressure is then given by: 

𝑝 = (𝛾 − 1)
𝜌
𝜌0

𝐸. (23.1.6)

Note that the units of 𝐸 are the units of pressure. 
 

23.2  Equation of State Form 2:  JWL High Explosive 

 The JWL equation of state defines pressure as a function of relative volume, 𝑉, 
and internal energy per initial volume, 𝐸, as 

𝑝 = 𝐴(1 −
𝜔
𝑅 1𝑉) 𝑒−𝑅 1𝑉 + 𝐵 (1 −

𝜔
𝑅 2𝑉) 𝑒−𝑅 2𝑉 +

𝜔𝐸
𝑉 , (23.2.7)

where 𝜔, A, 𝐵, 𝑅1 and 𝑅2 are user defined input parameters.  The JWL equation of state 
is used for determining the pressure of the detonation products of high explosives in 
applications involving metal accelerations.  Input parameters for this equation are given 
by Dobratz [1981] for a variety of high explosive materials. 
 
 This equation of state is used with the explosive burn (material model 8) material 
model which determines the lighting time for the explosive element. 
 

23.3  Equation of State Form 3:  Sack “Tuesday” High 
Explosives 

 Pressure of detonation products is given in terms of the relative volume, 𝑉, and 
internal energy per initial volume, 𝐸, as [Woodruff 1973]: 

𝑝 =
𝐴 3

𝑉 𝐴1
𝑒−𝐴 2𝑉 (1 −

𝐵1
𝑉 ) +

𝐵2
𝑉 𝐸, (23.3.8)

where 𝐴1, 𝐴2, 𝐴3, 𝐵1 and 𝐵2 are user-defined input parameters. 
 



LS-DYNA Theory Manual Equation of State Models 

LS-DYNA DEV 06/21/18 (r:10113) 21-3 (Equation of State Models) 

 This equation of state is used with the explosive burn (material model 8) material 
model which determines the lighting time for the explosive element. 
 

23.4  Equation of State Form 4:  Gruneisen 

 The Gruneisen equation of state with cubic shock velocity-particle velocity 
defines pressure for compressed material as 

𝑝 =
𝜌0𝐶2𝜇[1 + (1 − 𝛾0

2 )𝜇 − 𝑎
2 𝜇 2]

[1 − (𝑆1 − 1)𝜇 − 𝑆2
𝜇 2

𝜇 + 1 − 𝑆3
𝜇 3

(𝜇 + 1)2]
2  + (𝛾0 + 𝛼𝜇)𝐸, (23.4.9)

where 𝐸 is the internal energy per initial volume, 𝐶 is the intercept of the 𝑢s − 𝑢p curve, 
𝑆1, 𝑆2, and 𝑆3 are the coefficients of the slope of the 𝑢s − 𝑢p curve, 𝛾0 is the Gruneisen 
gamma, and a is the first order volume correction to 𝛾0.  Constants 𝐶, 𝑆1, 𝑆2, 𝑆3,  𝛾0 and 
𝑎 are user defined input parameters.  The compression is defined in terms of the relative 
volume, 𝑉, as: 

𝜇 =
1
𝑉 − 1. (23.4.10)

 
 For expanded materials as the pressure is defined by:  

𝑝 = 𝜌0 𝐶 2𝜇 + (𝛾0 + 𝛼𝜇)𝐸. (23.4.11)

 

23.5  Equation of State Form 5:  Ratio of Polynomials 

 The ratio of polynomials equation of state defines the pressure as 

𝑝 =
𝐹1 + 𝐹2𝐸 + 𝐹3𝐸2 + 𝐹4𝐸3

𝐹5 + 𝐹6𝐸 + 𝐹7𝐸2 (1 + 𝛼𝜇), (23.5.12)

where 

𝐹𝑖 = ∑𝐴𝑖𝑗𝑚𝑗
𝑛

𝑗= 0
, 𝑛 = 4 if 𝑖 < 3, 𝑛 = 3 if 𝑖 ≥ 3 (23.5.13)

𝜇 =
𝜌

𝜌0 − 1. (23.5.14)
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 In expanded zoned 𝐹1 is replaced by 𝐹′1 = 𝐹1 + 𝛽𝜇2 Constants 𝐴𝑖𝑗, 𝛼, and 𝛽 are 
user input. 
 

23.6  Equation of State Form 6:  Linear With Energy 
Deposition 

 This polynomial equation of state, linear in the internal energy per initial 
volume, 𝐸, is given by 

𝑝 = 𝐶0 + 𝐶1𝜇 + 𝐶2𝜇2 + 𝐶3𝜇3 + (𝐶4 + 𝐶5𝜇 + 𝐶6𝜇2)𝐸, (23.6.15)

Here 𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5  and 𝐶6 are user defined constants and  

𝜇 =
1
𝑉 − 1, (23.6.16)

where 𝑉 is the relative volume.  In expanded elements, we set the coefficients of 𝜇2 to 
zero, i.e., 

𝐶2 = 𝐶6 = 0. (23.6.17)
 
 Internal energy, 𝐸, is increased according to an energy deposition rate versus 
time curve whose ID is defined in the input. 
 
 

23.7  Equation of State Form 7:  Ignition and Growth Model 

 A JWL equation of state defines the pressure in the unreacted high explosive as 

𝑃𝑒 = 𝐴𝑒 (1 −
𝜔𝑒
𝑅1𝑒𝑉𝑒

) 𝑒−𝑅1𝑒𝑉𝑒 + 𝐵𝑒 (1 −
𝜔𝑒
𝑅2 𝑒𝑉𝑒

) 𝑒−𝑅2 𝑒𝑉𝑒 +
𝜔𝑒𝐸
𝑉𝑒

, (23.7.18)

where 𝑉𝑒 is the relative volume, 𝐸𝑒 is the internal energy, and the constants 𝐴𝑒, 𝐵𝑒, 𝜔𝑒, 
𝑅1𝑒 and 𝑅2𝑒 are input constants.  Similarly, the pressure in the reaction products is 
defined by another JWL form 

𝑃𝑝 = 𝐴𝑝 (1 −
𝜔𝑝

𝑅1𝑝  𝑉𝑝
) 𝑒−𝑅1𝑝𝑉𝑝 + 𝐵𝑝 (1 −

𝜔𝑒
𝑅2 𝑝𝑉𝑝

) 𝑒−𝑅2 𝑝 𝑉𝑝 +
𝜔 𝑝𝐸
𝑉𝑝

. (23.7.19)

 
 The mixture of unreacted explosive and reaction products is defined by the 
fraction reacted 𝐹 (𝐹 = 0 implies no reaction, 𝐹 = 1 implies complete conversion from 
explosive to products).  The pressures and temperature are assumed to be in 
equilibrium, and the relative volumes are assumed to be additive: 
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𝑉 = (1 − 𝐹)𝑉𝑒 + 𝐹𝑉𝑝. (23.7.20)

 
 The rate of reaction is defined as 
∂𝐹
∂𝑡 =  𝐼(FCRIT − 𝐹)𝑦(𝑉𝑒

−1 − 1)3[1 + 𝐺(𝑉 𝑒
−1 − 1)] + 𝐻(1 − 𝐹)𝑦𝐹𝑥𝑃𝑧(𝑉𝑝

−1 − 1)𝑚, (23.7.21)

where 𝐼, 𝐺, 𝐻, 𝑥, 𝑦, 𝑧 and 𝑚 (generally 𝑚 = 0) are input constants. 
 
 The JWL equations of state and the reaction rates have been fitted to one- and 
two-dimensional shock initiation and detonation data for four explosives:  PBX-9404, 
RX-03-BB, PETN, and cast TNT.  The details of calculational method are described by 
Cochran and Chan [1979].  The detailed one-dimensional calculations and parameters 
for the four explosives are given by Lee and Tarver [1980].  Two-dimensional 
calculations with this model for PBX 9404 and LX-17 are discussed by Tarver and 
Hallquist [1981]. 
 

23.8  Equation of State Form 8:  Tabulated Compaction 

 Pressure is positive in compression, and volumetric strain 𝜀𝑉  is positive in 
tension.  The tabulated compaction model is linear in internal energy per unit volume.  
Pressure is defined by 

𝑝 = 𝐶(𝜀𝑉) + 𝛾𝑇(𝜀𝑉)𝐸, (23.8.22)
during loading (compression).  Unloading occurs at a slope corresponding to the bulk 
modulus at the peak (most compressive) volumetric strain, as shown in Figure 23.1.  
Reloading follows the unloading path to the point where unloading began, and then 
continues on the loading path described by Equation (23.8.22). 
 

23.9  Equation of State Form 9:  Tabulated 

 The tabulated equation of state model is linear in internal energy.  Pressure is 
defined by 

𝑝 = 𝐶(𝜀𝑉) + 𝛾𝑇(𝜀𝑉)𝐸, (23.9.23)
The volumetric strain 𝜀𝑉  is given by the natural algorithm of the relative volume.  Up to 
10 points and as few as 2 may be used when defining the tabulated functions.  The 
pressure is extrapolated if necessary.  Loading and unloading are along the same curve 
unlike equation of state form 8. 
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23.10  Equation of State Form 10:  Propellant-Deflagration 

 A deflagration (burn rate) reactive flow model requires an unreacted solid 
equation-of-state, a reaction product equation-of-state, a reaction rate law and a mixture 
rule for the two (or more) species.  The mixture rule for the standard ignition and 
growth model [Lee and Tarver 1980] assumes that both pressures and temperatures are 
completely equilibrated as the reaction proceeds.  However, the mixture rule can be 
modified to allow no thermal conduction or partial heating of the solid by the reaction 
product gases.  For this relatively slow process of airbag propellant burn, the thermal 
and pressure equilibrium assumptions are valid.  The equations-of-state currently used 
in the burn model are the JWL, Gruneisen, the van der Waals co-volume, and the 
perfect gas law, but other equations-of-state can be easily implemented.  In this 
propellant burn, the gaseous nitrogen produced by the burning sodium azide obeys the 
perfect gas law as it fills the airbag but may have to be modeled as a van der Waal’s gas 
at the high pressures and temperatures produced in the propellant chamber.  The 
chemical reaction rate law is pressure, particle geometry and surface area dependant, as 
are most high-pressure burn processes.  When the temperature profile of the reacting 
system is well known, temperature dependent Arrhenius chemical kinetics can be used. 
 Since the airbag propellant composition and performance data are company 
private information, it is very difficult to obtain the required information for burn rate 
modeling.  However, Imperial Chemical Industries (ICI) Corporation supplied pressure 
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Figure 23.1.  Pressure versus volumetric strain curve for equation of state form
8 with compaction.  In the compacted states, the bulk unloading modulus
depends on the peak volumetric strain. 
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exponent, particle geometry, packing density, heat of reaction, and atmospheric 
pressure burn rate data which allowed us to develop the numerical model presented 
here for their NaN3 + Fe2O3 driver airbag propellant.  The deflagration model, its 
implementation, and the results for the ICI propellant are presented in the are described 
by [Hallquist, et.  al., 1990].  
 
 The unreacted propellant and the reaction product equations-of-state are both of 
the form: 

𝑝 = 𝐴 𝑒−𝑅1𝑉 + 𝐵𝑒−𝑅2𝑉 +
𝜔𝐶v𝑇
𝑉 − 𝑑, (23.10.24)

where 𝑝 is pressure (in Mbars), 𝑉 is the relative specific volume (inverse of relative 
density), 𝜔 is the Gruneisen coefficient, 𝐶v is heat capacity (in Mbars -cc/cc°K), 𝑇 is 
temperature in °𝐾, 𝑑 is the co-volume, and 𝐴, 𝐵, 𝑅1 and 𝑅2 are constants.  Setting 𝐴 =
𝐵 = 0 yields the van der Waal’s co-volume equation-of-state.  The JWL equation-of-state 
is generally useful at pressures above several kilobars, while the van der Waal’s is 
useful at pressures below that range and above the range for which the perfect gas law 
holds.  Of course, setting 𝐴 = 𝐵 = 𝑑 = 0 yields the perfect gas law.  If accurate values of 
𝜔 and 𝐶v plus the correct distribution between “cold” compression and internal 
energies are used, the calculated temperatures are very reasonable and thus can be used 
to check propellant performance. 
 
 The reaction rate used for the propellant deflagration process is of the form: 

∂𝐹
∂𝑡 = 𝑍(1 − 𝐹)𝑦 𝐹𝑥 𝑝𝑤 + 𝑉(1 − 𝐹)𝑢 𝐹𝑟𝑝𝑠

for  0 < 𝐹 < 𝐹limit1 
for  𝐹limit2 < 𝐹 < 1

(23.10.25)

where 𝐹 is the fraction reacted (𝐹 = 0 implies no reaction, 𝐹 = 1 is complete reaction), 𝑡 
is time, and 𝑝 is pressure (in Mbars), 𝑟, 𝑠, 𝑢, 𝑤, 𝑥, 𝑦,  𝐹limit1 and 𝐹limit2 are constants used 
to describe the pressure dependence and surface area dependence of the reaction rates.  
Two (or more) pressure dependent reaction rates are included in case the propellant is a 
mixture or exhibited a sharp change in reaction rate at some pressure or temperature.  
Burning surface area dependences can be approximated using the (1 − 𝐹)𝑦𝐹𝑥 terms.  
Other forms of the reaction rate law, such as Arrhenius temperature dependent 𝑒−𝐸/𝑅𝑇 
type rates, can be used, but these require very accurate temperatures calculations.  
Although the theoretical justification of pressure dependent burn rates at kilobar type 
pressures is not complete, a vast amount of experimental burn rate versus pressure data 
does demonstrate this effect and hydrodynamic calculations using pressure dependent 
burn accurately simulate such experiments. 
 
 The deflagration reactive flow model is activated by any pressure or particle 
velocity increase on one or more zone boundaries in the reactive material.  Such an 
increase creates pressure in those zones and the decomposition begins.  If the pressure 
is relieved, the reaction rate decreases and can go to zero.  This feature is important for 



Equation of State Models LS-DYNA Theory Manual 

21-8 (Equation of State Models) LS-DYNA DEV 06/21/18 (r:10113) 

short duration, partial decomposition reactions.  If the pressure is maintained, the 
fraction reacted eventually reaches one and the material is completely converted to 
product molecules.  The deflagration front rates of advance through the propellant 
calculated by this model for several propellants are quite close to the experimentally 
observed burn rate versus pressure curves. 
 
 To obtain good agreement with experimental deflagration data, the model 
requires an accurate description of the unreacted propellant equation-of-state, either an 
analytical fit to experimental compression data or an estimated fit based on previous 
experience with similar materials.  This is also true for the reaction products equation-
of-state.  The more experimental burn rate, pressure production and energy delivery 
data available, the better the form and constants in the reaction rate equation can be 
determined. 
 
 Therefore the equations used in the burn subroutine for the pressure in the 
unreacted propellant 

  𝑃𝑢 = 𝑅1 ⋅ 𝑒−𝑅5⋅𝑉𝑢 + 𝑅2 ⋅ 𝑒−𝑅6⋅𝑉𝑢 +
𝑅3 ⋅ 𝑇𝑢

𝑉𝑢 − FRER, (23.10.26)

where 𝑉𝑢 and 𝑇𝑢 are the relative volume and temperature respectively of the unreacted 
propellant.  The relative density is obviously the inverse of the relative volume.  The 
pressure 𝑃p in the reaction products is given by: 

𝑃p =  𝐴 ⋅ 𝑒−𝑋𝑃1⋅𝑉𝑝 + 𝐵 ⋅ 𝑒−𝑋𝑃2⋅𝑉𝑝 +
𝐺 ⋅ 𝑇𝑝

𝑉𝑝 − CCRIT. (23.10.27)

As the reaction proceeds, the unreacted and product pressures and temperatures are 
assumed to be equilibrated (𝑇𝑢 = 𝑇𝑝 = 𝑇, 𝑝 = 𝑃𝑢 = 𝑃𝑝) and the relative volumes are 
additive: 

𝑉 = (1 − 𝐹) ⋅ 𝑉𝑢 + 𝐹 ⋅ 𝑉𝑝 (23.10.28)

where 𝑉 is the total relative volume.  Other mixture assumptions can and have been 
used in different versions of DYNA2D/3D.  The reaction rate law has the form: 

∂𝐹
∂𝑡 = GROW1(𝑝 + FREQ)𝑒𝑚(𝐹 + FMXIG)𝑎𝑟1(1 − 𝐹 + FMXIG)𝑒𝑠1

+GROW2(𝑝 + FREQ)𝑒𝑛(𝐹 + FMXIG)
 (23.10.29)

 
 If 𝐹 exceeds FMXGR, the GROW1 term is set equal to zero, and, if 𝐹 is less 
thanFMNGR, the GROW2 term is zero.  Thus, two separate (or overlapping) burn rates 
can be used to describe the rate at which the propellant decomposes. 
 
 This equation-of-state subroutine is used together with a material model to 
describe the propellant.  In the airbag propellant case, a null material model (type #10) 
can be used.  Material type #10 is usually used for a solid propellant or explosive when 
the shear modulus and yield strength are defined.  The propellant material is defined by 
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the material model and the unreacted equation-of-state until the reaction begins.  The 
calculated mixture states are used until the reaction is complete and then the reaction 
product equation-of-state is used.  The heat of reaction, ENQ, is assumed to be a 
constant and the same at all values of 𝐹 but more complex energy release laws could be 
implemented.
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24    
Artificial Bulk Viscosity 

 Bulk viscosity is used to treat shock waves.  Proposed in one spatial dimension 
by von Neumann and Richtmyer [1950], the bulk viscosity method is now used in 
nearly all wave propagation codes.  A viscous term q is added to the pressure to smear 
the shock discontinuities into rapidly varying but continuous transition regions.  With 
this method the solution is unperturbed away from a shock, the Hugoniot jump 
conditions remain valid across the shock transition, and shocks are treated 
automatically.  In our discussion of bulk viscosity we draw heavily on works by 
Richtmyer and Morton [1967], Noh [1976], and Wilkins [1980].  The following 
discussion of the bulk viscosity applies to solid elements since strong shocks are not 
normally encountered in structures modeled with shell and beam elements. 
 

24.1  Shock Waves 

 Shock waves result from the property that sound speed increases with increasing 
pressure.  A smooth pressure wave can gradually steepen until it propagates as a 
discontinuous disturbance called a shock.  See Figure 24.1.  Shocks lead to jumps in 
pressure, density, particle velocity, and energy. 
 
 Consider a planar shock front moving through a material.  Mass, momentum, 
and energy are conserved across the front.  Application of these conservation laws leads 
to the well-known Rankine-Hugoniot jump conditions 

𝑢𝑠 =
𝜌(𝑢 − 𝑢0)

𝜌 − 𝜌0
, (24.1)

𝜌 − 𝜌0 = 𝜌0𝑢𝑠(𝑢 − 𝑢0), (24.2)

𝑒 − 𝑒0 =
𝑝 − 𝑝0

2
𝜌 − 𝜌0

𝜌0𝜌 , (24.3)
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where Equation (24.3) is an expression of the energy jump condition using the results of 
mass conservation, Equation (24.1), and momentum conservation, Equation (24.2).  
Here, 𝑢𝑠 is the shock velocity, 𝑢 is the particle velocity, 𝜌 is the density, 𝑒 is the specific 
internal energy, 𝑝 is the pressure, and the subscript,  0, indicates the state ahead of the 
shock. 
 
 The energy equation relating the thermodynamic quantities density, pressure, 
and energy must be satisfied for all shocks.  The equation of state 

𝑝 = 𝑝(𝜌, 𝑒), (24.4)
which defines all equilibrium states that can exist in a material and relating the same 
quantities as the energy equation, must also be satisfied.  We may use this equation to 
eliminate energy from  
Equation (24.3) and obtain a unique relationship between pressure and compression.  
This relation, called the Hugoniot, determines all pressure-compression states 
achievable behind the shock.  Shocking takes place along the Rayleigh line and not the 
Hugoniot (Figure 24.1) and because the Hugoniot curve closely approximates an 
isentrope, we may often assume the unloading follows the Hugoniot.  Combining 
Equations (24.1) and (24.2), we see that the slope of the Rayleigh line is related to the 
shock speed: 

𝑢𝑠 =
1
𝜌0 ⎣

⎢⎢
⎡𝑝1 − 𝑝0

1
𝜌0

− 1
𝜌 ⎦

⎥⎥
⎤

1
2⁄

. (24.5)

For the material of Figure 24.2, increasing pressure increases shock speed. 

σ
ε

σ

x

Figure 24.1.  If the sound speed increases as the stress increases the traveling
wave above will gradually steepen as it moves along the x-coordinate to form a
shock wave. 
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 Consider a 𝛾-law gas with the equation of state 

𝑝 = (𝛾 − 1)𝜌𝑒, (24.6)
where 𝛾 is the ratio of specific heats.  Using the energy jump condition, we can 
eliminate e and obtain the Hugoniot 

𝑝
𝑝0

= 𝑝∗ =
2𝑉0 + (𝛾 − 1)(𝑉0 − 𝑉)
2𝑉 − (𝛾 − 1)(𝑉0 − 𝑉) , (24.7)

where 𝑉 is the relative volume.  Figure 24.3 shows a plot of the Hugoniot and adiabat 
where it is noted that for 𝑝∗ = 1, the slopes are equal.  Thus for weak shocks, Hugoniot 
and adiabat agree to the first order and can be ignored in numerical calculations.  
However, special treatment is required for strong shocks, and in numerical calculations 
this special treatment takes the form of bulk viscosity. 
 

24.2  Bulk Viscosity 

 In the presence of shocks, the governing partial differential equations can give 
multiple weak solutions.  In their discussion of the Rankine-Hugoniot jump conditions, 
Richtmyer and Morton [1967] report that the unmodified finite difference (element) 
equations often will not produce even approximately correct answers.  One possible 

p1

p0

Figure 24.2.  Shocking takes place along the Rayleigh line, and release closely
follows the Hugoniot.  The cross-hatched area is the difference between the
internal energy behind the shock and the internal energy lost on release. 
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solution is to employ shock fitting techniques and treat the shocks as interior boundary 
conditions.  This technique has been used in one spatial dimension but is too complex to 
extend to multi-dimensional problems of arbitrary geometry.  For these reasons the 
pseudo-viscosity method was a major breakthrough for computational mechanics. 
 
 The viscosity proposed by von Neumann and Richtmyer [1950] in one spatial 
dimension has the form  

𝑞 = 𝐶0𝜌(Δ𝑥)2 (
∂𝑥̇
∂𝑥)

2
if

∂𝑥̇
∂𝑥 < 0

𝑞 = 0 if
∂𝑥̇
∂𝑥 ≥ 0

 (24.8)

where 𝐶0 is a dimensionless constant and 𝑞 is added to the pressure in both the 
momentum and energy equations.  When 𝑞 is used, they proved the following for 
steady state shocks: the hydrodynamic equations possess solutions without 
discontinuities; the shock thickness is independent of shock strength and of the same 
order as the Δ𝑥 used in the calculations; the q term is insignificant outside the shock 
layer; and the jump conditions are satisfied.  According to Noh, it is generally believed 
that these properties: “hold for all shocks, and this has been borne out over the years by 
countless numerical experiments in which excellent agreement has been obtained either 
with exact solutions or with hydrodynamical experiments.” 
 
 In 1955, Landshoff [1955] suggested the addition of a linear term to the 𝑞 of von 
Neumann and Richtmyer leading to a 𝑞 of the form 

𝑞 = 𝐶0𝜌(Δ𝑥)2 (
𝜕𝑥̇
𝜕𝑥)

2
if  

𝜕𝑥̇
𝜕𝑥 < 0

𝑞 = 𝐶0𝜌(Δ𝑥)2 (
∂ẋ
∂x)

2
if

𝜕𝑥̇
𝜕𝑥 ≥ 0,

 (24.9)

Limiting compression

Hugoniot

Adiabat

Slopes of Hugoniot and adiabat

are equat at 

 Figure 24.3.  Hugoniot curve and adiabat for a g-law gas (from [Noh 1976]). 
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where 𝐶1 is a dimensionless constant and 𝑎 is the local sound speed.  The linear term 
rapidly damps numerical oscillations behind the shock front (Figure 24.3).  A similar 
form was proposed independently by Noh about the same time. 
 
 In an interesting aside, Wilkins [1980] discusses work by Kuropatenko who, 
given an equation of state, derived a q by solving the jump conditions for pressure in 
terms of a change in the particle velocity, Δ𝑢.  For an equation of state of the form, 

𝑝 = 𝐾 (−
𝜌
𝜌0

− 1), (24.10)

pressure across the shock front is given by [Wilkins 1980] 

𝑝 = 𝑝0 + 𝜌0
(Δ𝑢)2

2 + 𝜌0|Δ𝑢| [
(Δ𝑢)2

2 + 𝑎 2]
1

2⁄

, (24.11)

where 𝑎 is a sound speed 

𝑎 = (
𝐾
𝜌0

)
1

2⁄
. (24.12)

 
 For a strong shock, Δ𝑢2 >> 𝑎2, we obtain the quadratic form 

𝑞 = 𝜌0Δ𝑢2, (24.13)

and for a weak shock, Δ𝑢2 << 𝑎2, the linear form 
𝑞 = 𝜌0𝑎Δ𝑢, (24.14)

Thus linear and quadratic forms for 𝑞 can be naturally derived.  According to Wilkins, 
the particular expressions for 𝑞 obtained by Kuropatenko offer no particular advantage 
over the expressions currently used in most computer programs. 
 
 In extending the one-dimensional viscosity formulations to multi-dimensions, 
most code developers have simply replaced the divergence of the velocity with, 𝜀𝑘̇𝑘, the 
trace of the strain rate tensor, and the characteristic length with the square root of the 
area A, in two dimensions and the cubic root of the volume v in three dimensions.  
These changes also give the default viscosities in the LS-DYNA codes: 

𝑞 = 𝜌 𝑙(𝐶0𝑙𝜀𝑘̇𝑘
2 − 𝐶𝑙𝑎𝜀𝑘̇𝑘) if 𝜀𝑘̇𝑘 < 0

𝑞 = 0 if 𝜀𝑘̇𝑘 ≥ 0
(24.15)

where 𝐶0 and 𝐶1 are dimensionless constants which default to 1.5 and 0.06, 
respectively, where 1 = √𝐴 in 2D, and √𝑣3  in 3D, a is the local sound speed, 𝐶0 defaults 
to 1.5 and 𝐶1 defaults to 0.06. 
 
 In converging two- and three-dimensional geometries, the strain rate 𝜀𝑘̇𝑘 is 
negative and the 𝑞 term in Equation (24.15) is nonzero, even though no shocks may be 
generated.  This results in nonphysical 𝑞 heating.  When the aspect ratios of the 
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elements are poor (far from unity), the use of a characteristic length based on √𝐴 or √𝑣3  
can also result in nonphysical 𝑞 heating and even occasional numerical instabilities.  
Wilkins uses a bulk viscosity that is based in part on earlier work by Richards [1965] 
that extends the von Neumann and Richtmyer formulations in a way that avoids these 
problems.  This latter 𝑞 may be added in the future if the need arises. 
 Wilkins’ 𝑞 is defined as: 

𝑞 = 𝐶0𝜌𝑙2 (
𝑑𝑠
𝑑𝑡)

2
− 𝐶𝑙𝜌𝑙𝑎∗ 𝑑𝑠

𝑑𝑡  if  𝜀𝑘̇𝑘 < 0

𝑞 = 0 if
𝑑𝑠
𝑑𝑡 ≥ 0

 (24.16)

where 𝑙 and 𝑑𝑠
𝑑𝑡 are the thickness of the element and the strain rate in the direction of the 

acceleration, respectively, and 𝑎∗ is the sound speed defined by (p/𝜌)1/2 if 𝑝 > 0.  We 
use the local sound speed in place of 𝑎∗ to reduce the noise at the low stress levels that 
are typical of our applications. 
 
 Two disadvantages are associated with Equation (24.16).  To compute the length 
parameter and the strain rate, we need to know the direction of the acceleration through 
the element.  Since the nodal force vector becomes the acceleration vector in the explicit 
integration scheme, we have to provide extra storage to save the direction.  In three 
dimensions our present storage capacity is marginal at best and sacrificing this storage 
for storing the direction would make it even more so.  Secondly, we need to compute l 
and 𝑑𝑠

𝑑𝑡 which results in a noticeable increase in computer cost even in two dimensions.  
For most problems the additional refinement of Wilkins is not needed.  However, users 
must be aware of the pitfalls of Equation (24.15), i.e., when the element aspect ratios are 
poor or the deformations are large, an anomalous 𝑞 may be generated.
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25    
Time Step Control 

 During the solution we loop through the elements to update the stresses and the 
right hand side force vector.  We also determine a new time step size by taking the 
minimum value over all elements. 

Δ𝑡𝑛+1 = 𝑎 ⋅ min{Δ𝑡1, Δ𝑡2, Δ𝑡3, . . . , Δ𝑡𝑁}, (25.1)

where 𝑁 is the number of elements.  For stability reasons the scale factor 𝑎 is typically 
set to a value of .90 (default) or some smaller value. 
 

25.1  Time Step Calculations for Solid Elements 

 A critical time step size, Δ𝑡𝑒, is computed for solid elements from  

Δ𝑡𝑒 =
𝐿𝑒

{[𝑄 + (𝑄2 + 𝑐2)1/2]}
(25.2)

where 𝑄 is a function of the bulk viscosity coefficients 𝐶0 and 𝐶1: 

𝑄 = {𝐶1𝑐 + 𝐶0𝐿𝑒|𝜀𝑘̇𝑘| for 𝜀𝑘̇𝑘 ≤ 0
0 for 𝜀𝑘̇𝑘 > 0 (25.3)

𝐿𝑒 is a characteristic length: 
  8 node solids:  𝐿𝑒 = 𝜐𝑒

𝐴𝑒max
 

  4 node tetrahedras: 𝐿𝑒 = minimum altitude 
𝜐𝑒 is the element volume, 𝐴𝑒max is the area of the largest side, and 𝑐 is the adiabatic 
sound speed:   

𝑐 = [
4𝐺
3𝜌0

+
∂𝑝
∂𝜌)

𝑠
]

1
2⁄

, (25.4)

where 𝜌 is the specific mass density.  Noting that: 
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∂𝑝
∂𝜌)

𝑠
=

∂𝑝
∂𝜌)

𝑈
+

∂𝑝
∂𝑈)

𝜌

∂𝑈
∂𝜌 )

𝑠
, (25.5)

and that along an isentrope the incremental energy, 𝑈, in the units of pressure is the 
product of pressure, 𝑝, and the incremental relative volume, 𝑑𝑉: 

𝑑𝑈 = −𝑝𝑑𝑉, (25.6)
we obtain 

𝑐 =
⎣
⎢⎡

4𝐺
3𝜌0

+
∂𝑝
∂𝜌)

𝑈
+

𝑝𝑉2

𝜌0

∂𝑝
∂𝑈)

𝜌⎦
⎥⎤

1
2⁄

. (25.7)

 
 For elastic materials with a constant bulk modulus the sound speed is given by: 

𝑐 = √
𝐸(1 − 𝜐)

(1 + 𝜐)(1 − 2𝜐)𝜌
(25.8)

where 𝐸 is Young’s modulus, and 𝜐 is Poisson’s ratio.  

25.2  Time Step Calculations for Beam and Truss Elements 

 For the Hughes-Liu beam and truss elements, the time step size is given by: 

Δ𝑡𝑒 =
𝐿
𝑐

(25.9)

where 𝐿 is the length of the element and c is the wave speed: 

𝑐 = √
𝐸
𝜌. (25.10)

 
 For the Belytschko beam the time step size given by the longitudinal sound 
speed is used (Equation (25.9)), unless the bending-related time step size given by 
[Belytschko and Tsay 1982] 

Δ𝑡𝑒 =  
0.5𝐿

𝑐√3𝐼 [ 3
12𝐼 + 𝐴𝐿2 + 1

𝐴𝐿2]
(25.11)

is smaller, where 𝐼 and 𝐴 are the maximum value of the moment of inertia and area of 
the cross section, respectively. 
 
 Comparison of critical time steps of the truss versus the elastic solid element 
shows that it if Poisson's ratio, 𝜐 is nonzero the solid elements give a considerably 
smaller stable time step size.  If we define the ratio, 𝛼, as: 
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𝛼 =
Δ𝑡continuum

Δ𝑡rod
=

𝐶rod
𝐶continuum

= √
(1 + 𝜐)(1 − 2𝜐)

1 − 𝜐 , (25.12)

we obtain the results in Table 22.1 where we can see that as  approaches .5 𝛼 → 0. 
 

 0 0.2 0.3 0.4 0.45 0.49 0.50 
 1. 0.949 0.862 0.683 0.513 0.242 0.0 

 
Table 22.1.  Comparison of critical time step sizes for a truss versus a solid element. 
 

25.3  Time Step Calculations for Shell Elements 

 For the shell elements, the time step size is given by: 

Δ𝑡𝑒 =
𝐿𝑠
𝑐

(25.13)

where 𝐿𝑠 is the characteristic length and 𝑐 is the sound speed:   

𝑐 = √
𝐸

𝜌(1 − 𝜈2)
. (25.14)

 
 Three user options exists for choosing the characteristic length.  In the default or 
first option the characteristic length is given by: 

𝐿𝑠 =
(1 + 𝛽)𝐴𝑠

max(𝐿1, 𝐿2, 𝐿3, (1 − 𝛽)𝐿4) (25.15)

where 𝛽 = 0 for quadrilateral and 1 for triangular shell elements, 𝐴𝑠 is the area, and 
𝐿𝑖, (𝑖 = 1. . . .4) is the length of the sides defining the shell elements.  In the second 
option a more conservative value of 𝐿𝑠 is used: 

𝐿𝑠 =
(1 + 𝛽)𝐴𝑠

max(𝐷1, 𝐷2), (25.16)

where 𝐷𝑖(𝑖 = 1,2) is the length of the diagonals.  The third option provides the largest 
time step size and is frequently used when triangular shell elements have very short 
altitudes.  The bar wave speed, Equation (21.10), is used to compute the time step size 
and 𝐿𝑠 is given by 

𝐿𝑠 = max [
(1 + 𝛽)𝐴𝑠

max(𝐿1, 𝐿2, 𝐿3, (1 − 𝛽)𝐿4) , min(𝐿1, 𝐿2, 𝐿3, 𝐿4 + 𝛽1020)]. (25.17)

 
 A comparison of critical time steps of truss versus shells is given in Table 22.2 
with 𝛽 defined as: 
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𝛽 =
Δ𝑡2D-continuum

Δ𝑡rod
=
𝐶rod
𝐶 = √1 − 𝜐2. (25.18)

 
 0 0.2 0.3 0.4 0.5 
 1.0 0.98 0.954 0.917 0.866 

 
Table 22.2.  Comparison of critical time step sizes for a truss versus a shell element. 

 

25.4  Time Step Calculations for Solid Shell Elements 

 A critical time step size, Δ𝑡𝑒 is computed for solid shell elements from  

Δ𝑡𝑒 =
𝜐𝑒

𝑐𝐴𝑒max
, (25.19)

where 𝜐𝑒 is the element volume, 𝐴𝑒max  is the area of the largest side, and 𝑐 is the plane 
stress sound speed given in Equation (25.14). 
 

25.5  Time Step Calculations for Discrete Elements 

 For spring elements such as that in Figure 25.1 there is no wave propagation 
speed 𝑐 to calculate the critical time step size. 
 
 The eigenvalue problem for the free vibration of spring with nodal masses 𝑚1 
and 𝑚2, and stiffness, 𝑘, is given by: 

[ 𝑘 −𝑘
−𝑘 𝑘 ] [𝑢1

𝑢2
] − 𝜔2 [𝑚1 0

0 𝑚2
] [𝑢1
𝑢2

] = [0
0]. (25.20)

Since the determinant of the characteristic equation must equal zero, we can solve for 
the maximum eigenvalue: 

det [𝑘 − 𝜔2𝑚1 −𝑘
−𝑘 𝑘 − 𝜔2𝑚2

] = 0 → 𝜔max
2 =

𝑘(𝑚1 + 𝑚2)
𝑚1 ⋅ 𝑚2

, (25.21)
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Recalling the critical time step of a truss element: 

        Δ𝑡 ≤
ℓ
𝑐

𝜔max =
2𝑐
ℓ ⎭}

}⎬
}}
⎫

    Δ𝑡 ≤
2

𝜔max
, (25.22)

and approximating the spring masses by using 1/2 the actual nodal mass, we obtain: 

    Δ𝑡 = 2√
𝑚1𝑚2

𝑚1 + 𝑚2

1
𝑘. (25.23)

 
 Therefore, in terms of the nodal mass we can write the critical time step size as: 

Δ𝑡𝑒 = √
2𝑀1𝑀2

𝑘(𝑀1 +𝑀2). (25.24)

The springs used in the contact interface are not checked for stability.

M1 = m1 = 0.5M1 ; nodal mass

M2 = m2 = 0.5M2 ; nodal mass

 Figure 25.1.  Lumped spring mass system. 
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26    
Boundary and Loading Conditions 

26.1  Pressure Boundary Conditions 

 Consider pressure loadings on boundary ∂b1 in Equation (2.4).  To carry out the 
surface integration indicated by the integral 

∫ 𝑁𝑡𝑡𝑑𝑠
∂𝑏1

, (26.1)

a Gaussian quadrature rule is used.  To locate any point of the surface under 
consideration, a position vector, 𝑟, is defined: 

𝑟 = 𝑓1(𝜉 , 𝜂)𝑖1 + 𝑓2((𝜉 , 𝜂)𝑖2 + 𝑓3(𝜉 , 𝜂)𝑖3, (26.2)
where 

𝑓𝑖(𝜉 , 𝜂) = ∑ 𝜙𝑗𝑥𝑖
𝑗

4

𝑗=1
, (26.3)

and 𝑖1, 𝑖2, 𝑖3 are unit vectors in the 𝑥1, 𝑥2, 𝑥3directions (see Figure 26.1). 
 
 Nodal quantities are interpolated over the four-node linear surface by the 
functions 

𝜙𝑖 =
1
4 (1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖), (26.4)

so that the differential surface area 𝑑𝑠 may be written in terms of the curvilinear 
coordinates as 

𝑑𝑠 = |𝐽|𝑑𝜉𝑑𝜂, (26.5)
where |𝐽| is the surface Jacobian defined by 

|𝐽| = ∣
∂𝑟
∂𝜉 ×

∂𝑟
∂𝜂∣ = (𝐸𝐺 − 𝐹2)

1
2⁄ , (26.6)

in which 



Boundary and Loading Conditions LS-DYNA Theory Manual 

24-2 (Boundary and Loading Conditions) LS-DYNA DEV 06/21/18 (r:10113) 

𝐸 =
∂𝑟
∂𝜉 ⋅

∂𝑟
∂𝜉 , 

𝐹 =
∂𝑟
∂𝜉 ⋅

∂𝑟
∂𝜂 , 

𝐺 =
∂𝑟
∂𝜂 ⋅

∂𝑟
∂𝜂. 

(26.7)

A unit normal vector 𝐧 to the surface segment is given by 

𝐧 = |𝐽| −1 (
∂𝐫
∂𝜉 ×

∂𝐫
∂𝜂), (26.8)

and the global components of the traction vector can now be written 

𝑡𝑖 = 𝑛𝑖 ∑ 𝜙𝑗𝑝𝑗
4

𝑗=1
, (26.9)

where 𝑝𝑗 is the applied pressure at the jth node. 
 
 The surface integral for a segment is evaluated as: 

∫ ∫ 𝑁𝑡𝑡|𝐽|𝑑𝜉 𝑑𝜂
1

−1
.

1

−1
(26.10)

One such integral is computed for each surface segment on which a pressure loading 
acts.  Note that the Jacobians cancel when Equations (26.8) and (26.7) are put into 
Equation (26.10).  Equation (26.10) is evaluated with one-point integration analogous to 
that employed in the volume integrals.  The area of an element side is approximated by 
4|𝐽| where  |𝐽| = |𝐽(0, 0)|. 
 

1

2
3

4

r(ξ,η)

ξ

η

x1

x2

x3

i1

i2

i3

 Figure 26.1.  Parametric representation of a surface segment. 
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26.2  Transmitting Boundaries 

 Transmitting boundaries are available only for problems that require the 
modeling of semi-infinite or infinite domains with solid elements and therefore are not 
available for beam or shell elements.  Applications of this capability include problems in 
geomechanics and underwater structures.   
 The transmitting or silent boundary is defined by providing a complete list of 
boundary segments.  In the approach used, discussed by Cohen and Jennings [1983] 
who in turn credit the method to Lysmer and Kuhlemeyer [1969], viscous normal shear 
stresses in Equation (23.11) are applied to the boundary segments: 

𝛔normal = −𝜌𝑐𝑑𝐕normal (26.11)

𝛔shear = −𝜌𝑐𝑠𝐕tan, (26.12)
where 𝜌, 𝑐𝑑,and 𝑐𝑠 are the material density, dilatational wave speed, and the shear wave 
speed of the transmitting media respectively.  The magnitude of these stresses is 
proportional to the particle velocities in the normal, 𝐕normal, and tangential, 𝐕tan, 
directions.  The material associated with each transmitting segment is identified during 
initialization so that unique values of the constants 𝜌, 𝑐𝑑, and 𝑐𝑠 can be defined 
automatically. 
 

26.3  Kinematic Boundary Conditions 

 In this subsection, the kinematic constraints are briefly reviewed.  LS-DYNA 
tracks reaction forces for each type of kinematic constraint and provides this 
information as output if requested.  For the prescribed boundary conditions, the input 
energy is integrated and included in the external work. 
 

26.4  Displacement Constraints 

 Translational and rotational boundary constraints are imposed either globally or 
locally by setting the constrained acceleration components to zero.  If nodal single point 
constraints are employed, the constraints are imposed in a local system.  The user 
defines the local system by specifying a vector 𝐮1 in the direction of the local x-axis 𝐱l, 
and a local in-plane vector 𝐯l.  After normalizing 𝐮1, the local 𝐱𝑙, 𝐲𝑙and 𝐳l axes are given 
by: 
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𝐱𝑙 =
𝐮𝑙
‖𝐮𝑙‖

(26.13)

𝐳𝑙 =
𝐱𝑙 × 𝐯𝑙
‖𝐱𝑙 × 𝐯𝑙‖

(26.14)

𝐲𝑙 = 𝐳𝑙 × 𝐱𝑙. (26.15)
 
 A transformation matrix 𝐪 is constructed to transform the acceleration 
components to the local system: 

𝐪 =
⎣
⎢⎢
⎡𝐱𝑙

T

𝐲𝑙
T

𝐳𝑙
T ⎦

⎥⎥
⎤

, (26.16)

and the nodal translational and rotational acceleration vectors 𝐚𝐼 and 𝛚̇𝐼, for node I are 
transformed to the local system:  

𝐚𝐼1
= 𝐪𝐚𝐼 (26.17)

𝛚̇𝐼𝑙 = 𝐪𝛚̇𝐼, (26.18)

and the constrained components are zeroed.  The modified vectors are then 
transformed back to the global system: 

𝐚𝐼 = 𝐪T𝐚𝐼1
(26.19)

𝛚̇𝐼 = 𝐪T𝛚̇𝐼𝑙 (26.20)

 

26.5  Prescribed Displacements, Velocities, and 
Accelerations 

 Prescribed displacements, velocities, and accelerations are treated in a nearly 
identical way to displacement constraints.  After imposing the zero displacement 
constraints, the prescribed values are imposed as velocities at time, 𝑡𝑛+1/2.  The 
acceleration versus time curve is integrated or the displacement versus time curve is 
differentiated to generate the velocity versus time curve.  The prescribed nodal 
components are then set. 
 



LS-DYNA Theory Manual Boundary and Loading Conditions 

LS-DYNA DEV 06/21/18 (r:10113) 24-5 (Boundary and Loading Conditions) 

26.6  Body Force Loads 

 Body force loads are used in many applications.  For example, in structural 
analysis the base accelerations can be applied in the simulation of earthquake loadings, 
the gun firing of projectiles, and gravitational loads.  The latter is often used with 
dynamic relaxation to initialize the internal forces before proceeding with the transient 
response calculation.  In aircraft engine design the body forces are generated by the 
application of an angular velocity of the spinning structure.  The generalized body force 
loads are available if only part of the structure is subjected to such loadings, e.g., a bird 
striking a spinning fan blade. 
 For base accelerations and gravity we can fix the base and apply the loading as 
part of the body force loads element by element according to Equation (22.18) 

𝐟𝑒body = ∫ 𝜌𝐍T𝐍𝐚base𝑑𝜐
  𝜐𝑚

= 𝐦𝑒𝐚base, (26.21)

where 𝐚base is the base acceleration and 𝐦𝑒 is the element (lumped) mass matrix.
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27    
Time Integration 

27.1  Background 

 Consider the single degree of freedom damped system in Figure 27.1. 
 

 
 
Forces acting on mass m are shown in Figure 27.2. 
 
The equations of equilibrium are obtained from d'Alembert’s principle 

𝑓𝐼 + 𝑓𝐷 + 𝑓int = 𝑝(𝑡) (27.1)
 

 - displacementsu(t)

p(t)

k

c

 Figure 27.1.  Single degree of freedom damped system. 

fs

fD

fI

p(t) external forces

inertia force
elastic force

damping forces

m

 Figure 27.2.  Forces acting on mass, m 
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𝑓𝐼 = 𝑚𝑢;̈    𝑢̈ =
𝑑2𝑢
𝑑𝑡2   acceleration 

𝑓𝐷 = 𝑐𝑢;̇    𝑢̇ =
𝑑𝑢
𝑑𝑡  velocity 

𝑓int = 𝑘 ⋅ 𝑢; 𝑢 displacement

(27.2)

where 𝑐 is the damping coefficient, and k is the linear stiffness.  For critical damping 𝑐 =
ccr.  The equations of motion for linear behavior lead to a linear ordinary differential 
equation, o.d.e.: 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝑝(𝑡) (27.3)
but for the nonlinear case the internal force varies as a nonlinear function of the 
displacement, leading to a nonlinear o.d.e.: 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑓int(𝑢) = 𝑝(𝑡) (27.4)
 
 Analytical solutions of linear ordinary differential equations are available, so 
instead we consider the dynamic response of linear system subjected to a harmonic 
loading.  It is convenient to define some commonly used terms: 
Harmonic loading: 𝑝(𝑡) = 𝑝0sin𝜛𝑡 

Circular frequency: 𝜔 = √ 𝑘
𝑚 for single degree of freedom 

Natural frequency: 𝑓 = 𝜔
2𝜋 = 1

𝑇     𝑇 = period 
Damping ratio: 𝜉 = 𝑐

𝑐𝑐𝑟 = 𝑐
2𝑚𝜔 

Damped vibration frequency:  𝜔0 = 𝜔√1 − 𝜉 2 
Applied load frequency: 𝛽 = 𝜔̅̅̅̅̅

𝜔 
 
 The closed form solution is: 

𝑢(𝑡) = 𝑢0cos𝜔𝑡 +
𝑢0̇
𝜔 sin𝜔𝑡 +

𝑝0
𝑘

1
1 − 𝛽2 (sin𝜔̅̅̅̅𝑡 − 𝛽sin𝜔𝑡)

homogeneous solution               steady state       transient
                                   particular solution

 (27.5)

with the initial conditions: 
 

𝑢0 = initial displacement 
𝑢0̇ = initial velocity 
𝑝0
𝑘 = static displacement 

 
 For nonlinear problems, only numerical solutions are possible.  LS-DYNA uses 
the explicit central difference scheme to integrate the equations of motion. 
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27.2  The Central Difference Method 

 The semi-discrete equations of motion at time n are: 
𝐌𝐚𝑛 = 𝐏𝑛 − 𝐅𝑛 + 𝐇𝑛, (27.6)

where 𝐌 is the diagonal mass matrix, 𝐏𝑛 accounts for external and body force loads, 𝑭𝑛 
is the stress divergence vector, and 𝐇𝑛 is the hourglass resistance.  To advance to time 
𝑡𝑛+1, we use central difference time integration: 

𝐚𝑛 = 𝐌−1(𝐏𝑛 − 𝐅𝑛 + 𝐇𝑛), (27.7)

𝐯𝑛+1
2⁄ = 𝐯𝑛−1

2⁄ + 𝐚𝑛Δ𝑡𝑛, (27.8)

𝐮𝑛+1 = 𝐮𝑛 + 𝐯𝑛+1
2⁄ Δ𝑡𝑛+1

2⁄ , (27.9)

where 

Δ𝑡𝑛+1
2⁄ =

(Δ𝑡𝑛 + Δ𝑡𝑛+1)
2 , (27.10)

and 𝐯 and 𝐮 are the global nodal velocity and displacement vectors, respectively.  We 
update the geometry by adding the displacement increments to the initial geometry:  

𝐱𝑛+1 = 𝐱0 + 𝐮𝑛+1. (27.11)

We have found that, although more storage is required to store the displacement vector 
the results are much less sensitive to round-off error. 
 

27.3  Stability of Central Difference Method 

 The stability of the central difference scheme is determined by looking at the 
stability of a linear system.  The system of linear equations in uncoupled into the modal 
equations where the modal matrix of eigenvectors, 𝛟, are normalized with respect to 
the mass and linear stiffness matrices 𝐊, and 𝐌, respectively, such that: 

𝛟T𝐌𝛟 = I
𝛟T𝐊𝛟 = ω2.

(27.12)

With this normalization, we obtain for viscous proportional damping the decoupling of 
the damping matrix, 𝐂: 

𝛟T𝐂𝛟 = 2𝜉𝜔 (27.13)

The equations of motion in the modal coordinates 𝐱 are: 

𝑥̈ + 2𝜉ω𝑥̇ + ω2𝑥 = 𝛟𝐓𝐩⏟
=Y

. (27.14)

With central differences we obtain for the velocity and acceleration: 
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𝑥𝑛̇ =
𝑥𝑛+1 − 𝑥𝑛−1

2Δ𝑡 (27.15)

𝑥𝑛̈ =
𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1

Δ𝑡2 . (27.16)

 
 Substituting 𝑥𝑛̇ and 𝑥𝑛̈ into equation of motion at time 𝑡𝑛 leads to: 

𝑥𝑛+1 =
2 − 𝜔2Δ𝑡2

1 + 2𝜉𝜔Δ𝑡2 𝑥𝑛 −
1 − 2𝜉𝜔Δ𝑡
1 + 2𝜉𝜔Δ𝑡 𝑥𝑛−1 +

Δ𝑡2

1 + 2𝜉𝜔Δ𝑡2 𝑌𝑛, (27.17)

𝑥𝑛 = 𝑥𝑛, (27.18)
which in matrix form leads to 

[𝑥𝑛+1
𝑥𝑛

] =
⎣
⎢
⎡2 − 𝜔2Δ𝑡2

1 + 2𝜉𝜔Δ𝑡 −
1 − 2𝜉𝜔Δ𝑡
1 + 2𝜉𝜔Δ𝑡

1 0 ⎦
⎥
⎤ [𝑥𝑛

𝑥𝑛−1
] +

⎣
⎢
⎡ Δ𝑡2

1 + 2𝜉𝜔Δ𝑡2

0 ⎦
⎥
⎤𝑌𝑛, (27.19)

or 
𝐱𝑛̂+1 = 𝐀𝐱𝑛̂ + 𝐋𝐘𝑛, (27.20)

where, 𝐀 is the time integration operator for discrete equations of motion.  After 𝑚 time 
steps with 𝐋 = 0 we obtain: 

𝐱𝑚̂ = 𝐀𝑚𝐱0̂. (27.21)
As 𝑚 approaches infinity, 𝐀 must remain bounded.   
 
 A spectral decomposition of 𝐴 gives: 

𝐀𝑚 = (𝐏T𝐉𝐏)𝑚 = 𝐏T𝐉𝑚𝐏, (27.22)

where, 𝐏, is the orthonormal matrix containing the eigenvectors of 𝐀, and 𝐉 is the Jordan 
form with the eigenvalues on the diagonal.  The spectral radius, 𝜌(𝐀), is the largest 
eigenvalue of 𝐀 = max [diag.  (J)].  We know that 𝐉𝑚, is bounded if and only if: 

∣𝜌(𝐀)∣ ≤ 1. (27.23)
 
 Consider the eigenvalues of 𝐴 for the undamped equation of motion 

Det [∣2 − 𝜔2Δ𝑡2 −1
1 0

∣ − 𝜆∣1 −1
1 0 ∣] = 0, (27.24)

−(2 − 𝜔2Δ𝑡2 − 𝜆) ⋅ 𝜆 + 1 = 0, (27.25)

𝜆 =
2 − 𝜔2Δ𝑡2

2 ± √
(2 − 𝜔2Δ𝑡2)2

4 − 1. (27.26)

 
 The requirement that |𝜆| ≤ 1 leads to: 
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Δ𝑡 ≤
2

𝜔max
, (27.27)

as the critical time step.  For the damped equations of motion we obtain: 

Δ𝑡 ≤
2

𝜔max
(√1 + 𝜉 2 − 𝜉). (27.28)

 
 Thus, damping reduces the critical time step size.  The time step size is bounded 
by the largest natural frequency of the structure which, in turn, is bounded by the 
highest frequency of any individual element in the finite element mesh. 

27.4  Subcycling (Mixed Time Integration) 

 The time step size, Δ𝑡, is always limited by a single element in the finite element 
mesh.  The idea behind subcycling is to sort elements based on their step size into 
groups whose step size is some even multiple of the smallest element step size, 2(𝑛−1)Δ𝑡, 
for integer values of 𝑛 greater than or equal to 1.  For example, in Figure 27.3 the mesh 
on the right because of the thin row of elements is three times more expensive than the 
mesh on the left 
 
 The subcycling in LS-DYNA is based on the linear nodal interpoation partition 
subcycling algorithm of Belytschko, Yen, and Mullen [1979], and Belytschko [1980].  In 
their implementation the steps are: 
 
 1. Assign each node, 𝑖, a time step size, Δ𝑡𝑗, according to: 
  Δ𝑡𝑖 = min (2 𝜔𝑗⁄ ) over all elements 𝑗, connected to node 𝑖 
 2. Assign each element, 𝑗, a time step size, Δ𝑡𝑗, according to: 
  Δ𝑡𝑗  = min(Δ𝑡𝑖) over all nodes, 𝑖, of element, 𝑗 
 3. Group elements into blocks by time step size for vectorization. 

 

Figure 27.3.  The right hand mesh is much more expensive to compute than
the left hand due to the presence of the thinner elements. 
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 In LS-DYNA we desire to use constant length vectors as much as possible even if 
it means updating the large elements incrementally with the small time step size.  We 
have found that doing this decreases costs and stability is unaffected. 
 
 Hulbert and Hughes [1988] reviewed seven subcycling algorithms in which the 
partitioning as either node or element based.  The major differences within the two 
subcycling methods lie in how elements along the interface between large and small 
elements are handled, a subject which is beyond the scope of this theoretical manual.  
Nevertheless, they concluded that three of the methods including the linear nodal 
interpolation method chosen for LS-DYNA, provide both stable and accurate solutions 
for the problems they studied.  However, there was some concern about the lack of 
stability and accuracy proofs for any of these methods when applied to problems in 
structural mechanics. 
 
 The implementation of subcycling currently includes the following element 
classes and contact options: 
 
 • Solid elements 
 • Beam elements 
 • Shell elements 
 • Brick shell elements 
 • Penalty based contact algorithms. 
 
but intentionally excludes discrete elements since these elements generally contribute 
insignificantly to the calculational costs.  The interface stiffnesses used in the contact 
algorithms are based on the minimum value of the slave node or master segment 
stiffness and, consequently, the time step size determination for elements on either side 
of the interface is assumed to be decoupled; thus, scaling penalty values to larger values 
when subcycling is active can be a dangerous exercise indeed.  Nodes that are included 
in constraint equations, rigid bodies, or in contact with rigid walls are always assigned 
the smallest time step sizes. 
 
 To explain the implementation and the functioning of subcycling, we consider 
the beam shown in Figure 27.4 where the beam elements on the right (material group 2) 
have a Courant time step size exactly two times greater than the elements on the left.  
The nodes attached to material group 2 will be called minor cycle nodes and the rest, 
major cycle nodes.  At time step 𝑛 = 𝑚𝑘 all nodal displacements and element stresses 
are known, where 𝑚 is the ratio between the largest and smallest time step size, 𝑘 is the 
number of major time steps, and 𝑛 is the number of minor time steps.  In Figures 27.5 
and 27.6, the update of the state variables to the next major time step 𝑘 + 1 is depicted.  
The stress state in the element on the material interface in group 1 is updated during the 
minor cycle as the displacement of the major cycle node shared by this element is 
assumed to vary linearly during the minor cycle update.  This linear variation of the 
major cycle nodal displacements during the update of the element stresses improves 
accuracy and stability. 
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 In the timing study results in Table 24.1, fifty solid elements were included in 
each group for the beam depicted in Figure 27.4, and the ratio between 𝐸2 to 𝐸1 was 
varied from 1 to 128 giving a major time step size greater than 10 times the minor.  Note 
that as the ratio between the major and minor time step sizes approaches infinity the 
reduction in cost should approach 50 percent for the subcycled case, and we see that 
this is indeed the case.  The effect of subcycling for the more expensive fully integrated 
elements is greater as may be expected.  The overhead of subcycling for the case where 
𝐸1 = 𝐸2 is relatively large.  This provides some insight into why a decrease in speed is 
often observed when subcycling is active.  For subcycling to have a significant effect, the 
ratio of the major to minor time step size should be large and the number of elements 
having the minor step size should be small.  In crashworthiness applications the typical 
mesh is very well planned and generated to have uniform time step sizes; consequently, 
subcycling will probably give a net increase in costs. 

Material Group 1

Material Group 2

F(t)E2 = 4E1

A2 = A1

ρ2 = ρ1 

 Figure 27.4.  Subcycled beam problem from Hulbert and Hughes [1988]. 
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Case 1 one point 
integration with 
elastic material 
model 

 
Number of cycles 

 
cpu time(secs) 

𝐸2 = 𝐸1 178 
178 

4.65 
5.36 (+15.%) 

𝐸2 = 4𝐸1 367 
367 

7.57 
7.13 (-6.0%) 

𝐸2 = 16𝐸1 714 
715 

12.17 
10.18 (-20.%) 

𝐸2 = 64𝐸1 1417 
1419 

23.24 
16.39 (-29.%) 

𝐸2 = 128𝐸1 2003 
2004 

31.89 
22.37 (-30.%) 

 
Case 2 eight point 
integration with 
orthotropic 
material model 

 
Number of cycles 

 
cpu time(secs) 

Solve for accelerations, velocities, and displacements

Solve for minor cycle stresses

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σσ

u2

v2

t

u1

v1

u1

v1

u2

v2

t

σσ

Figure 27.5.  Timing diagram for subcycling algorithm based on linear nodal
interpolations. 



LS-DYNA Theory Manual Time Integration 

LS-DYNA DEV 06/21/18 (r:10113) 25-9 (Time Integration) 

𝐸2 = 𝐸1 180 
180 

22.09 
22.75 (+3.0%) 

𝐸2 = 4𝐸1 369 
369 

42.91 
34.20 (-20.%) 

𝐸2 = 16𝐸1 718 
719 

81.49 
54.75 (-33.%) 

𝐸2 = 64𝐸1 1424 
1424 

159.2 
97.04 (-39.%) 

𝐸2 = 128𝐸1 2034 
2028 

226.8 
135.5 (-40.%) 

 
Table 24.1.  Timing study showing effects of the ratio of the major to minor time step 

size. 
 
 
 The impact of the subcycling implementation in the software has a very 
significant effect on the internal structure.  The elements in LS-DYNA are now sorted 
three times 

σ σ σ σ σ σ σ

u2

u1

v2

v1
σσ

u2

v2

u2

v2

σ σ σ σ σ σ σ σ σ
u2

u1

v2

v1

t

t

Solve for minor cycle accelerations, velocities, and displacements

Update stress for all elements

Figure 27.6.  Timing diagram for subcycling algorithm based on linear nodal
interpolations. 
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 • By element number in ascending order. 
 • By material number for large vector blocks. 
• By connectivity to insure disjointness for right hand side vectorization which is 
very important for efficiency. 
 

Sorting by Δ𝑡, interact with the second and third sorts and can result in the 
creation of much smaller vector blocks and result in higher cost per element time step.  
During the simulation elements can continuously change in time step size and resorting 
may be required to maintain stability; consequently, we must check for this 
continuously.  Sorting cost, though not high when spread over the entire calculation, 
can become a factor that results in higher overall cost if done too frequently especially if 
the factor, m, is relatively small and the ratio of small to large elements is large.

update velocities

update displacements

and new geometry
write databases

kinematic based contact

and rigid walls

update accelerations and

apply kinematic b.c.'s

process penalty based

contact interfaces

process discrete

elements

process brick,beam, 

shell elements

apply force boundary

conditions

update current time and

check for termination

Time Integration Loop

Start

 Figure 27.7.  The time integration loop in LS-DYNA. 
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28    
Rigid Body Dynamics 

 A detailed discussion of the rigid body algorithm is presented by Benson and 
Hallquist [1986] and readers are referred to this publication for more information.  The 
equations of motion for a rigid body are given by 

𝑀𝜌𝒙̈ = 𝒇𝜌𝑥, (28.1)

𝑱𝜌𝝎̇ + 𝝎 × 𝑱𝜌𝝎 = 𝒇𝜌𝜔, (28.2)

where 𝑀𝜌 is the physical mass, 𝑱𝜌 is the physical inertia tensor, 𝒙 is the location of the 
center of mass, 𝝎 is the angular velocity of the body, and 𝒇𝜌𝑥 and 𝒇𝜌𝜔 are the forces and 
torques applied to the rigid body through *LOAD_RIGID_BODY. These are equations 
that can be found in a standard text book on rigid body mechanics.  The physical 
properties of a rigid body may come from three sources, these are 
 

1.Integration of the mass density 𝜌 over a region 𝑉 occupied by the rigid body, for 
which 𝑀𝜌 = ∫𝜌𝑑𝑉, and  𝑱𝜌 = ∫𝜌(𝒚 − 𝒙)⨂(𝒚 − 𝒙)𝑑𝑉. The initial rigid body 

coordinate 𝒙 is in this case determined from 𝒙 = ∫𝜌𝒚𝑑𝑉
𝑀𝜌

. Here 𝒚 is the integrand 
variable. 

2.Specifying properties using *PART_INERTIA, for which 𝑀𝜌, 𝑱𝜌 and initial 
coordinate 𝒙 is simply specified in the keyword input deck. 

3.For a nodal rigid body, *CONSTRAINED_NODAL_RIGID_BODY, the physical 
properties vanish, i.e., 𝑀𝜌 = 0 and 𝑱𝜌 = 𝟎, and the position is arbitrary. 

 
All rigid bodies possess slave nodes, which play a role when rigid bodies in LS-DYNA 
interact with their surroundings.  Slave nodes may come from the following. 
 

1.The nodes in the finite element mesh for the part specified as rigid through 
*MAT_RIGID. 

2.Extra nodes definitions through *CONSTRAINED_EXTRA_NODES. 
3.The set used for a nodal rigid body in *CONSTRAINED_NODAL_RIGID_BODY. 
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We use 𝑆 to denote the set of slave nodes to the rigid body, and these are constrained to 
the rigid body through the equations 

𝒙𝑖 = 𝒙 + 𝑸(𝒙𝑖
0 − 𝒙0), (28.3)

 

𝑸𝑖 = 𝑸, (28.4)
 

for all 𝑖 ∈ 𝑆. Here we have introduced the orientations 𝑸 and 𝑸𝑖 of the rigid body and 
slave node 𝑖, respectively.  Furthermore, 𝒙𝑖 is the coordinate of slave node 𝑖 and we use 
superscript 0 to denote a quantity at time zero.  The time evolution of 𝑸 is 

𝑸̇ = 𝜴𝑸, (28.5)

where 𝛀𝒓 = 𝝎 × 𝒓 for an arbitrary vector 𝒓 and 𝑸 = 𝑰 (identity) at time zero.  So 
equations (28.3) and (28.4) can equivalently be put in rate form 

𝒙𝑖̇ = 𝒙̇ + 𝝎 × 𝒓𝑖, (28.6)
 

𝝎𝑖 = 𝝎, (28.7)
 

where 𝒓𝑖 = 𝒙𝑖 − 𝒙 and understandably 𝝎𝑖 rotational velocity of slave node 𝑖. This also 
determines the space of admissible virtual displacement for the slave nodes in the 
context of work principles, and for this reason we use a compact notation for this 
equation 

[𝒙𝑖̇
𝝎𝑖

] = [𝑰 −𝑹𝑖
𝟎 𝑰 ] [𝒙̇

𝝎]. (28.8)

where 𝑹𝑖𝒓 = 𝒓𝑖 × 𝒓 for an arbitrary vector 𝒓. 
 
 Slave nodes may have masses 𝑚𝑖, inertias 𝑱𝑖 and forces 𝒇𝑖𝑥 and 𝒇𝑖𝜔 associated with 
them.  The inertia properties may come from 
 

1.Mass contributions from deformable elements connected to the rigid body, either 
through *CONSTRAINED_EXTRA_NODES or 
*CONSTRAINED_NODAL_RIGID_BODY or simply merged mesh. 

2.Lumped masses through *ELEMENT_MASS or *ELEMENT_INERTIA. 
 
and the forces may come from 
 

1.External loads through *LOAD_NODE or *LOAD_SEGMENT. 
2.Contacts or fluid structure interaction (FSI) or similar. 
3.Internal forces on deformable nodes of a contiguous part. 

 
Note that these quantities exclude any contributions from and on the rigid body itself, 
as these are all collected in 𝑀𝜌, 𝑱𝜌, 𝒇𝜌𝑥 and 𝒇𝜌𝜔. The motion of the slave nodes is governed 
by their own equations of motion 

𝑚𝑖𝒙𝑖̈ = 𝒇𝑖𝑥,  (28.9)
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𝑱𝑖𝝎̇𝑖 + 𝝎𝑖 × 𝑱𝑖𝝎𝑖 = 𝒇𝑖𝜔, (28.10)
 

for 𝑖 ∈ 𝑆. We seek a set of equations for the rigid body that combines (28.1)-(28.2) and 
(28.9)-(28.10) by condensing out the dependence of the slave nodes through (28.6)-
(28.7). Differentiating (28.6)-(28.7) with respect to time yields 

𝒙𝑖̈ = 𝒙̈ + 𝝎̇ × 𝒓𝑖 + 𝝎 × 𝝎 × 𝒓𝑖, (28.11)
 

𝝎̇𝑖 = 𝝎̇, (28.12)
 

which can be inserted into (28.9)-(28.10) to yield 
𝑚𝑖[𝒙̈ + 𝝎̇ × 𝒓𝑖] = 𝒇𝑖𝑥 − 𝑚𝑖𝝎 × 𝝎 × 𝒓𝑖, (28.13)

 

𝑱𝑖𝝎̇ = 𝒇𝑖𝜔 − 𝝎 × 𝑱𝑖𝝎. (28.14)
 

This can be compactly written as 

[𝑚𝑖 −𝑚𝑖𝑹𝑖
𝟎 𝑱𝑖

] [𝒙̈
𝝎̇] = [𝒇𝑖

𝑥 − 𝑚𝑖𝝎 × 𝝎 × 𝒓𝑖
𝒇𝑖𝜔 − 𝝎 × 𝑱𝑖𝝎

]. (28.15)

 
It remains to use the principle of virtual work, employing (28.8), to reduce the number 
of equations (rigid body and slave nodes) to the generalized rigid body equations.  The 
result of this endeavor is 

(𝑀𝜌 + ∑ 𝑚𝑖𝑖∈𝑆
)𝒙̈ − (∑ 𝑚𝑖𝑹𝑖𝑖∈𝑆

)𝝎̇ = 𝒇𝜌𝑥 + ∑ (𝒇𝑖𝑥 − 𝑚𝑖𝝎 × 𝝎 × 𝒓𝑖)𝑖∈𝑆
, (28.16)

−(∑ 𝑚𝑖𝑹𝑖
𝑇

𝑖∈𝑆
)𝒙̈ + (𝑱𝜌 + ∑ 𝑱𝑖𝑖∈𝑆

+ ∑ 𝑚𝑖𝑹𝑖
𝑇𝑹𝑖𝑖∈𝑆

)𝝎̇

= 𝒇𝜌𝜔 + ∑ (𝒇𝑖𝜔 − 𝝎 × 𝑱𝑖𝝎)
𝑖∈𝑆

− ∑ 𝑹𝑖
𝑇(𝒇𝑖𝑥 − 𝑚𝑖𝝎 × 𝝎 × 𝒓𝑖)𝑖∈𝑆

− 𝝎 × 𝑱𝜌𝝎,(28.17)

A simplified expression can be obtained through the variable substitution 

𝒛 = 𝒙 +
1
𝑀∑ 𝑚𝑖𝒓𝑖𝑖∈𝑆

. (28.18)

This yields 𝒙̈ = 𝒛̈ + 𝑹𝑧−𝑥𝝎̇ − 𝝎 × 𝝎 × 𝒓𝑧−𝑥 where 𝒓𝑧−𝑥 = 𝒛 − 𝒙  and 𝑹𝑧−𝑥𝒓 = 𝒓𝑧−𝑥 × 𝒓 for an 
arbitrary vector 𝒓. This can be inserted into (28.16) and (28.17) to provide 

𝑀𝒛̈ = 𝒇 𝑥, (28.19)

𝑱𝝎̇ = 𝒇𝜔. (28.20)
where 
 

𝑀 = 𝑀𝜌 + ∑ 𝑚𝑖𝑖∈𝑆
, (28.21)

𝒇 𝑥 = 𝒇𝜌𝑥 + ∑ 𝒇𝑖𝑥𝑖∈𝑆
, (28.22)

𝑱 = 𝑱𝜌 + ∑ 𝑱𝑖𝑖∈𝑆
+ ∑ 𝑚𝑖𝑹𝑖

𝑇𝑹𝑖𝑖∈𝑆
−𝑀𝑹𝑧−𝑥

𝑇 𝑹𝑧−𝑥, (28.23)
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𝒇 𝜔 =  −𝝎 × 𝑱𝝎 + 𝒇𝜌𝜔 + ∑ (𝒇𝑖𝜔 + 𝒓𝑖 × 𝒇𝑖𝑥)
𝑖∈𝑆

− 𝒓𝑧−𝑥 × 𝒇 𝑥. (28.24)

 
 Equations (28.19)-(28.24) are the generalized rigid body equations to be solved 
for 𝒙 and 𝑸, cf. (28.5) and (28.18). The mass in (28.21) and inertia tensor in (28.23) are the 
physical mass and physical inertia augmented by slave node properties; nodal masses 
𝑚𝑖, inertias 𝑱𝑖 and locations 𝒙𝑖. We denote 𝑀 the algorithmic mass, which may not reflect 
what the user intuitively expects when using *MAT_RIGID to make a part rigid.  
Similarly 𝑱 is the algorithmic inertia tensor, and it is worth noting that a nodal rigid 
body must therefore be connected to deformable elements or otherwise 𝑀 = 0 and 𝑱 = 𝟎 
and its whereabouts will be impossible to determine.  For no mass scaling, all these 
properties are constant (except for rotational updates of the inertia tensors) and can 
essentially be calculated at time zero.  If mass scaling is active, the slave nodal masses 
and inertias include the added mass due to mass scaling and therefore change over time.  
This means that inertia properties should be recomputed every time step to account for 
these changes, but the default behavior is that this is done only for nodal rigid bodies 
and not for regular rigid bodies.  Presumably this is based on the assumption that the 
influence from slave nodes is significant for nodal rigid bodies and not so much for 
regular rigid bodies, which is probably true as long as the number of contiguous nodes 
is small compared to the total number of nodes in the rigid body.  Nevertheless, with 
RBSMS = 1 on *CONTROL_RIGID, these extra masses are accounted for and equations 
(28.19)-(28.24) are solved as expressed herein.  This amounts to transforming 𝒙 to 𝒛 
before the update, then update 𝒛, and transform back to obtain the new 𝒙. As we now 
turn to the algorithmic update of the rigid body location, we restrict ourselves to a 
special case for the sake of simplifying the exposition; 
 

1.We neglect mass scaling. 
2.Physical properties are not defined by *PART_INERTIA. 
3.The rigid body is not connected to deformable elements. 
4.No lumped masses are present. 

 
which means that 𝒛 = 𝒙. 
 

From (28.19)-(28.20) can readily solve for the rigid body accelerations 

𝒙̈ =
𝒇 𝑥

𝑀, (28.25)

𝝎̇ = 𝑱−1 𝒇𝜔. (28.26)

It turns out that the algorithmic mass 𝑀 can be calculated as 

𝑀 = ∑ 𝑀𝑖𝑖∈𝑆
, (28.27)
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where 𝑀𝑖 is the mass of node 𝑖 as obtained from the mass of its associated elements 
(integrating material density 𝜌 by shape functions 𝜑𝑖 over element domain).  
Furthermore 𝒙 can be approximated from 

𝑀𝒙 = ∑ 𝑀𝑖𝒙𝑖𝑖∈𝑆
. (28.28)

Likewise, the inertia tensor is approximated by a nodal summation of the product of the 
point masses with their moment arms 

𝑱 = ∑ 𝑀𝑖𝑹𝑖
𝑇𝑹𝑖𝑖∈𝑆

. (28.29)

The initial velocities of the slave nodes are readily calculated for a rigid body from 
(28.6). For arbitrary orientations of the body, the inertia tensor is transformed each time 
step based on the incremental rotations using the standard rules of second-order 
tensors: 

𝑱𝑛+1 = 𝑨𝑱𝑛𝑨𝑇 (28.30)

where 𝑱𝑛+1 is the updated inertia tensor components in the global frame.  The 
transformation matrix 𝑨 is not stored since the formulation is incremental, but 
recomputed as explained below.  After calculating the rigid body accelerations from 
Equation (28.25) and (28.26), the rigid body translational and rotational increment, ∆𝒙 
and ∆𝜽, can be calculated using the time step ∆𝑡 and the explicit time integration 
update.  The translational coordinate is then updated as 

𝒙𝑛+1 = 𝒙𝑛 + ∆𝒙 (28.31)

and ∆𝜽 is used to calculate 𝑨 in (28.30) using the Hughes-Winget algorithm, 

𝑨 = 𝑰 +
1

1 + ∆𝜽
𝑇∆𝜽
4

(𝑰 +
1
2𝛥𝑺)𝛥𝑺, (28.32)

𝛥𝑺𝒓 = ∆𝜽 × 𝒓, ∀𝒓. (28.33)
The coordinates of the slave nodes are incrementally updated 

𝒙𝑖
𝑛+1 = 𝒙𝑖

𝑛 + ∆𝒙 + (𝑨 − 𝑰)𝒓𝑖𝑛, (28.34)

and the velocities of the nodes are calculated by differencing the coordinates 

𝒙𝑖̇ =
(𝒙𝑖

𝑛+1 − 𝒙𝑖
𝑛)

𝛥𝑡 . (28.35)

A direct integration of the rigid body accelerations into velocity and displacements is 
not used for two reasons:  (1) calculating the rigid body accelerations of the nodes is 
more expensive than the current algorithm, and (2) the second-order accuracy of the 
central difference integration method would introduce distortion into the rigid bodies.  
Since the accelerations are not needed within the program, they are calculated by a 
post-processor using a difference scheme similar to the above. 
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28.1  Rigid Body Joints 

The joints for the rigid bodies in LS-DYNA, see Figure 28.1, are implemented using the 
penalty method.  Given a constraint equation 𝐶(𝑥𝑖, 𝑥𝑗) = 0, for nodes 𝑖 and 𝑗, the penalty 
function added to the Lagrangian of the system is −1/2𝑘𝐶2(𝑥𝑖, 𝑥𝑗).  The resulting nodal 
forces are: 

𝑓𝑖 = −𝑘𝐶(𝑥𝑖, 𝑥𝑗)
∂𝐶(𝑥𝑖, 𝑥𝑗)

∂𝑥𝑖
, (28.36)

𝑓𝑗 = −𝑘𝐶(𝑥𝑖, 𝑥𝑗)
∂𝐶(𝑥𝑖, 𝑥𝑗)

∂𝑥𝑗
. (28.37)

 
 The forces acting at the nodes have to convert into forces acting on the rigid 
bodies.  Recall that velocities of a node i is related to the velocity of the center of mass of 
a rigid body by Equation (28.6).  By using Equation (28.6) and virtual power arguments, 
it may be shown that the generalized forces are: 

𝐹𝑖
𝑥 = 𝑓𝑖, (28.38)

𝐹𝑖
𝜔 = 𝑒𝑖𝑗𝑘𝑥𝑗̅𝑓𝑘, (28.39)

which are the forces and moments about the center of mass. 
 
 The magnitude of the penalty stiffness 𝑘 is chosen so that it does not control the 
stable time step size.  For the central difference method, the stable time step Δ𝑡 is 
restricted by the condition that, 

Δ𝑡 =
2
𝛺, (28.40)

where 𝛺 is the highest frequency in the system.  The six vibrational frequencies 
associated with each rigid body are determined by solving their eigenvalue problems 
assuming 𝑘 = 1.  For a body with 𝑚 constraint equations, the linearized equations of the 
translational degrees of freedom are  

𝑀𝑋̈ + 𝑚𝑘𝑋 = 0, (28.41)

and the frequency is √𝑚𝑘/𝑀 where 𝑀 is the mass of the rigid body.  The corresponding 
rotational equations are  

𝐉𝛉̈ + 𝐊𝛉 = 0, (28.42)

𝐉 is the inertia tensor and 𝐊 is the stiffness matrix for the moment contributions from 
the penalty constraints.  The stiffness matrix is derived by noting that the moment 
contribution of a constraint may be approximated by  

𝐅𝑥 = −k𝐫𝑖 × (𝛉 × 𝐫𝑖), (28.43)
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𝐫𝑖 = 𝐱𝑖 − 𝐗cm, (28.44)
and noting the identity,  

𝐀 × (𝐁 × 𝐂) = |𝐀 ⋅ 𝐂 − 𝐀 ⊗𝐂|𝐁, (28.45)
so that 

𝐾 = ∑ 𝑘[𝐫𝑖 ⋅ 𝐫𝑖 − 𝐫𝑖 ⊗ 𝐫𝑖]
𝑚

𝑖=1
. (28.46)

 
 The rotational frequencies are the roots of the equation det∣𝐊 −𝛺2𝐉∣ = 0, which is 
cubic in 𝛺2.  Defining the maximum frequency over all rigid bodies for 𝑘 = 1 as 𝛺max, 
and introducing a time step scale factor TSSF, the equation for 𝑘 is 

𝑘 ≤ (
2TSSF

Δ𝑡Ωmax
)

2
, (28.47)

 
 The joint constraints are defined in terms of the displacements of individual 
nodes.  Regardless of whether the node belongs to a solid element or a structural 
element, only its translational degrees of freedom are used in the constraint equations. 
 
 A spherical joint is defined for nodes 𝑖 and 𝑗 by the three constraint equations, 

𝑥1𝑖 − 𝑥1𝑗 = 0    𝑥2𝑖 − 𝑥2𝑗 = 0 𝑥3𝑖 − 𝑥3𝑗 = 0, (28.48)

and a revolute joint, which requires five constraints, is defined by two spherical joints, 
for a total of six constraint equations.  Since a penalty formulation is used, the 
redundancy in the joint constraint equations is unimportant.  A cylindrical joint is 
defined by taking a revolute joint and eliminating the penalty forces along the direction 
defined by the two spherical joints.  In a similar manner, a planar joint is defined by 
eliminating the penalty forces that are perpendicular to the two spherical joints.  
 
 The translational joint is a cylindrical joint that permits sliding along its axis, but 
not rotation.  An additional pair of nodes is required off the axis to supply the 
additional constraint.  The only force active between the extra nodes acts in the 
direction normal to the plane defined by the three pairs of nodes. 
 
 The universal joint is defined by four nodes.  Let the nodes on one body be 𝑖 and 
𝑘, and the other body, 𝑗 and 𝑙.  Two of them, 𝑖 and 𝑗, are used to define a spherical joint 
for the first three constraint equations.  The fourth constraint equation is, 

𝐶(𝑥𝑖, 𝑥𝑗, 𝑥𝑘, 𝑥𝑙) = (𝑥𝑘 − 𝑥𝑖) ⋅ (𝑥𝑖 − 𝑥𝑗) = 0, (28.49)

and is differentiated to give the penalty forces 𝑓𝑛 = −𝑘𝐶 ∂𝐶
∂𝑥𝑛

, where 𝑛 ranges over the 
four nodes numbers. 
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28.2  Deformable to Rigid Material Switching 

 Occasionally in practice, long duration, large rigid body motions arise that are 
prohibitively expensive to simulate if the elements in the model are deformable.  Such a 
case could occur possibly in automotive rollover where the time duration of the rollover 
would dominate the cost relative to the post impact response that occurs much later.  
 
 To permit such simulations to be efficiently handled a capability to switch a 
subset of materials from deformable to rigid and back to deformable is available.  In 
practice the suspension system and tires would remain deformable A flag is set in the 
input to let LS-DYNA know that all materials in the model have the potential to become 
rigid bodies sometime during the calculation.  When this flag is set a cost penalty is 
incurred on vector machines since the blocking of materials in the element loops will be 
based on the part ID rather than the material type ID.  Normally this cost is insignificant 
relative to the cost reduction due to this unique feature. 
 

u

u

 Figure 28.1.  Rigid body joints in LS-DYNA. 
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 For rigid body switching to work properly the choice of the shell element 
formulation is critical.  The Hughes-Liu elements cannot currently be used for two 
reasons.  First, since these elements compute the strains from the rotations of the nodal 
fiber vectors from one cycle to the next, the nodal fiber vectors should be updated with 
the rigid body motions and this is not done.  Secondly, the stresses are stored in the 
global system as opposed to the co-rotational system.  Therefore, the stresses would also 
need to be transformed with the rigid body motions or zeroed out.  The co-rotational 
elements of Belytschko and co-workers do not reference nodal fibers for the strain 
computations and the stresses are stored in the co-rotational coordinate system which 
eliminates the need for the transformations; consequently, these elements can be safely 
used.  The membrane elements and airbag elements are closely related to the Belytschko 
shells and can be safely used with the switching options. 
 
 The beam elements have nodal triads that are used to track the nodal rotations 
and to calculate the deformation displacements from one cycle to the next.  These nodal 
triads are updated every cycle with the rigid body rotations to prevent non-physical 
behavior when the rigid body is switched back to deformable.  This applies to all beam 
element formulations in LS-DYNA.  The Belytschko beam formulations are preferred 
for the switching options for like the shell elements, the Hughes-Liu beams keep the 
stresses in the global system.  Truss elements like the membrane elements are trivially 
treated and pose no difficulties. 
 
 The brick elements store the stresses in the global system and upon switching the 
rigid material to deformable the element stresses are zeroed to eliminate spurious 
behavior. 
The implementation addresses many potential problems and has worked well in 
practice.  The current restrictions can be eliminated if the need arises and anyway 
should pose no insurmountable problems.  We will continue to improve this capability 
if we find that it is becoming a popular option. 
 

28.3  Rigid Body Welds 

 The weld capability in LS-DYNA is based on rigid body dynamics.  Each weld is 
defined by a set of nodal points which moves rigidly with six degrees of freedom until a 
failure criteria is satisfied.  Five weld options are implemented including: 
 
•Spot weld. 
•Fillet weld 
•Butt weld 
•Cross fillet weld 
•General weld 
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 Welds can fail three ways: by ductile failure which is based on the effective 
plastic strain, by brittle failure which is based on the force resultants acting on the rigid 
body weld, and by a failure time which is specified in the input.  When effective plastic 
strain is used the weld fails when the nodal plastic strain exceeds the input value.  A 
least squares algorithm is used to generate the nodal values of plastic strains at the 
nodes from the element integration point values.  The plastic strain is integrated 
through the element and the average value is projected to the nodes with a least square 
fit.  In the resultant based brittle failure the resultant forces and moments on each node 
of the weld are computed.  These resultants are checked against a failure criterion 
which is expressed in terms of these resultants.  The forces may be averaged over a user 
specified number of time steps to eliminate breakage due to spurious noise.  After all 
nodes of a weld are released the rigid body is removed from the calculation. 
 

node 2

node 1

2 node spotweld

node 3

node 2

node 1

3 node spotweld

node n

node n-1

node 2

node 1

n node spotweld
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x

z
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y

zz

y

x

Figure 28.2.  Nodal ordering and orientation of the local coordinate system is
important for determining spotweld failure. 
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 Spotwelds are shown in Figure 28.2.  Spotweld failure due to plastic straining 
occurs when the effective nodal plastic strain exceeds the input value, 𝜀fail

p .  This option 
can model the tearing out of a spotweld from the sheet metal since the plasticity is in 
the material that surrounds the spotweld, not the spotweld itself.   This option should 
only be used for the material models related to metallic plasticity and can result is 
slightly increased run times. 
Brittle failure of the spotwelds occurs when: 

(
max(𝑓𝑛, 0)
𝑆𝑛

)
𝑛

+ (
∣𝑓𝑠∣
𝑆𝑠

)
𝑚
≥ 1, (28.50)

where 𝑓𝑛 and 𝑓𝑠 are the normal and shear interface force.  Component 𝑓𝑛 contributes for 
tensile values only.  When the failure time, 𝑡f, is reached the nodal rigid body becomes 
inactive and the constrained nodes may move freely.  In Figure 28.2 the ordering of the 
nodes is shown for the 2 and 3 noded spotwelds.  This order is with respect to the local 
coordinate system where the local 𝑧 axis determines the tensile direction.  The nodes in 
the spotweld may coincide but if they are offset the local system is not needed since the 
𝑧-axis is automatically oriented based on the locations of node 1, the origin, and node 2.  
The failure of the 3 noded spotweld may occur gradually with first one node failing and 
later the second node may fail.  For 𝑛 noded spotwelds the failure is progressive 
starting with the outer nodes (1 and 𝑛) and then moving inward to nodes 2 and 𝑛 − 1.  
Progressive failure is necessary to preclude failures that would create new rigid bodies. 
 
 Ductile fillet weld failure, due to plastic straining, is treated identically to 

spotweld failure.  Brittle failure of the fillet welds occurs when: 

local coordinate

system

2 node fillet weld

a

α

3

1

2

y

z

L

2

1

z

x

3 node fillet weld

Figure 28.3.  Nodal ordering and orientation of the local coordinate system is
shown for fillet weld failure. 
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𝛽√𝜎𝑛
2 + 3(𝜏𝑛

2 + 𝜏𝑡2) ≥ 𝜎𝑓 , (28.51)

where 
𝜎𝑛 = normal stress 
𝜏𝑛 = shear stress in direction of weld (local 𝑦) 
𝜏𝑡 = shear stress normal to weld (local 𝑥) 
𝜎𝑓 = failure stress 
𝛽 = failure parameter 

 
 Component 𝜎𝑛 is nonzero for tensile values only.  When the failure time, 𝑡𝑓 , is 
reached the nodal rigid body becomes inactive and the constrained nodes may move 
freely.  In Figure 28.3 the ordering of the nodes is shown for the 2 node and 3 node fillet 
welds.  This order is with respect to the local coordinate system where the local z axis 
determines the tensile direction.  The nodes in the fillet weld may coincide.  The failure 
of the 3 node fillet weld may occur gradually with first one node failing and later the 
second node may fail.   
 
 In Figure 28.4 the butt weld is shown.  Ductile butt weld failure, due to plastic 
straining, is treated identically to spotweld failure.  Brittle failure of the butt welds 
occurs when: 

𝛽√𝜎𝑛
2 + 3(𝜏𝑛

2 + 𝜏𝑡2) ≥ 𝜎𝑓 , (28.52)

where 

2 tied nodes

4 tied nodes
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d

Figure 28.4.  Orientation of the local coordinate system and nodal ordering is
shown for butt weld failure. 
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𝜎𝑛 = normal stress 
𝜏𝑛 = shear stress in direction of weld (local y) 
𝜏𝑡 = shear stress normal to weld (local z) 
𝜎𝑓 = failure stress 
𝛽 = failure parameter 

 
Component 𝜎𝑛 is nonzero for tensile values only.  When the failure time, 𝑡𝑓  , is reached 
the nodal rigid body becomes inactive and the constrained nodes may move freely.  The 
nodes in the butt weld may coincide.   
 
 The cross fillet weld and general weld are shown in Figures 28.5 and 28.6, 
respectively.  The treatment of failure for these welds is based on the formulation for 
the fillet and butt welds. 
 

3
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Figure 28.5.  A simple cross fillet weld illustrates the required input.  Here
NFW = 3 with nodal pairs (A = 2, B = 1), (A = 3, B = 1), and (A = 3, B = 2).  The 
local coordinate axes are shown.  These axes are fixed in the rigid body and are
referenced to the local rigid body coordinate system which tracks the rigid
body rotation. 
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 Figure 28.6.  A general weld is a mixture of fillet and butt welds. 
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29    
Contact-Impact Algorithm 

29.1  Introduction 

 The treatment of sliding and impact along interfaces has always been an 
important capability in DYNA3D and more recently in LS-DYNA.  Three distinct 
methods for handling this have been implemented, which we will refer to as the 
kinematic constraint method, the penalty method, and the distributed parameter 
method.  Of these, the first approach is now used for tying interfaces.  The relative 
merits of each approach are discussed below. 
 
 Interfaces can be defined in three dimensions by listing in arbitrary order all 
triangular and quadrilateral segments that comprise each side of the interface.  One side 
of the interface is designated as the slave side, and the other is designated as the master 
side.  Nodes lying in those surfaces are referred to as slave and master nodes, 
respectively.  In the symmetric penalty method, this distinction is irrelevant, but in the 
other methods the slave nodes are constrained to slide on the master surface after 
impact and must remain on the master surface until a tensile force develops between 
the node and the surface. 
 
 Today, automatic contact definitions are commonly used.  In this approach the 
slave and master surfaces are generated internally within LS-DYNA from the part ID's 
given for each surface.  For automotive crash models it is quite common to include the 
entire vehicle in one single surface contact definition where the all the nodes and 
elements within the interface can interact. 
 

29.2  Kinematic Constraint Method 

 The kinematic constraint method which uses the impact and release conditions of 
Hughes et al., [1976] was implemented first in DYNA2D [Hallquist 1976b] and finally 
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extended to three dimensions in DYNA3D.  Constraints are imposed on the global 
equations by a transformation of the nodal displacement components of the slave nodes 
along the contact interface.  This transformation has the effect of eliminating the normal 
degree of freedom of nodes.  To preserve the efficiency of the explicit time integration, 
the mass is lumped to the extent that only the global degrees of freedom of each master 
node are coupled.  Impact and release conditions are imposed to insure momentum 
conservation.  The release conditions are of academic interest and were quickly 
removed from the coding. 
 
 Problems arise with this method when the master surface zoning is finer than the 
slave surface zoning as shown in two dimensions in Figure 29.1.  Here, certain master 
nodes can penetrate through the slave surface without resistance and create a kink in 
the slide line.  Such kinks are relatively common with this formulation, and, when 
interface pressures are high, these kinks occur whether one or more quadrature points 
are used in the element integration.  It may be argued, of course, that better zoning 
would minimize such problems; but for many problems that are of interest, good 
zoning in the initial configuration may be very poor zoning later.  Such is the case, for 
example, when gaseous products of a high explosive gas expand against the surface of a 
structural member. 
 

29.3  Penalty Method 

 The penalty method is used in the explicit programs DYNA2D and DYNA3D as 
well as in the implicit programs NIKE2D and NIKE3D.  The method consists of placing 
normal interface springs between all penetrating nodes and the contact surface.  With 
the exception of the spring stiffness matrix which must be assembled into the global 
stiffness matrix, the implicit and explicit treatments are similar.  The NIKE2D/3D and 
DYNA2D/3D programs compute a unique modulus for the element in which it resides.  
In our opinion, pre-empting user control over this critical parameter greatly increases 

the success of the method. 

Indicates nodes treated as free surface nodes

slave surface

master surface

Figure 29.1.  Nodes of the master slide surface designated with an “x” are
treated as free surface nodes in the nodal constraint method. 
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 Quite in contrast to the nodal constraint method, the penalty method approach is 
found to excite little if any mesh hourglassing.  This lack of noise is undoubtedly 
attributable to the symmetry of the approach.  Momentum is exactly conserved without 
the necessity of imposing impact and release conditions.  Furthermore, no special 
treatment of intersecting interfaces is required, greatly simplifying the implementation. 
 
 Currently three implementations of the penalty algorithm are available:   

• Standard Penalty Formulation 

• Soft Constraint Penalty Formulation, which has been implemented to treat 
contact between bodies with dissimilar material properties (e.g. steel-foam).  
Stiffness calculation and its update during the simulation differs from the Stand-
ard Penalty Formulation.   

• Segment-based Penalty Formulation, it is a powerful contact algorithm whose 
logic is a slave segment-master segment approach instead of a traditional slave 
node-master segment approach.  This contact has proven very useful for airbag 
self-contact during inflation and complex contact conditions.    

 
 In the standard penalty formulation, the interface stiffness is chosen to be 
approximately the same order of magnitude as the stiffness of the interface element 
normal to the interface.  Consequently the computed time step size is unaffected by the 
existence of the interfaces.  However, if interface pressures become large, unacceptable 
penetration may occur.  By scaling up the stiffness and scaling down the time step size, 
we may still solve such problems using the penalty approach.  Since this increases the 
number of time steps and hence the cost, a sliding-only option has been implemented 
for treating explosive-structure interaction problems thereby avoiding use of the 
penalty approach.  This latter option is based on a specialization of the third method 
described below. 
 

29.4  Distributed Parameter Method 

 This method is used in DYNA2D, and a specialization of it is the sliding only 
option in DYNA3D.  Motivation for this approach came from the TENSOR [Burton et.  
al., 1982] and HEMP [Wilkins 1964] programs which displayed fewer mesh instabilities 
than DYNA2D with the nodal constraint algorithm.  The first DYNA2D implementation 
of this last algorithm is described in detail by Hallquist [1978].  Since this early 
publication, the method has been moderately improved but the major ideas remain the 
same. 
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 In the distributed parameter formulation, one-half the slave element mass of each 
element in contact is distributed to the covered master surface area.  Also, the internal 
stress in each element determines a pressure distribution for the master surface area 
that receives the mass.  After completing this distribution of mass and pressure, we can 
update the acceleration of the master surface.  Constraints are then imposed on slave 
node accelerations and velocities to insure their movement along the master surface.  
Unlike the finite difference hydro programs, we do not allow slave nodes to penetrate; 
therefore we avoid “put back on” logic.  In another simplification, our calculation of the 
slave element relative volume ignores any intrusion of the master surfaces.  The HEMP 
and TENSOR codes consider the master surface in this calculation. 
 

29.5  Preliminaries 

 Consider the time-dependent motion of two bodies occupying regions B1 and B2 
in their undeformed configuration at time zero.  Assume that the intersection 

B1 ∩ B2 = 0, (29.1)

is satisfied.  Let 𝜕B1 and ∂B2denote the boundaries of B1 and B2, respectively.  At some 
later time, these bodies occupy regions b1 and b2 bounded by ∂b1and ∂b2as shown in 
Figure 29.2.  Because the deformed configurations cannot penetrate, 

(b1 − ∂b1) ∩ b2 = 0. (29.2)
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 Figure 29.2.  Reference and deformed configuration. 
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As long as (∂b1 ∩ ∂b2) = 0, the equations of motion remain uncoupled.  In the 
foregoing and following equations, the right superscript 𝛼 (= 1,2) denotes the body to 
which the quantity refers. 
 
 Before a detailed description of the theory is given, some additional statements 
should be made concerning the terminology.  The surfaces ∂b1 and ∂b2 of the 
discretized bodies b1 and b2 become the master and slave surfaces respectively.  Choice 
of the master and slave surfaces is arbitrary when the symmetric penalty treatment is 
employed.  Otherwise, the more coarsely meshed surface should be chosen as the 
master surface unless there is a large difference in mass densities in which case the side 
corresponding to the material with the highest density is recommended.  Nodal points 
that define ∂b1 are called master nodes and nodes that define ∂b2 are called slave 
nodes.  When (∂b1 ∩ ∂b2) ≠ 0, the constraints are imposed to prevent penetration.  
Right superscripts are implied whenever a variable refers to either the master surface 
∂b1, or slave surface, ∂b2; consequently, these superscripts are dropped in the 
development which follows. 

29.6  Slave Search 

 The slave search is common to all interface algorithms implemented in 
DYNA3D.  This search finds for each slave node its nearest point on the master surface.  
Lines drawn from a slave node to its nearest point will be perpendicular to the master 
surface, unless the point lies along the intersection of two master segments, where a 
segment is defined to be a 3- or 4-node element of a surface. 
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Figure 29.3.  In this figure, four master segments can harbor slave node 𝑛𝑠
given that 𝑚𝑠 is the nearest master node. 
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 Consider a slave node, 𝑛𝑠, sliding on a piecewise smooth master surface and 
assume that a search of the master surface has located the master node, 𝑚𝑠, lying nearest 
to 𝑛𝑠.  Figure 29.3 depicts a portion of a master surface with nodes 𝑚𝑠 and 𝑛𝑠 labeled.  If 
𝑚𝑠 and 𝑛𝑠 do not coincide, 𝑛𝑠 can usually be shown to lie in a segment 𝑠1 via the 
following tests: 

(𝐜𝑖 × 𝐬) ⋅ (𝐜𝑖 × 𝐜𝑖+1) > 0,
(𝐜𝑖 × 𝐬) ⋅ (𝐬 × 𝐜𝑖+1) > 0, (29.3)

where vector 𝐜𝑖 and 𝐜𝑖+1 are along edges of 𝑠1 and point outward from 𝑚𝑠.  Vector 𝐬 is 
the projection of the vector beginning at 𝑚𝑠, ending at 𝑛𝑠, and denoted by 𝐠, onto the 
plane being examined (see Figure 29.4). 

𝐬 = 𝐠 − (𝐠 ⋅ 𝐦)𝐦, (29.4)
where for segment 𝑠1 

𝐦 =
𝐜𝑖 × 𝐜𝑖+1
∣𝐜𝑖 × 𝐜𝑖+1∣

. (29.5)

 
 Since the sliding constraints keep 𝑛𝑠 close but not necessarily on the master 
surface and since 𝑛𝑠 may lie near or even on the intersection of two master segments, 
the inequalities of Equation (29.3) may be inconclusive, i.e., they may fail to be satisfied 
or more than one may give positive results.  When this occurs 𝑛𝑠 is assumed to lie along 
the intersection which yields the maximum value for the quantity 

𝐠 ⋅ 𝐜𝑖
|𝐜𝑖|

𝑖 = 1,2,3,4, .. (29.6)

When the contact surface is made up of badly shaped elements, the segment apparently 
identified as containing the slave node actually may not, as shown in Figure 29.5.  
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 Figure 29.4.  Projection of g onto master segment 𝑠1 
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 Assume that a master segment has been located for slave node 𝑛𝑠 and that 𝑛𝑠 is 
not identified as lying on the intersection of two master segments.  Then the 
identification of the contact point, defined as the point on the master segment which is 
nearest to 𝑛𝑠, becomes nontrivial.  For each master surface segment, 𝑠1 is given the 
parametric representation of Equation (1.7), repeated here for clarity: 

𝐫 = 𝑓1(𝜉 , 𝜂)𝐢1 + 𝑓2(𝜉 , 𝜂)𝐢2 + 𝑓3(𝜉 , 𝜂)𝐢3, (29.7)
where 

𝑓𝑖(𝜉 , 𝜂) = ∑ 𝜙𝑗𝑥𝑖
𝑗

4

𝑗=1
. (29.8)

 
Note that r1 is at least once continuously differentiable and that 

∂𝐫
∂𝜉 ×

∂𝐫
∂𝜂 ≠ 0, (29.9)

Thus 𝐫 represents a master segment that has a unique normal whose direction depends 
continuously on the points of s1. 
 
 Let t be a position vector drawn to slave node ns and assume that the master 
surface segment s1 has been identified with ns.  The contact point coordinates (𝜉c, 𝜂c) on 
s1 must satisfy 

∂𝐫
∂𝜉 (𝜉𝑐, 𝜂𝑐) ⋅ [𝐭 − 𝐫(𝜉𝑐, 𝜂𝑐)] = 0, (29.10)

∂𝐫
∂𝜂 (𝜉𝑐, 𝜂𝑐) ⋅ [𝐭 − 𝐫(𝜉𝑐, 𝜂𝑐)] = 0. (29.11)

1
2

3

4

5

6
7

8

Figure 29.5.  When the nearest node fails to contain the segment that harbors
the slave node, segments numbered 1-8 are searched in the order shown. 
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 The physical problem is illustrated in Figure 29.6, which shows ns lying above 
the master surface.  Equations (29.10) and (29.11) are readily solved for 𝜉c and  𝜂c.  One 
way to accomplish this is to solve Equation (29.10) for 𝜉c in terms of 𝜂c, and substitute 
the results into Equation (29.11).  This yields a cubic equation in 𝜂c which is presently 
solved numerically in LS-DYNA.  In the near future, we hope to implement a closed 
form solution for the contact point. 
 
 The equations are solved numerically.  When two nodes of a bilinear 
quadrilateral are collapsed into a single node for a triangle, the Jacobian of the 
minimization problem is singular at the collapsed node.  Fortunately, there is an 
analytical solution for triangular segments since three points define a plane.  Newton-
Raphson iteration is a natural choice for solving these simple nonlinear equations.  The 
method diverges with distorted elements unless the initial guess is accurate.  An exact 
contact point calculation is critical in post-buckling calculations to prevent the solution 
from wandering away from the desired buckling mode.   
 
 Three iterations with a least-squares projection are used to generate an initial 
guess: 

𝜉0 = 0,         𝜂0 = 0,

[
𝐫,𝜉
𝐫,𝜂] [𝐫,𝜉  𝐫,𝜂] {Δ𝜉

Δ𝜂} = [
𝐫,𝜉
𝐫,𝜂] {𝐫(𝜉𝑖,𝜂𝑖) − 𝐭}, 

𝜉𝑖+1 = 𝜉𝑖 + Δ𝜉, 𝜂𝑖+1 = 𝜂𝑖 + Δ𝜂,
(29.12)

followed by the Newton-Raphson iterations which are limited to ten iterations, but 
which usually converges in four or less. 

3

4

1

2

ξ

η

ns

X1

X2

X3
t

r

 Figure 29.6.  Location of contact point when ns lies above master segment. 
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[H] {Δ𝜉
Δ𝜂} = −{

𝐫,𝜉
𝐫,𝜂} {𝐫(𝜉𝑖,𝜂𝑖) − 𝐭},

[H] = {
𝐫,ξ
𝐫,η} [𝐫,𝜉  𝐫,𝜂] + [

0 𝐫 ⋅ 𝐫,𝜉𝜂
𝐫 ⋅ 𝐫,𝜉𝜂 0 ] , 

𝜉𝑖+1 = 𝜉𝑖 + Δ𝜉, 𝜂𝑖+1 = 𝜂𝑖 + Δ𝜂,

(29.13)

 
 In concave regions, a slave node may have isoparametric coordinates that lie 
outside of the [−1, +1] range for all of the master segments, yet still have penetrated the 
surface.  A simple strategy is used for handling this case, but it can fail.  The contact 
segment for each node is saved every time step.  If the slave node contact point defined 
in terms of the isoparametric coordinates of the segment, is just outside of the segment, 
and the node penetrated the isoparametric surface, and no other segment associated 
with the nearest neighbor satisfies the inequality test, then the contact point is assumed 
to occur on the edge of the segment.  In effect, the definition of the master segments is 
extended so that they overlap by a small amount.  In the hydrocode literature, this 
approach is similar to the slide line extensions used in two dimensions.  This simple 
procedure works well for most cases, but it can fail in situations involving sharp 
concave corners. 
 

29.7  Sliding With Closure and Separation 

29.7.1  Standard Penalty Formulation  

 Because this is perhaps the most general and most used interface algorithm, we 
choose to discuss it first.  In applying this penalty method, each slave node is checked 
for penetration through the master surface.  If the slave node does not penetrate, 
nothing is done.  If it does penetrate, an interface force is applied between the slave 
node and its contact point.  The magnitude of this force is proportional to the amount of 
penetration.  This may be thought of as the addition of an interface spring. 
 
 Penetration of the slave node ns through the master segment which contains its 
contact point is indicated if 

𝑙 = 𝐧𝑖 × [𝐭 − 𝐫(𝜉𝑐, 𝜂𝑐)] < 0, (29.14)
where 

𝐧𝑖 = 𝐧𝑖(𝜉𝑐, 𝜂𝑐) (29.15)
is normal to the master segment at the contact point. 
 
 If slave node ns has penetrated through master segment 𝑠𝑖, we add an interface 
force vector 𝐟s: 

𝐟𝑠 = −𝑙𝑘𝑖𝐧𝑖 if 𝑙 < 0 (29.16)
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to the degrees of freedom corresponding to ns and 

𝑓𝑚𝑖 = 𝜙𝑖(𝜉𝑐, 𝜂𝑐)𝑓𝑠 if 𝑙 < 0 (29.17)

to the four nodes (𝑖 = 1,2,3,4) that comprise master segment 𝑠𝑖.  The stiffness factor 𝑘𝑖 for 
master segment 𝑠𝑖 is given in terms of the bulk modulus 𝐾𝑖, the volume 𝑉𝑖, and the face 
area 𝐴𝑖 of the element that contains 𝑠𝑖 as 

𝑘𝑖 =
𝑓𝑠𝑖𝐾𝑖𝐴𝑖

2

𝑉𝑖
(29.18)

for brick elements and  

𝑘𝑖 =
𝑓𝑠𝑖𝐾𝑖𝐴𝑖

max(shell  diagonal) (29.19)

for shell elements where 𝑓𝑠𝑖 is a scale factor for the interface stiffness and is normally 
defaulted to .10.  Larger values may cause instabilities unless the time step size is scaled 
back in the time step calculation. 
 
 In LS-DYNA, a number of options are available for setting the penalty stiffness 
value.  This is often an issue since the materials in contact may have drastically different 
bulk modulii.  The calculational choices are:  
 

• Minimum of the master segment and slave node stiffness.  (default) 

• Use master segment stiffness 

• Use slave node value 

• Use slave node value, area or mass weighted. 

• As above but inversely proportional to the shell thickness.  

 
 The default may sometimes fail due to an excessively small stiffness.  When this 
occurs it is necessary to manually scale the interface stiffness.  Care must be taken not to 
induce an instability when such scaling is performed.  If the soft material also has a low 
density, it may be necessary to reduce the scale factor on the computed stable time step.   
 

29.7.2  Soft Constraint Penalty Formulation 

 Very soft materials have an undesired effect on the contact stiffness, lowering its 
value and ultimately causing excessive penetration.  An alternative to put a scale factor 
on the contact stiffness for SOFT = 0 is to use a Soft Constraint Penalty Formulation.  
The idea behind this option is to eliminate the excessive penetration by using a different 
formulation for the contact stiffness.  
 
 In addition to the master and slave contact stiffness, an additional stiffness is 
calculated, which is based on the stability (Courant’s criterion) of the local system 
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comprised of two masses (segments) connected by a spring.  This is the stability contact 
stiffness 𝑘cs and is calculated by:  

𝑘cs(𝑡) = 0.5 ⋅ SOFSCL ⋅ 𝑚∗ ⋅ (
1

Δ𝑡𝑐(𝑡))
2
, (29.20)

where SOFSCL on Optional Card A of *CONTROL_CONTACT is the scale factor for 
the Soft Constraint Penalty Formulation, 𝑚∗ is a function of the mass of the slave node 
and of the master nodes.  Δ𝑡c is set to the initial solution timestep.  If the solution time 
step grows, Δ𝑡c is reset to the current time step to prevent unstable behavior.   
 
 A comparative check against the contact stiffness calculated with the traditional 
penalty formulation, 𝑘soft=0, and in general the maximum stiffness between the two is 
taken,  

𝑘soft=1 = max{𝑘cs, 𝑘soft=0}. (29.21)
 

29.7.3  Segment-based Penalty Formulation 

 Segment based contact is a general purpose shell and solid element penalty type 
contact algorithm.  Segment based contact uses a contact stiffness similar to the 
SOFT = 1 stiffness option, but the details are quite different.   

𝑘cs(𝑡) = 0.5 ⋅ SLSFAC ⋅
⎩{⎨
{⎧SFSor
SFM⎭}⎬

}⎫ (
𝑚1𝑚2

𝑚1 + 𝑚2
) (

1
Δ𝑡𝑐(𝑡))

2
. (29.22)

 
 Segment masses are used rather than nodal masses.  Segment mass is equal to 
the element mass for shell segments and half the element mass for solid element 
segments.  Like the Soft Constraint Penalty Formulation, 𝑑𝑡 is set to the initial solution 
time step which is updated if the solution time step grows larger to prevent unstable 
behavior.  However, it differs from SOFT = 1 in how 𝑑𝑡 is updated.  𝑑𝑡 is updated only if 
the solution time step grows by more than 5%.  This allows 𝑑𝑡 to remain constant in 
most cases, even if the solution time step slightly grows.   
 

29.8  Recent Improvements in Surface-to-Surface Contact 

 A number of recent changes have been made in the surface-to-surface contact 
including contact searching, accounting for thickness, and contact damping.  These 
changes have been implemented primarily to aid in the analysis of sheet metal forming 
problems. 
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29.8.1  Improvements to the Contact Searching 

 In metal forming applications, problems with the contact searching were found 
when the rigid body stamping dies were meshed with elements having very poor 
aspect ratios.  The nearest node algorithm described above can break down since the 
nearest node is not necessarily anywhere near the segment that harbors the slave node 
as is assumed in Figure 29.5 (see Figure 29.7).  Such distorted elements are commonly 
used in rigid bodies in order to define the geometry accurately. 
 
 To circumvent the problem caused by bad aspect ratios, an expanded searching 
procedure is used in which we attempt to locate the nearest segment rather than the 
nearest nodal point.  We first sort the segments based on their centroids as shown in 
Figure 29.8 using a one-dimensional bucket sorting technique. 

 

slave node

closet nodal point

Figure 29.7.  Failure to find the contact segment can be caused by poor aspect
ratios in the finite element mesh. 

search 3 bins for this slave node

centroids of master contact segments

Figure 29.8.  One-dimensional bucket sorting identifies the nearest segments
for each slave node. 
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 Once a list of possible candidates is identified for a slave node, it is necessary to 
locate the possible segments that contain the slave node of interest.  For each 
quadrilateral segment, four points are constructed at the centroids of the four triangles 
each defined by 3 nodes as shown in Figure 29.9 where the black point is the centroid of 
the quadrilateral.  These centroids are used to find the nearest point to the slave node 
and hence the nearest segment.  The nodes of the three nearest segments are then 
examined to identify the three nearest nodes.  Just one node from each segment is 
allowed to be a nearest node. 
 
 When the nearest segment fails to harbor the slave node, the adjacent segments 
are checked.  The old algorithm checks the segments labeled 1-3 (Figure 29.10), which 
do not contain the slave node, and fails.  
 

slave node

closet nodal point

1
2

3

segment identified as containing slave node

Figure 29.10.  In case the stored segment fails to contain the node, the adjacent
segments are checked. 

Figure 29.9.  Interior points are constructed in the segments for determining
the closest point to the slave node. 
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29.8.2  Accounting For the Shell Thickness 

 Shell thickness effects are important when shell elements are used to model sheet 
metal.  Unless thickness is considered in the contact, the effect of thinning on frictional 
interface stresses due to membrane stretching will be difficult to treat.  In the treatment 
of thickness we project both the slave and master surfaces based on the mid-surface 
normal projection vectors as shown in Figure 29.11.  The surfaces, therefore, must be 
offset by an amount equal to 1/2 their total thickness (Figure 29.12).  This allows 
DYNA3D to check the node numbering of the segments automatically to ensure that the 
shells are properly oriented. 

 
 Thickness changes in the contact are accounted for if and only if the shell 
thickness change option is flagged in the input.  Each cycle, as the shell elements are 
processed, the nodal thicknesses are stored for use in the contact algorithms.  The 
interface stiffness may change with thickness depending on the input options used. 
 

Projected contact surface

length of projection vector

is 1/2 the shell thickness

Figure 29.11.  Contact surface is based on mid-surface normal projection
vectors. 
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 Type 5 contact considers nodes interacting with a surface.  This algorithm calls 
exactly the same subroutines as surface-to-surface but not symmetrically:  i.e., the 
subroutines are called once, not twice.  To account for the nodal thickness, the 
maximum shell thickness of any shell connected to the node is taken as the nodal 
thickness and is updated every cycle.  The projection of the node is done normal to the 
contact surface as shown in Figure 29.13. 

29.8.3  Initial Contact Interpenetrations 

 
 The need to offset contact surfaces to account for the thickness of the shell 
elements contributes to initial contact interpenetrations.  These interpenetrations can 
lead to severe numerical problems when execution begins so they should be corrected if 
LS-DYNA is to run successfully.  Often an early growth of negative contact energy is 
one sign that initial interpenetrations exist.  Currently, warning messages are printed to 
the terminal, the D3HSP file, and the MESSAG file to report interpenetrations of nodes 
through contact segments and the modifications to the geometry made by LS-DYNA to 
eliminate the interpenetrations.  Sometimes such corrections simply move the problem 
elsewhere since it is very possible that the physical location of the shell mid-surface and 
possibly the shell thickness are incorrect.  In the single surface contact algorithms any 
nodes still interpenetrating on the second time step are removed from the contact with a 
warning message.   
 
 In some geometry's interpenetrations cannot be detected since the contact node 
interpenetrates completely through the surface at the beginning of the calculation.  This 
is illustrated in Figure 29.14.  Another case contributing to initial interpenetrations 
occurs when the edge of a shell element is on the surface of a solid material as seen in 
Figure 29.15.  Currently, shell edges are rounded with a radius equal to one-half the 
shell thickness. 
 
 To avoid problems with initial interpenetrations, the following recommendations 
should be considered: 

•Adequately offset adjacent surfaces to account for part thickness during the 

1/2 thickness of node

Figure 29.12.  The slave and master surfaces must be offset in the input by
one-half the total shell thickness.  This also allows the segments to be oriented
automatically. 
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mesh generation phase. 
•Use consistently refined meshes on adjacent parts which have significant 

curvatures. 
•Be very careful when defining thickness on shell and beam section definitions --

especially for rigid bodies. 
•Scale back part thickness if necessary.  Scaling a 1.5mm thickness to .75mm 

should not cause problems but scaling to .075mm might.  Alternatively, de-
fine a smaller contact thickness by part ID.  Warning: if the part is too thin 
contact failure will probably occur 

•Use spot welds instead of merged nodes to allow the shell mid surfaces to be 
offset. 

 
 

29.8.4  Contact Energy Calculation 

 Contact energy, 𝐸contact, is incrementally updated from time 𝑛 to time 𝑛 + 1 for 
each contact interface as: 

Detected Penetration Undetected Penetration

Figure 29.14.  Undetected interpenetration.  Such interpenetrations are
frequently due to the use of coarse meshes. 

Brick

Inner penetration if edge is 

too close

shell

Figure 29.15.  Undetected interpenetration due to rounding the edge of the
shell element. 
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𝐸contact
𝑛+1 = 𝐸contact

𝑛 + [∑ Δ𝐹𝑖
slave

𝑛𝑠𝑛

𝑖=1
× Δ𝑑𝑖𝑠𝑡𝑖

slave + ∑ Δ𝐹𝑖
master

𝑛𝑚𝑛

𝑖=1
× Δ𝑑𝑖𝑠𝑡𝑖

master]
𝑛+1

2
, (29.23)

where 𝑛𝑠𝑛 is the number of slave nodes, 𝑛𝑚𝑛 is the number of master nodes, Δ𝐹𝑖
slave is 

the interface force between the ith slave node and the contact segment Δ𝐹𝑖
master is the 

interface force between the ith master node and the contact segment, Δ𝑑𝑖𝑠𝑡𝑖
slave is the 

incremental distance the ith slave node has moved during the current time step, and 
Δ𝑑𝑖𝑠𝑡𝑖

master is the incremental distance the ith master node has moved during the current 
time step.  In the absence of friction the slave and master side energies should be close 
in magnitude but opposite in sign.  The sum, 𝐸contact, should equal the stored energy.  
Large negative contact energy is usually caused by undetected penetrations.  Contact 
energies are reported in the SLEOUT file.  In the presence of friction and damping 
discussed below the interface energy can take on a substantial positive value especially 
if there is, in the case of friction, substantial sliding. 
 

29.8.5  Contact Damping 

 Viscous contact damping has been added to all contact options including single 
surface contact.  The original intent was to damp out oscillations normal to the contact 
surfaces during metal forming operations; however, it was later found to work 
effectively in removing high frequency noise in problems which involve impact.  The 
input requires a damping value as a percentage of critical, 2𝑚, where 𝑚 is the mass and 
𝜔 is the natural frequency.  Letting 𝑘 denote the interface stiffness, we compute the 
natural frequency for an interface slave node from Equation 26.15. 

 Figure 29.16.  Hemispherical deep drawing problem. 
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𝜔 = √
𝑘(𝑚slave + 𝑚master)

𝑚slave𝑚master
𝑚 = min{𝑚slave, 𝑚master}. (29.24)

The master mass 𝑚master is interpolated from the master nodes of the segment 
containing the slave node using the basis functions evaluated at the contact point of the 
slave node.   
 
 Force oscillations often occur as curved surfaces undergo relative motion.  In 
these cases contact damping will eliminate the high frequency content in the contact 
reaction forces but will be unable to damp the lower frequency oscillations caused by 
nodes moving from segment to segment when there is a large angle change between the 
segments.  This is shown in the hemispherical punch deep drawing in Figure 29.16.  The 
reaction forces with and without contact damping in Figure 29.17 show only minor 
differences since the oscillations are not due to the dynamic effects of explicit 
integration.  However, refining the mesh as shown in Figure 29.18 to include more 
elements around the die corner as in Figure 29.18 greatly reduces the oscillations as 
shown in Figure 29.19.  This shows the importance of using an adequate mesh density 
in applications where significant relative motion is expected around sharp corners. 
 

 Figure 29.17.  Reaction forces with and without contact damping. 
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  Friction  

 Figure 29.18.  Refinement of die radius. 

Figure 29.19.  The oscillations are effectively eliminated by the mesh
refinement. 
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 Friction in LS-DYNA is based on a Coulomb formulation.  Let 𝐟∗ be the trial 
force, 𝐟𝑛 the normal force, 𝑘 the interface stiffness, 𝜇 the coefficient of friction, and 𝐟𝑛 the 
frictional force at time 𝑛.  The frictional algorithm, outlined below, uses the equivalent 
of an elastic plastic spring.  The steps are as follows:  
 
1. Compute the yield force, 𝐹𝑦: 

𝐹𝑦 = 𝜇 |𝐟𝑛| (29.25)

2. Compute the incremental movement of the slave node  

Δ𝐞 = 𝐫𝑛+1(𝜉𝑐𝑛+1, 𝜂𝑐𝑛+1) − 𝐫𝑛+1(𝜉𝑐𝑛, 𝜂𝑐𝑛) (29.26)

3. Update the interface force to a trial value: 
𝐟∗ = 𝐟𝑛 − 𝑘Δ𝐞 (29.27)

4. Check the yield condition: 

𝐟𝑛+1 = 𝐟∗ if ∣𝐟∗∣ ≤ 𝐹𝑦 (29.28)

5. Scale the trial force if it is too large: 

𝐟𝑛+1 =
𝐹𝑦𝐟∗

|𝐟∗| if ∣𝐟∗∣ > 𝐹𝑦 (29.29)

 
 An exponential interpolation function smooths the transition between the static, 
𝜇𝑠, and dynamic, 𝜇𝑑, coefficients of friction where 𝐯 is the relative velocity between the 
slave node and the master segment: 

𝜇 = 𝜇𝑑 + (𝜇𝑠 − 𝜇𝑑) 𝑒−𝑐|𝐯|, (29.30)

where 

𝐯 =
Δ𝐞
Δ𝑡, (29.31)

Δ𝑡 is the time step size, and 𝑐 is a decay constant. 
 
 The interface shear stress that develops as a result of Coulomb friction can be 
very large and in some cases may exceed the ability of the material to carry such a 
stress.  We therefore allow another limit to be placed on the value of the tangential 
force:   

𝑓 𝑛+1 = min(𝑓Coulomb
𝑛+1 , 𝜅𝐴master), (29.32)

where 𝐴master is the area of the master segment and 𝜅 is the viscous coefficient.  Since 
more than one node may contribute to the shear stress of a segment, we recognize that 
the stress may still in some cases exceed the limit 𝜅. 
 
 Typical values of friction, see Table 26.1, can be found in Marks Engineering 
Handbook.   
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MATERIALS STATIC SLIDING 
Hard steel on hard steel 0.78 (dry) 08 (greasy), .42 (dry) 
Mild steel on mild steel 0.74 (dry) 10 (greasy), .57 (dry) 
Aluminum on mild steel 0.61 (dry) 47 (dry) 
Aluminum on aluminum1 05 (dry) 1.4 (dry) 
Tires on pavement (40psi) 0.90 (dry). 69(wet), .85(dry) 
 

Table 26.1.  Typical values of Coulomb Friction [Marks] 
 

29.9  Tied Interfaces 

 Sudden transitions in zoning are permitted with the tied interfaces as shown in 
Figure 29.20 where two meshes of solid elements are joined.  This feature can often 
decrease the amount of effort required to generate meshes since it reduces the need to 
match nodes across interfaces of merged parts. 
 
 Tied interfaces include four interface options of which three are in the Sliding 
Interface Definition Section in the LS-DYNA User’s Manual.  These are: 
 

• Type 2 for tying surfaces with translational degrees of freedom. 

• Type 6 for tying translational degrees of freedom of nodes to a surface 

Tied interface permits

mesh transitions

 Figure 29.20.  Tied interface used for a mesh transition. 
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• Type 7 for tying both translational and rotational degrees of freedom of nodes 

 
 The fourth option is in the “Tie-Breaking Shell Definitions” Section of the user’s 
manual and is meant as a way of tying edges of adjacent shells together.  Unlike Type 7 
this latter option does not require a surface definition, simply nodal lines, and includes 
a failure model based on plastic strain which can be turned off by setting the plastic 
failure strain to a high value.  The first two options, which are equivalent in function 
but differ in the input definition, can be properly applied to nodes of elements which 
lack rotational degrees of freedom.  The latter options must be used with element types 
that have rotational degrees of freedom defined at their nodes such as the shell and 
beam elements.  One important application of Type 7 is that it allows edges of shells to 
be tied to shell surfaces.  In such transitions the shell thickness is not considered.  
Exceptions from these latter statements is in case of invoking the implicit accuracy 
option, see *CONTROL_ACCURACY, for which a node with rotational degrees of 
freedom can tie to any element with or without offset.  In this case moments are 
consistently transferred based on the kinematics of the chosen tied interface, the theory 
for this is presented in Section.   
 
 Since the constraints are imposed only on the slave nodes, the more coarsely 
meshed side of the interface is recommended as the master surface.  Ideally, each 
master node should coincide with a slave node to ensure complete displacement 
compatibility along the interface, but in practice this is often difficult if not impossible 
to achieve.  In other words, master nodes that do not coincide with a slave node can 
interpenetrate through the slave surface. 
 
 Implementation of tied interface constraints is straightforward.  Each time step 
we loop through the tied interfaces and update each one independently.  First, we 
distribute the nodal forces and nodal mass of each slave node to the master nodes 
which define the segment containing the contact point, i.e., the increments in mass and 
forces 

Δ𝑓𝑚𝑖 = 𝜙𝑖(𝜉𝑐,𝜂𝑐)𝑓𝑠 (29.33)

are added to the mass and force vector of the master surface.  After the summation over 
all slave nodes is complete, we can compute the acceleration of the master surface.  The 
acceleration of each slave node 𝑎𝑖𝑠 is then interpolated from the master segment 
containing its contact points: 

𝑎𝑖𝑠 = ∑ 𝜙𝑗(𝜉𝑐, 𝜂𝑐)𝑎𝑖
𝑗

4

𝑗=1
. (29.34)

Velocities and displacements are now updated normally. 
 
 The interpolated contact point, (𝜉𝑐, 𝜂𝑐), for each slave node is computed once, 
since its relative position on the master segment is constant for the duration of the 
calculation.  If the closest point projection of the slave node to the master surface is non-
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orthogonal, values of (𝜉𝑐, 𝜂𝑐) greater than unity will be computed.  To allow for slight 
errors in the mesh definition, the slave node is left unconstrained if the magnitude of 
the contact point exceeds 1.02.  Great care should be exercised in setting up tied 
interfaces to ensure that the slave nodes are covered by master segments. 
 
 Conflicting constraints must be avoided.  Care should be taken not to include 
nodes that are involved in a tied interfaces in another tied interface, in constraint sets 
such as nodal constraint sets, in linear constraint equations, and in spot welds.  
Furthermore, tied interfaces between rigid and deformable bodies are not permitted.  
LS-DYNA checks for conflicting constraints on nodal points and if such conflicts are 
found, the calculation will terminate with an error message identifying the conflict.  
Nodes in tied interfaces should not be included as slave nodes in rigid wall definitions 
since interactions with stonewalls will cause the constraints that were applied in the 
tied interface logic to be violated.  We do not currently check for this latter condition is 
LS-DYNA.  
 
 Tied interfaces require coincident surfaces and for shell element this means that 
the mid-surfaces must be coincident.  Consider Figure 29.21 where identical slave and 
master surfaces are offset.  In this case the tied constraints require that translational 
velocities of tied nodes be identical, i.e., 

𝐯𝑠 = 𝐯𝑚. (29.35)
Consequently, if the nodes are offset, rotations are not possible.  The velocity of a tied 
slave node in Figure 29.21 should account for the segment rotation: 

𝐯𝑠 = 𝐯𝑚 − 𝑧̂ 𝐞3 × 𝛚, (29.36)
where 𝑧 ̂is the distance to the slave node, 𝐞3 is the normal vector to the master surface at 
the contact point, and 𝛚 is the angular velocity.  Since this is not the case in the tied 
interfaces logic, 𝑧 ̂must be of zero length.   
 
 LS-DYNA projects tied slave nodes back to the master surface if possible and 
prints warning messages for all projected offset nodes or nodes too far away to tie.  This 
projection eliminates the problems with rotational constraints but creates other 
difficulties: 
 

• Geometry is modified 

• Tied interfaces must be excluded from automatic generation since tied surfaces 
cannot be mixed with automatic contact with thickness offsets. 
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 An offset capability has been added to the tied interfaces which uses a penalty 
approach.  The penalty approach removes the major limitations of the constraint 
formulation since with the offset option: 
 

• Multiple tied interfaces cannot share common nodes. 

• Rigid body nodes can be constrained. 

• Tied interface nodes can have other constraints applied and can be subjected to 
prescribed motions. 

29.10  Strongly Objective Tied Contacts 

In implicit calculations, non-physical results observed when some tied contact 
formulations are combined with automatic single point constraints on solid element 
rotational degrees of freedom (AUTOSPC on *CONTROL_IMPLICIT_SOLVER) have 
motivated an extension in this context.  A goal is to provide a universal tied contact 
formulation in implicit that works well in most situations, thus preventing the user 
from having to think too hard about which interface is best suited for the application at 
hand.  To this end, a small selection of tied interfaces have been singled out that all 
represent this universal contact, these are 
 

*CONTACT_TIED_NODES_TO_SURFACE_CONSTRAINED_OFFSET
 *CONTACT_TIED_NODES_TO_SURFACE_OFFSET
 *CONTACT_TIED_SHELL_EDGE_TO_SURFACE_CONSTRAINED_OFFSET 
 *CONTACT_TIED_SHELL_EDGE_TO_SURFACE_BEAM_OFFSET 
 
The first of these two do not consider rotational degrees of freedom, whereas the other 
two do.  Furthermore, the first and third are constraint based and the other two are 
penalty based, so all in  all these four cover much of what a user expects from a tied 
interface.  By setting IACC to 1 on *CONTROL_ACCURACY any of the tied contact 
options mentioned above (and the non-offset counterparts as a side effect, i.e., 
*CONTACT_TIED_NODES_TO_SURFACE and 
*CONTACT_TIED_SHELL_EDGE_TO_SURFACE) are treated with this strongly 
objective formulation.  In addition to being strongly objective, i.e., forces and moments 

Slave Surface

Master Surface

 Figure 29.21.  Offset tied interface. 
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transform correctly under superposed rigid body motions in a single implicit step, this 
formulation applies rotational constraints consistently when and only when necessary. 
This means not only that slave nodes without rotational degrees of freedom are not 
rotationally constrained, but also that bending and torsional rotations are constrained to 
the master segment’s rotational motion in a way that is physically justified.  To be more 
specific, slave node bending rotations (i.e., rotations in the plane of the master segment) 
are constrained to the master segment rotational degrees of freedom if this happens to 
stem from a shell element, otherwise they are constrained to the master segment 
rotation as determined from its individual nodal translations.  The slave node torsional 
rotations (i.e., rotations with respect to the normal of the master segment) are always 
constrained according to this latter philosophy, thus avoiding a torsional constraint to 
the relatively weak drilling mode of shells.  So this tied contact formulation properly 
treats bending and torsional rotations, here slave node rotational degrees of freedom 
typically come from shell or beam elements.  So in effect, it is in a sense sufficient to 
only consider 
 
 *CONTACT_TIED_SHELL_EDGE_TO_SURFACE_CONSTRAINED_OFFSET 
 *CONTACT_TIED_SHELL_EDGE_TO_SURFACE_BEAM_OFFSET 
 
for most situations (choosing between a constraint or penalty formulation)  but the 
other two 
 
 *CONTACT_TIED_NODES_TO_SURFACE_CONSTRAINED_OFFSET
 *CONTACT_TIED_NODES_TO_SURFACE_OFFSET 
 
“non-rotational” formulations are included in the event of not wanting to constrain 
rotations whatsoever.  Referring to Figure 2927-22, the following is the mathematical 
formulation of this tied contact formulation. 
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29.10.1  Kinematics 

We consider a slave node 𝑠 tied to a master segment 𝑀 with an offset 𝜆, the slave node 
projection onto the master segment is denoted 𝑝. Let 𝒙𝑠 denote the slave node 
coordinate and 

𝒙𝑝 = ∑ ℎ𝑖𝒙𝑚
𝑖4

𝑖=1
 (29.37)

be the slave node projection on the master segment, where ℎ𝑖 are the constant 
isoparametric weights.  To each of 𝑠, 𝑝 and  𝑀 we associate orthonormal bases 
(coordinate systems) represented by 

𝑬 = {𝒆1 𝒆2 𝒆3} (29.38)
 

𝑭 = {𝒇1 𝒇2 𝒇3} (29.39)
 

𝑮 = {𝒈1 𝒈2 𝒈3}, (29.40)
respectively.  The orthogonal matrix 𝑮 is the master segment coordinate system 
expressed as a function of the master coordinates 𝒙𝑚

𝑖  with normal 𝒈3. At 𝑡 = 0, we 
initialize 𝑬0 = 𝑭0 = 𝑮0 but 𝑬 and 𝑭 then evolves independently based on the nodal 
rotational velocities 𝝎𝑠 and 

𝝎𝑝 = ∑ ℎ𝑖𝝎𝑚
𝑖4

𝑖=1
. (29.41)

In the numerical implementation, if ∆𝜽𝑠 = 𝝎𝑠∆𝑡 and ∆𝜽𝑝 = 𝝎𝑝∆𝑡 are the incremental 
rotations of s and p at a given time step, then the coordinate systems are updated 

𝑬𝑛+1 = 𝑹(∆𝜽𝑠)𝑬𝑛 (29.42)

𝛼𝜆 𝑚4 

𝑚3

𝑚2

𝑝 
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𝒅

𝑭 

𝑬 𝑮

𝑭0 

𝑬0 𝑮0 
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𝑡 > 0
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𝑚1 

Figure 2927-22 Kinematics of the implicit strong objective tied contact 
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𝑭𝑛+1 = 𝑹(∆𝜽𝑝)𝑭𝑛 (29.43)

where 𝑹(∆𝜽) denotes the finite rotation matrix corresponding to the rotational 
increment ∆𝜽. Of course, this only makes sense if the slave node and/or master segment 
have rotational degrees of freedom.  If the slave node lacks rotational degrees of 
freedom, then neither bending nor torsion is constrained and 𝑬 is of no interest.  If on 
the other hand the master segment lacks rotational degrees of freedom, then we use 𝑭 =
𝑮 which is still of interest to deal with the offset, 𝑮 is always well-defined.  LS-DYNA 
automatically detects rotational degrees of freedom and takes the proper measures. 

29.10.2  Translational constraint 

Given the notation in the previous section and referring to Figure 2927-22,  
𝒅 = {𝒙𝑠 − 𝛼𝜆𝒆3} − {𝒙𝑝 + (1 − 𝛼)𝜆𝒇3} (29.44)

represents the vector we want to be zero in the translational part of the contact.  Here 𝜆 
is the offset distance between 𝑝 and 𝑠 and is constant throughout the simulation.  
Furthermore, 𝛼 is a constant between 0 and 1 that determines the actual tying point 
according to the following simple rules.  First, if the slave node is connected to a solid or 
beam element or if the contact definition does not take rotational degrees of freedom 
into account, then 𝛼 = 0. Otherwise, if the slave node is connected to a shell element and 
the master segment is connected to a solid element, then 𝛼 = 1. If neither of those 
situations apply then both slave and master sides must connect to shell elements, for 
which 𝛼 = 0.5, so note that the value of 𝛼 is not accounting for the relative difference in 
shell thicknesses but assumes equal shell thickness on both master and slave sides.  For 
*CONTACT_TIED_NODES_TO_SURFACE_CONSTRAINED_OFFSET and 
*CONTACT_TIED_SHELL_EDGE_TO_SURFACE_CONSTRAINED_OFFSET, this 
condition is imposed as a constraint 

𝒅 = 𝟎 (29.45)
whereas for *CONTACT_TIED_NODES_TO_SURFACE_OFFSET and 
*CONTACT_TIED_SHELL_EDGE_TO_SURFACE_BEAM_OFFSET a penalty 
formulation is used.  To this end we use a constitutive relation between force and 
displacement 

𝒇 = 𝐾𝑓 𝒅 (29.46)
with 𝐾𝑓  as the penalty stiffness.  Then an energy principle is employed to identify the 
nodal forces and moments, 

𝒇 𝑇𝛿𝒅 = 𝑷𝑓𝑇𝛿𝑿, (29.47)
where 𝑿  is nodal coordinate array of the slave master pair, and 𝛿 is the variation 
operator.  Identifying 𝑩𝑓  by 

𝛿𝒅 = 𝑩𝑓 𝛿𝑿 (29.48)
the nodal force array is given by 

𝑷𝑓 = 𝑩𝑓𝑇𝒇 . (29.49)
Worth noticing is that 𝑩𝑓  is the constraint matrix corresponding to the constraint variant 
of the contact. 
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29.10.3  Bending and torsion constraint 

If the slave node has rotational degrees of freedom and the contact formulation is said 
to treat those, bending and torsion is constrained.  The bending strain is calculated as 

𝜑𝑗 = 𝒈𝑗
𝑇(𝒆3 × 𝒇3), 𝑗 = 1,2 (29.50)

which essentially is a measure of the amount 𝒆3 and 𝒇3 deviates from being parallel.  The 
torsional strain is a scalar given by  

𝜑3 =
1
2 (𝒆1

𝑇𝒈2 − 𝒆2
𝑇𝒈1) (29.51)

and is a measure of the relative rotation between 𝑬 and 𝑮 with respect to the normal 𝒈3. 
The constraint to enforce is  

𝝋 =
⎝
⎜⎛
𝜑1
𝜑2
𝜑3⎠

⎟⎞ = 𝟎 (29.52)

which for a penalty formulation leads to a constitutive relation between moment and 
rotation vector 

𝒎 = 𝐾𝑚𝝋 (29.53)
with 𝐾𝑚 being a stiffness parameter.  Following the approach for translational 
treatment, we get the nodal force contribution 

𝑷𝑚 = 𝑩𝑚
𝑇𝒎 (29.54)

where 
𝛿𝝋 = 𝑩𝑚𝛿𝑿. (29.55)

Also here 𝑩𝑚 is the constraint matrix in case a constraint formulation is used. 
 
The formulae for 𝐾𝑓  and 𝐾𝑚 are found in earlier sections on tied interfaces while the 
expressions for the matrices 𝑩𝑓  and 𝑩𝑚 are quite involved and omitted for the sake of 
clarity, the nodal forces and moments are implemented by using (manual) algorithmic 
differentiation. 

29.11  Sliding-Only Interfaces 

This option is seldom useful in structural calculations.  Its chief usefulness is for treating 
interfaces where the gaseous detonation products of a high explosive act on a solid 
material.  The present algorithm, though simple, has performed satisfactorily on a 
number of problems of this latter type.  We briefly outline the approach here since the 
algorithm is still experimental and subject to change. 
 
 
The method consists of five steps.  In the first step, the mass per unit area (mass/area) 
and pressure are found at each node on the slave surface.  Next, the contact point for 
each master node is found, and the slave mass/area and slave pressure at each master 
node is interpolated from the slave surface.  In the third step, this pressure distribution 
is applied to the master surface to update its acceleration.  In the fourth step, the normal 
component of the acceleration at each node on the master surface is scaled by its z-
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factor defined as the mass/area of the master surface at the master node divided by the 
sum of the mass/area of the slave surface at the master node.  The last step consists of 
resetting the normal acceleration and velocity components of all slave nodes to ensure 
compatibility. 
 

29.12  Bucket Sorting 

Bucket sorting is now used extensively in both the surface to surface and single surface 
contact algorithms.  Version 920 of LS-DYNA no longer contains one-dimensional 
sorting.  Presently two separate but similar bucket sorts are in LS-DYNA.  In the first 
and older method we attempt to find for each node the three nearest nodes.  In the 
newer method which is systematically replacing the older method we locate the nearest 
segment. 
 
The reasons for eliminating slave node tracking by incremental searching is illustrated 
in Figure 29.23 where surfaces are shown which cause the incremental searches to fail.  
In LS-DYNA tied interfaces are used extensively in many models creating what appears 
to the contact algorithms to be topologically disjoint regions.  For robustness, our new 
algorithms account for such mesh transitions with only minor cost penalties.  With 
bucket sorting incremental searches may still be used but for reliability they are used 

tied interface

Figure 29.23.  Incremental searching may fail on surfaces that are not simply
connected.  The new contact algorithm in LS-DYNA avoids incremental
searching for nodal points that are not in contact and all these cases are
considered. 
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after contact is achieved.  As contact is lost, the bucket sorting for the affected nodal 
points must resume. 
 
In a direct search of a set of 𝑁 nodes to determine the nearest node, the number of 
distance comparisons required is 𝑁 − 1.  Since this comparison needs to be made for 
each node, the total number of comparisons is 𝑁(𝑁 − 1), with each of these comparisons 
requiring a distance calculation 

12 = (𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2, (29.56)

that uses eight mathematical operations.  The cumulative effect of these mathematical 
operations for 𝑁(𝑁 − 1) compares can dominate the solution cost at less than 100 
elements. 
 
The idea behind a bucket sort is to perform some grouping of the nodes so that the sort 
operation need only calculate the distance of the nodes in the nearest groups.  Consider 
the partitioning of the one-dimensional domain shown in Figure 29.24.  With this 
partitioning the nearest node will either reside in the same bucket or in one of the two 
adjoining buckets.  The number of distance calculations is now given by 

3𝑁
𝑎 − 1, (29.57)
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where 𝑎 is the number of buckets.  The total number of distance comparisons for the 
entire one-dimensional surface is 

𝑁 (
3𝑁
𝑎 − 1). (29.58)

 
Thus, if the number of buckets is greater than 3, then the bucket sort will require fewer 
distance comparisons than a direct sort.  It is easy to show that the corresponding 
number of distance comparisons for two-dimensional and three-dimensional bucket 
sorts are given by 

𝑁 (
9𝑁
𝑎𝑏 − 1) for 2D (29.59)

𝑁 (
27𝑁
𝑎𝑏𝑐 − 1) for 3D (29.60)

where 𝑏 and 𝑐 are the number of partitions along the additional dimension. 
 
The cost of the grouping operations, needed to form the buckets, is nearly linear with 
the number of nodes 𝑁.  For typical LS-DYNA applications, the bucket sort is 100 to 
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 Figure 29.24.  One- and two-dimensional bucket sorting. 
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1000 times faster than the corresponding direct sort.  However, the sort is still an 
expensive part of the contact algorithm, so that, to further minimize this cost, the sort is 
performed every ten or fifteen cycles and the nearest three nodes are stored.  Typically, 
three to five percent of the calculational costs will be absorbed in the bucket sorting 
when most surface segments are included in the contact definition. 
 

29.12.1  Bucket Sorting in TYPE 4 Single Surface Contact 

We set the number of buckets in the 𝑥, 𝑦, and 𝑧 coordinate directions to 𝑁𝑋, 𝑁𝑌, and 
𝑁𝑍, respectively.  Letting LMAX represent the longest characteristic length (found by 
checking the length of the segment diagonals and taking a fraction thereof) over all 
segments in the contact definition, the number of buckets in each direction is given by 

𝑁𝑋 =
𝑥max − 𝑥min

LMAX , (29.61)

𝑁𝑌 =
𝑦max − 𝑦min

LMAX , (29.62)

𝑁𝑍 =
𝑧max − 𝑧min

LMAX , (29.63)

where the coordinate pairs (𝑥min, 𝑥max), (𝑦min, 𝑦max), and (𝑧min, 𝑧max) define the extent 
of the contact surface and are updated each time the bucket searching is performed.  In 
order to dynamically allocate memory effectively with FORTRAN, we further restrict 
the number of buckets such that the total number of buckets does not exceed the 
number of nodes in the contact surface, NSN or 5000: 

𝑁𝑋 ⋅ 𝑁𝑌 ⋅ 𝑁𝑍 ≤ MIN (NSN, 5000). (29.64)
 
If the characteristic length, LMAX, is large due to an oversized contact segment or an 
instability leading to a node flying off into space, the bucket sorting can be slowed 
down considerably since the number of buckets will be reduced.  In older versions of 
DYNA3D this led to the error termination message “More than 1000 nodes in bucket.” 
 
The formulas given by Belytschko and Lin [1985] are used to find the bucket containing 
a node with coordinates (𝑥, 𝑦, 𝑧).  The bucket pointers are given by 

𝑃𝑋 = 𝑁𝑋 ⋅
(𝑥 − 𝑥min)

(xmax − xmin) + 1, (29.65)

PY = NY ⋅
(𝑦 − 𝑦min)

(𝑦max − 𝑦min) + 1, (29.66)

PZ = NZ ⋅
(𝑧 − 𝑧min)

(𝑧max − 𝑧min) + 1, (29.67)

and are used to compute the bucket number given by 
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NB = PX + (PY − 1) ⋅ PX + (PZ − 1) ⋅ PX ⋅ PY. (29.68)
 
For each nodal point, 𝑘, in the contact surface we locate the three nearest neighboring 
nodes by searching all nodes in buckets from 

MAX(1, PX1),MIN(NX, PX + 1), (29.69)

MAX(1, PY1),MIN(NY, PY + 1), (29.70)

MAX(1, PZ1),MIN(NZ, PZ + 1). (29.71)
 
A maximum of twenty-seven buckets are searched.  Nodes that share a contact segment 
with k are not considered in this nodal search.  By storing the three nearest nodes and 
rechecking these stored nodes every cycle to see if the nearest node has changed, we 
avoid performing the bucket sorting every cycle.  Typically, sorting every five to fifteen 
cycles is adequate.  Implicit in this approach is the assumption that a node will contact 
just one surface.  For this reason the single surface contact (TYPE 4 in LS-DYNA) is not 
applicable to all problems.  For example, in metal forming applications both surfaces of 
the workpiece are often in contact. 
 
The nearest contact segment to a given node, 𝑘, is defined to be the first segment 
encountered when moving in a direction normal to the surface away from 𝑘.  A major 
deficiency with the nearest node search is depicted in Figure 29.25 where the nearest 
nodes are not even members of the nearest contact segment.  Obviously, this would not 
be a problem for a more uniform mesh.  To overcome this problem we have adopted 
segment based searching in both surface to surface and single surface contact. 
 

29.12.2  Bucket Sorting in Surface to Surface and TYPE 13 Single Surface Contact 

The procedure is roughly the same as before except we no longer base the bucket size 

1 2 3 4 5

Normal vector at

node 3

Figure 29.25.  Nodes 2 and 4 share segments with node 3 and therefore the
two nearest nodes are1 and 5.  The nearest contact segment is not considered
since its nodes are not members of the nearest node set. 
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on 𝐿𝑀𝐴𝑋 which can result in as few as one bucket being generated.  Rather, the 
product of the number of buckets in each direction always approaches 𝑁𝑆𝑁 or 5000 
whichever is smaller,  

NX ⋅ NY ⋅ NZ ≤ MIN(NSN, 5000), (29.72)
where the coordinate pairs (𝑥min, 𝑥max), (𝑦min, 𝑦max), and (𝑧min, 𝑧max) span the entire 
contact surface.  In the new procedure we loop over the segments rather than the nodal 
points.  For each segment we use a nested DO LOOP to loop through a subset of 
buckets from IMIN to IMAX, JMIN to JMAX, and to KMAX where 

IMIN = MIN(PX1, PX2, PX3, PX4), (29.73)

IMAX = MAX(PX1, PX2, PX3, PX4), (29.74)

JMIN = MIN(PY1, PY2, PY3, PY4), (29.75)

KMIN = MIN(PZ1, PZ2, PZ3, PZ4), (29.76)

KMAX = MAX(PZ1, PZ2, PZ3, PZ4), (29.77)
and PX𝑘, PY𝑘, PZ𝑘 are the bucket pointers for the kth node.  Figure 29.26 shows a 
segment passing through a volume that has been partitioned into buckets.   
 
We check the orthogonal distance of all nodes in the bucket subset from the segment.  
As each segment is processed, the minimum distance to a segment is determined for 
every node in the surface and the two nearest segments are stored.  Therefore the 
required storage allocation is still deterministic.  This would not be the case if we stored 
for each segment a list of nodes that could possibly contact the segment. 
 
We have now determined for each node, 𝑘, in the contact surface the two nearest 
segments for contact.  Having located these segments we permanently store the node on 
these segments which is nearest to node 𝑘.  When checking for interpenetrating nodes 
we check the segments surrounding the node including the nearest segment since 
during the steps between bucket searches it is likely that the nearest segment may 
change.  It is possible to bypass nodes that are already in contact and save some 
computer time; however, if multiple contacts per node are admissible then bypassing 
the search may lead to unacceptable errors. 
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29.13  Single Surface Contact Algorithms in LS-DYNA 

The single surface contact algorithms evolved from the surface to surface contact 
algorithms and the post contact searching follows the procedures employed for the 
surface to surface contact.  Type 4 contact in LS-DYNA uses the following steps where 
NSEG is the number of contact segments and NSN is the number of nodes in the 
interface:  
 

• Loop through the contact segments from 1 to NSEG 

◦ Compute the normal segment vectors and accumulate an area weighted 
average at the nodal points to determine the normal vectors at the nodal 
points. 

• Loop through the slave nodes from 1 to NSN 

◦ Check all nearest nodes, stored from the bucket sort, and locate the node 
which is nearest. 

◦ Check to see if nearest node is within a penetration tolerance determined 
during the bucket sort, if not, proceed to the end of the loop. 

Nodes in buckets shown are checked for

contact with the segment

x

z

Figure 29.26.  The orthogonal distance of each slave node contained in the box
from the segment is determined.  The box is subdivided into sixty buckets. 
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◦ For shell elements, determine if the nearest node is approaching the seg-
ment from the positive or negative side based on the right hand rule.  Pro-
ject both the node and the contact segment along the nodal normal vectors 
to account for the shell thickness.   

◦ Check for interpenetrating nodes and if a node has penetrated apply a 
nodal point force that is proportional to the penetration depth. 

End of Loop 
 
Of course, several obvious limitations of the above procedure exists.  The normal 
vectors that are used to project the contact surface are meaningless for nodes along an 
intersection of two or more shell surfaces (Please see the sketch at the bottom of Figure 
29.27).   In this case the normal vector will be arbitrarily skewed depending on the 
choice of the numbering of the connectivities of the shells in the intersecting surfaces.  
Secondly, by considering the possibility of just one contact segment per node, metal 
forming problems cannot be handled within one contact definition.  For example, if a 
workpiece is constrained between a die and a blankholder then at least some nodal 
points in the workpiece must necessarily be in contact with two segments-one in the die 
and the other in the workpiece.  These two important limitations have motivated the 
development of the new bucket sorting procedure described above and the modified 
single surface contact procedure, type 13.  
 
A major change in type 13 contact from type 4 is the elimination of the normal nodal 
vector projection by using the segment normal vector as shown in Figure 29.27.   
 
Segment numbering within the contact surface is arbitrary when the segment normal is 
used greatly simplifying the model input generation.  However, additional complexity 
is introduced since special handling of the nodal points is required at segment 
intersections where nodes may approach undetected as depicted in Figure 29.28a.   
 
To overcome this limitation an additional logic that put cylindrical cap at segment 
intersections has been introduced in contact type 13 (and a3).  See Figure 29.28b.    
 
Assuming the segment based bucket sort has been completed and closest segments are 
known for all slave nodes  then the procedure for processing the type 13 contact 
simplifies to: 
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• Loop through the slave nodes from 1 to NSN 

◦ If node is in contact, check to see if the contact segment has changed and if 
so, then update the closest segment information and the orientation flag 
which remembers the side in contact.  Since no segment orientation infor-
mation is stored this flag may change as the node moves from segment to 
segment.   

◦ Check the closest segment to see if the node is in contact if not then pro-
ceed to the end of the loop.  If the slave node or contact segment connectiv-
ity is a member of a shell element, project both the node and the contact 
segment along the segment normal vector to account for the shell thick-
ness.  A nodal thickness is stored for each node and a segment thickness is 
stored for each segment.  A zero thickness is stored for solid elements.  The 
thickness can be optionally updated to account for membrane thinning. 

◦ Check for interpenetrating nodes and if a node has penetrated apply a 
nodal point force that is proportional to the penetration depth. 

End of Loop 
Note that type 13 contact does not require the calculation of nodal normal vectors. 

Type 4

Type 13

v

v

Contact surface is based

on segment normal 

projection

Contact surface is based

on a nodal point normal

vector projection

Figure 29.27.  Projection of the contact surface for a node approaching from
above is shown for types 4 and 13 contact. 
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29.14  Surface to Surface Constraint Algorithm 

The constraint algorithm that we implemented is based on the algorithm developed by 
Taylor and Flanagan [1989].  This involves a two-pass symmetric approach with a 
partitioning parameter, 𝛽, that is set between negative and positive unity where 𝛽 = 1 
and 𝛽 = −1 correspond to one way treatments with the master surface accumulating the 
mass and forces from the slave surface (for 𝛽 = 1) and visa versa (for 𝛽 = −1).  The 
searching algorithms are those used in the other contact algorithms for the surface to 
surface contact. 
 
In this constraint approach the accelerations, velocities, and displacements are first 
updated to a trial configuration without accounting for interface interactions.  After the 
update, a penetration force is computed for the slave node as a function of the 
penetration distance Δ𝐿: 

𝐟𝑝 =
𝑚𝑠Δ𝐿
Δ𝑡2 𝐧, (29.78)

where 𝐧 is the normal vector to the master surface. 
 
We desire that the response of the normal component of the slave node acceleration 
vector, 𝐚s, of a slave node residing on master segment 𝑘 be consistent with the motion of 
the master segment at its contact segment (𝑠c, 𝑡c), i.e.,  

as = 𝜙1(𝑠c, 𝑡c)𝑎𝑛𝑘
1 + 𝜙2(𝑠c, 𝑡c)𝑎𝑛𝑘

2 + 𝜙3(𝑠c, 𝑡c)𝑎𝑛𝑘
3 + 𝜙4(𝑠c, 𝑡c)𝑎𝑛𝑘

4 . (29.79)

 

a b

 Figure 29.28.     
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For each slave node in contact with and penetrating through the master surface in its 
trial configuration, its nodal mass and its penetration force given by Equation (29.72) is 
accumulated to a global master surface mass and force vector: 

(𝑚𝑘 + ∑ 𝑚𝑘𝑠
𝑠

) 𝐚𝑛𝑘 = ∑ 𝐟𝑘𝑠
𝑠

, (29.80)

where 
𝑚𝑘𝑠 = 𝜙𝑘𝑚𝑠, (29.81)

𝐟𝑘𝑠 = 𝜙𝑘𝐟𝑠. (29.82)
 
After solving Equation (29.78) for the acceleration vector, 𝐚nk, we can obtain the 
acceleration correction for the slave node as  

𝐚ns = 𝐚s −
𝐟p
𝑚s

. (29.83)

 
The above process is repeated after reversing the master and slave definitions.  In the 
final step the averaged final correction to the acceleration vector is found 

𝐚𝑛
final =

1
2 (1 − 𝛽)𝐚𝑛

1st  pass +
1
2 (1 + 𝛽)𝐚𝑛

2nd  pass, (29.84)

and used to compute the final acceleration at time 𝑛 + 1 

𝐚𝑛+1 = 𝐚trial + 𝐚𝑛
final, (29.85)

 
Friction, as described by Taylor and Flanagan [1989], is included in our implementation.  
Friction resists the relative tangential velocity of the slave node with respect to the 
master surface.  This relative velocity if found by subtracting from the relative velocity: 

𝐯r = 𝐯s − (𝜙1𝐯𝑘
1 + 𝜙2𝐯𝑘

2 + 𝜙3𝐯𝑘
3 + 𝜙4𝐯𝑘

4), (29.86)

the velocity component normal to the master segment: 
𝐯t = 𝐯r − (𝐧 ⋅ 𝐯r)𝐧. (29.87)

 
A trial tangential force is computed that will cancel the tangential velocity 

𝐟∗ =
𝑚𝑠𝜐𝑡

Δ𝑡 , (29.88)

where υt is the magnitude of the tangential velocity vector 

𝜐𝑡 = √𝐯𝑡 ⋅ 𝐯𝑡. (29.89)

 
The magnitude of the tangential force is limited by the magnitude of the product of the 
Coulomb friction constant with the normal force defined as 
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fn = ms𝐚ns ⋅ 𝐧, (29.90)
 
The limiting force is, therefore, 

Fy = m|𝐟n|, (29.91)
And 

𝐟𝑛+1 = 𝐟∗  if    ∣𝐟∗∣ = 𝐹𝑦, (29.92)

𝐟𝑛+1 =
𝐹𝑦𝐟∗

|𝐟∗| if ∣𝐟∗∣ > 𝐹𝑦. (29.93)
 
Therefore, using the above equations the modification to the tangential acceleration 
component of the slave node is given by 

𝐚t = min (𝜇𝐚nt ⋅ 𝐧,
∣𝐯s∣
Δ𝑡 ), (29.94)

which must act in the direction of the tangential vector defined as 

𝐧t =
𝐯t
υt

. (29.95)

The corrections to both the slave and master node acceleration components are: 
ats = at𝐧t, (29.96)

𝐚tk = −𝜙k
asms
mk

𝐧t, (29.97)

The above process is again repeated after reversing the master and slave definitions.  In 
the final step the averaged final correction to the acceleration vector is found 

𝐚tfinal =
1
2 (1 − 𝛽)𝐚t

1st pass +
1
2 (1 + 𝛽)𝐚t

2nd  pass, (29.98)

and is used to compute the final acceleration at time 𝑛 + 1 

𝐚𝑛+1 = 𝐚trial + 𝐚𝑛
final + 𝐚tfinal. (29.99)

 
A significant disadvantage of the constraint method relative to the penalty method 
appears if an interface node is subjected to additional constraints such as spot welds, 
constraint equations, tied interfaces, and rigid bodies.  Rigid bodies can often be used 
with this contact algorithm if their motions are prescribed as is the case in metal 
forming.  For the more general cases involving rigid bodies, the above equations are not 
directly applicable since the local nodal masses of rigid body nodes are usually 
meaningless.  Subjecting the two sides of a shell surface to this constraint algorithm will 
also lead to erroneous results since an interface node cannot be constrained to move 
simultaneously on two mutually independent surfaces.  In the latter case the constraint 
technique could be used on one side and the penalty method on the other.   
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The biggest advantage of the constraint algorithm is that interface nodes remain on or 
very close to the surfaces they are in contact with.  Furthermore, elastic vibrations that 
can occur in penalty formulations are insignificant with the constraint technique.  The 
problem related to finding good penalty constants for the contact are totally avoided by 
the latter approach.  Having both methods available is possibly the best option of all. 
 

29.15  Planar Rigid Boundaries 

The rigid boundary represents the simplest contact problem and is therefore treated 
separately.  As shown in Figure 29.29 the boundary is flat, finite or infinite in extent and 
is defined by an outward normal unit vector n with the origin of n at a corner point on 
the wall if the wall is finite or at an arbitrary point on the wall if the wall extends to 
infinity.  The finite wall is rectangular with edges of length L and M.  Unit vectors l and 
m lie along these edges.  A subset of nodes is defined, usually boundary nodes of the 
calculational model, that are not allowed to penetrate.  Let k represent one such 
boundary node and let rk

n+1 be the position vector from the origin of n to k after locally 
updating the coordinates.  Each time step prior to globally updating the velocities and 
accelerations we check k to ensure that the nodes lies within the wall by checking that 
both inequalities are satisfied: 

𝐫𝑘
𝑛+1 ⋅ 𝐥 ≤ 𝐿,
𝐫𝑘

𝑛+1 ⋅ 𝐦 ≤ 𝑀.
(29.100)

This test is skipped for the infinite rigid wall.  Assuming that the inequality is satisfied, 
we then check the penetration condition to see if k is penetrating through the wall, 

𝐫𝑘
𝑛+1 ⋅ 𝐧 < 0, (29.101)

and if so, the velocity and acceleration components normal to the wall are set to zero: 

𝐚𝑘new
𝑛 = 𝐚𝑘old

𝑛 − (𝐚𝑘old
𝑛 ⋅ 𝐧)𝐧,

𝐯𝑘new
𝑛 = 𝐯𝑘old

𝑛 − (𝐯𝑘old
𝑛 ⋅ 𝐧)𝐧. (29.102)

Here 𝐚𝑘 and 𝐯𝑘 are the nodal acceleration and velocity of node k, respectively.  This 
procedure for stopping nodes represents a perfectly plastic impact resulting in an 
irreversible energy loss.  The total energy dissipated is found by taking the difference 
between the total kinetic energy of all the nodal points slaved to the rigid wall before 
and after impact with the wall.  This energy is computed and accumulated in LS-DYNA 
and is printed in the GLSTAT (global statistics) file. 
The tangential motion of the boundary node may be unconstrained, fully constrained, 
or subjected to Coulomb friction while it is in contact with the rigid boundary. 
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Coulomb friction acts along a vector defined as: 

𝐧𝑡 =
𝐯𝑘new

𝑛

√𝐯𝑘new
 𝑛 ⋅ 𝐯𝑘new

 𝑛
, (29.103)

The magnitude of the tangential force which is applied to oppose the motion is given as 

𝑓𝑡 = min
⎝
⎜⎜⎜
⎛𝑚𝑠√𝐯𝑘new

𝑛 ⋅ 𝐯𝑘new
𝑛

Δ𝑡 , 𝜇|𝐟𝑛|
⎠
⎟⎟⎟
⎞, (29.104)

i.e., the maximum value required to hold the node in the same relative position on the 
stonewall or the product of the coefficient of friction and the magnitude of the normal 
force whichever is less.  In Equation (29.104), ms is the mass of the slave node and f𝑛 is 
the normal force. 
 

29.16  Geometric Rigid Boundaries 

The numerical treatment of geometric rigid walls is somewhat similar to that for the 
finite planar rigid walls.  The geometric rigid walls can be subjected to a prescribed 
translational motion along an arbitrarily oriented vector; however, rotational motion is 
not permitted.  As the geometric surface moves and contacts the structure, external 
work is generated which is integrated and added to the overall energy balance.  In 
addition to the external work, plastic work also is generated as nodes contact the wall 

l

m

M

L

n

Origin, if extent of stonewall is finite

Figure 29.29.  Vector n is normal to the stonewall.  An optional vector l can be
defined such that 𝐦 = 𝐧 × 𝟏.  The extent of the stonewall is limited by defining
L and M.  A zero value for either of these lengths indicates that the stonewall is
infinite in that direction. 
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and assume the walls normal velocity at the point of contact.  Contact can occur with 
any of the surfaces which enclose the volume.  Currently four geometric shapes are 
available including the rectangular prism, the cylinder, flat surface, and sphere.  These 
are shown in Figure 29.30. 
 
 

29.17  VDA/IGES Contact 

This cabability allows the user to read VDA/IGES surfaces directly into LS-DYNA for 
analysis as contact surfaces.  No mesh generation is required, and the contact is 
performed against the analytic surface.  LS-DYNA supports the VDA standard and an 
important subset of the IGES entities including: 
 
•#100 Circle arc 
•#102 Composite Curve 
•#106 Copious data 
•#110 Lines 
•#112 Parametric polynomial curve 
•#114 Parametric polynomial surface 

L

flat surface

regular prism

n

m
v

l

R

v

n

V

L
l

m
vn

n

cylinder

sphere

Figure 29.30.  Vector n determines the orientation of the generalized
stonewalls.  For the prescribed motion options the wall can be moved in the
direction V as shown. 
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•#116 Points 
•#126 NURBS Curves 
•#128 NURBS Surfaces 
•#142 Curve on Parametric Surface 
•#144 Trimmed Parametric Surfaces 
•#402 form 7-group 
•#406 form 15-associate name 
 
First, the user must specify which VDA/IGES surfaces, faces, and groups should be 
attached to each material.  This is done primarily through a special input file.  Faces, 
surfaces, and groups from several different VDA/IGES input files can be combined into 
groups that later can be refered to by a user specified alias.  For example, suppose a 
simple sheetmetal forming problem is going to be run.  The user might have an input 
file that looks like this: 
 
file punch.vda punch.bin { 
  alias punch { grp001 } 
} 
file die.vda die.bin { 
  alias part1 { fce001 sur002 } 
  alias part2 { fce003 } 
} 
file die2.vda die2.bin { 
  alias part3 { fce004 } 
} 
file holder.vda holder.bin { 
  alias holder { sur001 sur002 } 
} 
alias die { part1 part2 part3 } 
end 
 
In this example, the user has specified that the punch will be made up of the group 
"grp001" from the file "punch.vda".  The VDA file is converted to a binary file 
"punch.bin".  If this simulation is ever rerun, the VDA input can be read directly from 
the binary file thereby significantly reducing startup time.  The die in this example is 
made up of several surfaces and faces from 2 different VDA files.  This format of input 
allows the user to combine any number of faces, surfaces, and groups from any number 
of VDA files to define a single part.  This single part name is then referenced within the 
LS-DYNA input file. 
 
The contact algorithm works as follows.  For the sake of simplicity, we will refer to one 
point as being slaved to a single part.  Again, this part will in general be made up of 
several VDA surfaces and faces.  First, the distance from the point to each VDA surface 
is computed and stored.  For that surface which is nearest the point, several other 
parameters are stored such as the surface coordinates of the near point on the surface.  



LS-DYNA Theory Manual Contact-Impact Algorithm 

LS-DYNA DEV 06/21/18 (r:10113) 27-45 (Contact-Impact Algorithm) 

Each time step of the calculation this information is updated.  For the nearest surface 
the new near point is calculated.  For all other surfaces the distance the point moves is 
subtracted from the distance to the surface.  This continually gives a lower bound on the 
actual distance to each VDA surface.  When this lower bound drops below the thickness 
of the point being tracked, the actual distance to the surface is recalculated.  Actually, if 
the nearest surface is further away from the point than some distance, the near point on 
the surface is not tracked at all until the point comes close to some surface.  These 
precautions result in the distance from the point to a surface having to be totally 
recomputed every few hundred timesteps, in exchange for not having to continually 
track the point on each surface. 
 
To track the point on the nearest surface, a 2D form of Newton's method is used.  The 
vector function to be solved specifies that the displacement vector from the surface to 
the point should be parallel to the surface normal vector.  The surface tangent vectors 
are computed with respect to each of the two surface patch parameters, and the dot 
product taken with the displacement vector.  See Figure 29.31 and Equation (29.104).   

(𝐩 − 𝐪) ⋅
∂𝐪
∂s = 0 and (𝐩 − 𝐪) ⋅

∂𝐪
∂t = 0. (29.105)

This vector equation is then solved using Newton's method as in Equation (1.106).   

𝐪𝑖+1 = 𝐪𝑖 − (𝐅′)−1𝐅, (29.106)

where 

P

t

s

(x, y, z)

slave point

Figure 29.31.  The geometry of the patch is a function of the parametric
coordinates 𝑠 and 𝑡. 
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𝐅(𝑠, 𝑡) =

⎝
⎜⎜⎜
⎜⎜
⎛(𝐩 − 𝐪) ⋅

∂𝐪
∂𝑠

(𝐩 − 𝐪) ⋅
∂𝐪
∂𝑡 ⎠

⎟⎟⎟
⎟⎟
⎞

. (29.107)

 
The convergence is damped in the sense that the surface point is not allowed to jump 
completely outside of a surface patch in one iteration.  If the iteration point tries to leave 
a patch, it is placed in the neighboring patch, but on the adjoining boundary.  This 
prevents the point from moving merely continuous (i.e., when the surface has a crease 
in it).  Iteration continues until the maximum number of allowed iterations is reached, 
or a convergence tolerance is met.  The convergence tolerance (as measured in the 
surface patch parameters) varies from patch to patch, and is based on the size and shape 
of the patch.  The convergence criterion is set for a patch to ensure that the actual 
surface point has converged (in the spatial parameters x, y, and z) to some tolerance. 

29.18  Simulated Draw Beads 

The implementation of draw beads is based on elastic-plastic interface springs and 
nodes-to-surface contact.  The area of the blank under the draw bead is taken as the 
master surface.  The draw bead is defined by a consecutive list of nodes that lie along the 
draw bead.  For straight draw beads only two nodes need to be defined, but for curved 
beads sufficient nodes must be used to define the curvature.  The draw bead line is 

previous location

new location

new nearest point

previous nearest

point

Figure 29.32.  Newton iteration solves for the nearest point on the analytical
surface. 
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discretized into points that become the slave nodes to the master surface.  The spacing 
of the points is determined by LS-DYNA such that several points lie within each master 
segment.  This is illustrated in Figure 29.32.  The dense distribution of point leads to a 
smooth draw bead force distribution which helps avoid exciting the zero energy 
(hourglass) modes within the shell elements in the workpiece.  A three-dimensional 
bucket search is used for the contact searching to locate each point within a segment of 
the master surface. 
 
The nodes defining the draw beads can be attached to rigid bodies by using the extra 
nodes for rigid body input option.  When defining draw beads, care should be taken to 
limit the number of elements that are used in the master surface definition.  If the entire 
blank is specified the CPU cost increases significantly and the memory requirements 
can become enormous.  An automated draw bead box, which is defined by specifying 
the part ID for the workpiece and the node set ID for the draw bead, is available.  The 
automated box option allows LS-DYNA determine the box dimensions.  The size of this 
box is based on the extent of the blank and the largest element in the workpiece as 
shown if Figure 29.34.   
 
The input for the draw beads requires a load curve giving the force due to the bending 
and unbending of the blank as it moves through the draw bead.  The load curve may 
also include the effect of friction.  However, the coulomb friction coefficients must be set 
to zero if the frictional component is included in the load curve.  If the sign of the load 
curve ID is positive the load curve gives the retaining force per unit draw bead length 
as a function of displacement, δ.  If the sign is negative the load curve defines the 

1

2

3 4

integration points along drawbead line

points 1, 2, 3, and 4 define drawbeads

Figure 29.33.  The drawbead contact provides a simple way of including
drawbead behavior without the necessity of defining a finite element mesh for
the drawbeads.  Since the draw bead is straight, each bead is defined by only
two nodes. 
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maximum retaining force versus the normalized position along the draw bead.  This 
position varies from 0 (at the origin) to 1 (at the end) along the draw bead.  See Figures 
29.35 and 29.36. 
 
When friction is active the frictional force component normal to the bead in the plane of 
the work piece is computed.  Frictional forces tangent to the bead are not allowed.  The 
second load curve gives the normal force per unit draw bead length as a function of 
displacement, δ.  This force is due to bending the blank into the draw bead as the binder 
closes on the die and represents a limiting value.  The normal force begins to develop 
when the distance between the die and binder is less than the draw bead depth.  As the 
binder and die close on the blank this force should diminish or reach a plateau.  This 
load curve was originally added to stabilize the calculation. 
 
As the elements of the blank move under the draw bead, a plastic strain distribution 
develops through the shell thickness due to membrane stretching and bending.  To 
account for this strain profile an optional load curve can be defined that gives the 
plastic strain versus the parametric coordinate through the shell thickness where the 
parametric coordinate is defined in the interval from –1 to 1.  The value of the plastic 
strain at each through thickness integration point is interpolated from this curve.  If the 
plastic strain at an integration point exceeds the value of the load curve at the time 
initialization occurs, the plastic strain at the point will remain unchanged.  A scale 
factor that multiplies the shell thickness as the shell element moves under the draw 
bead can also be defined as a way of accounting for any thinning that may occur. 

Figure 29.34.  The draw bead box option automatically size the box around
the draw bead.  Any segments within the box are included as master segments 
in the contact definition. 
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29.19  Edge to Edge Contact 

Edge to edge contact can be important in some simulations.  For example, if a fan blade 
breaks away from the hub in a jet turbine contact with the trailing blade will likely be 
along the edges of the blades.  Edge to edge contact requires a special treatment since 
the nodal points do not make contact with the master segment which is the basis of the 
conventional contact treatments.  Currently all automatic type contact possess edge-to-
edge capabilities and therefore contact type 22 is only useful with those contact that do 
not possess this capability.  All contact using the segment-based formulation have edge 
to edge capabilities.   
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Figure 29.35.  Draw bead contact model defines a resisting force as a function
of draw bead displacement. 
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The basis of single edge contact is the proven single surface formulation and the input is 
identical.  The definition is by material ID.  Edge determination is automatic.  It is also 
possible to use a manual definition by listing line segments.  The single edge contact is 
type 22 in the structured input or *CONTACT_SINGLE_EDGE in the keyword input.   

D, depth of draw bead 

δ F = Ffriction +Fbending

Figure 29.36.  Draw bead contact model defines a resisting force as a function
of draw bead displacement. 
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This contact only considers edge to edge contact of the type illustrated in Figure 29.38.  
Here the tangent vectors to the plane of the shell and normal to the edge must point to 
each other for contact to be considered. 
 

29.20  Beam to Beam Contact 

In the beam to beam contact the contact surface is assumed to be the surface of a 
cylinder as shown in Figure 29.39.  The diameter of the contact cylinder is set equal to 

the square root of the area of the smallest rectangle that contains the cross section to 

Figure 29.37.  Contact between edges requires a special treatment since the
nodes do not make contact. 

tangent vectors in 

plane of shell

Figure 29.38.  Single edge contact considers contact between two edges whose
normals point towards each other. 
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avoid tracking the orientation of the beam within the contact algorithm.  Contact is 
found by finding the intersection point between nearby beam elements and checking to 
see if their outer surfaces overlap as seen in Figure 29.40.  If the surfaces overlap the 
contact force is computed and is applied to the nodal points of the interacting beam 
elements. 
 

 

Actual beam cross section

Contact surface

 Figure 29.39.  Beam contact surface approximation. 

intersection point where forces are applied

 Figure 29.40.  The forces are applied at the intersection point. 
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29.21  Mortar contact 

The Mortar contact was originally implemented as a forming contact intended for 
stamping analysis but has since then evolved to become a general purpose contact 
algorithm for implicit time integration.  The Mortar option is today available for 
automatic single- and surface-to-surface contacts with proper edge treatment, beam 
contact, and optional features include tie, tiebreak and interference.  Contact is often the 
one feature that overturns the implicit performance, so to facilitate debugging of the 
Mortar contacts there is substantial information on penetrations written to the LS-
DYNA message files.  The Mortar contact is a penalty based segment-to-segment 
contact with finite element consistent coupling between the non-matching discretization 
of the two sliding surfaces and the implementation is based on Puso and Laursen 
[2004a,b].  This consistency, together with a differentiable penalty function for 
penetrating and sliding segments, assert the continuity and (relative) smoothness in 
contact forces that is appealing when running implicit analyses.  The algorithm is 
primarily focusing on accuracy and robustness, and the involved calculations associated 
with this aim make it expensive enough to be first and foremost recommended for 
implicit analysis.  There are numerous details in the implementation that simply cannot 
be explained without making the presentation incomprehensible, the intention here is to 
summarize the general concepts of the theory behind the implementation and draw 
upon this to make some general recommendations on usage. 
 

29.21.1  Kinematics 

The Mortar contact is theoretically treated as a generalized finite element where each 
element in this context consists of a pair of contact segments.  The friction model in the 

Mortar contact is a standard Coulomb friction law.  Each of the two segments has its 
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 Figure 29.41.  Illustration of Mortar segment to segment contact 
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iso-parametric representation inherited from the underlying finite element formulation, 
so the coordinates for the slave and master segments can be written  

𝒙𝑠 = 𝑁𝑠
𝑖(𝜉 , 𝜂) {𝒙𝑖 +

1
2 𝑡𝑠𝒏𝑠}

𝒙𝑚 = 𝑁𝑚
𝑗 (𝜉 , 𝜂) {𝒙𝑗 +

1
2 𝑡𝑚𝒏𝑚},

(29.21.108)

where summation over repeated indices is implicitly understood, i.e., over the nodes.  
We here also account that the contact surface may be offset from the mid-surface of e.g. 
shells, in the direction of the normal, 𝒏𝑠 and 𝒏𝑚, by half the thickness, 𝑡𝑠 and 𝑡𝑚. The 
kinematics for the contact element can be written as the penetration 

𝑑 = 𝒏𝑠
𝑇(𝒙𝑠 − 𝒙𝑚̅), (29.21.109)

where 𝒏𝑠 is the slave segment normal and 𝒙𝑚̅ is the projected point on the master 
segment along the slave segment normal.  The element is only defined for the 
intersection between the slave and master segment and for points where 𝑑 > 0, this 
domain is denoted 𝛱  and is illustrated by gray in the Figure above.  The sliding rate 𝒔 ̇is 
similarly defined as 

𝒔 ̇ = 𝑻𝑠
𝑇(𝒙𝑠̇ − 𝒙̅𝑚̇), (29.21.110)

where 𝑻𝑠 are two co-rotational basis vectors pertaining to the slave segment. 
 

29.21.2  Constitutive relation 

The contact pressure is given by the constitutive law 

𝜎n = 𝛼𝛽𝑠𝛽𝑚𝜀𝐾s𝑓 (
𝑑

𝜀𝑑𝑐𝑠
), (29.21.111)

where 
𝛼 = stiffness scaling factor (SFS*SLSFAC) 
𝐾s = stiffness modulus of slave segment 

𝜀 = 0.03 
𝑑𝑐𝑠 = characteristic length of slave segment 

𝛽𝑠 = stiffness scale factor of slave segment (=1 unless specifically stated) 
𝛽𝑚 = stiffness scale factor of master segment (=1 unless specifically stated) 

 
and 

𝑓 (𝑥) =

⎩{
{⎨
{{
⎧ 1

4 𝑥2 𝑥 <
𝑑max
2𝜀𝑑𝑐𝑠

cubic function that depends on IGAP
𝑑max
2𝜀𝑑𝑐𝑠

≤ 𝑥
. (29.21.112)

where 𝑑max is the maximum penetration to be given below.  The Coulomb friction law 
is expressed in terms of the tangential contact stress 
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𝝈𝑡 = 𝜇𝜎𝑛
𝒔
|𝒔| 𝑔 (

|𝒔|
𝜇𝑑), (29.21.113)

where 𝜇 is the friction coefficient and 

𝑔(𝑥) =

⎩{
{⎨
{{
⎧ 𝑥 𝑥 ≤ 1 − 𝜀

1 −
𝜀
4 (

1 + 𝜀 − 𝑥
𝜀 )

2
1 − 𝜀 < 𝑥 ≤ 1 + 𝜀

1 1 + 𝜀 < 𝑥

. (29.21.114)

The update of 𝒔 is done incrementally and is at the end of the step modified so that 
|𝒔| ≤ 𝜇𝑑(1 + 𝜀) (29.21.115)

after the contact update. 
 

29.21.3  Contact nodal forces 

From the contact stress, the contact nodal forces are determined by the principle of 
virtual work 

𝒇𝑠𝑖 = 𝛿𝑖
𝑘 {𝑰 +

1
2 𝑡𝑠

𝜕𝒏𝑠
𝜕𝒙𝑘

} {𝒏𝑠 ∫ 𝑁𝑠
𝑘𝜎𝑛𝑑𝛱

𝛱
+ 𝑻𝑠 ∫ 𝑁𝑠

𝑘𝝈𝑡𝑑𝛱𝛱
}

𝒇𝑚
𝑗 = 𝛿𝑗

𝑘 {𝑰 +
1
2 𝑡𝑚

𝜕𝒏𝑚
𝜕𝒙𝑘

} {−𝒏𝑠 ∫ 𝑁𝑚
𝑘 𝜎𝑛𝑑𝛱

𝛱
− 𝑻𝑠 ∫ 𝑁𝑚

𝑘 𝝈𝑡𝑑𝛱𝛱
}, 

(29.21.116)

where the subscript 𝑠 and 𝑚 stands for the slave and master nodal forces, respectively, 
and 𝛿 denotes the Kronecker delta.  Worth noting here is that accounting for offsets in 
the kinematic description leads to a term that will induce a torque due to frictional 
tractions.  To this end, we need to remark that the kinematics for shell edges do not fall 
into the framework presented here; the actual map between the nodal and segment 
coordinates is not accounted for and contact traction will in those cases only induce 
translational forces on the nodes along the edge.  For beams, nodal rotations are 
involved in the kinematics and frictional torques are accounted for but in a different 
way. 
 

29.21.4  Treatment of beams, sharp solid and shell edges 

The automatic Mortar contacts support contact with the lateral surface and end tips of 
beams as well as edges of shell elements and sharp edges of solids.  The concept of 
sharp solid edges will be defined below.  The theory presented above is in this case 
applied to dummy segments corresponding to a faceted representation of the beam 
lateral surface and the edges of the solid and shell elements, respectively, as indicated in 
Figure 27-42. For a beam element the contact surface is represented by 14 faceted 
segments encapsulating a cylinder with the same length and volume as the beam 
element itself.  This implies that all beam elements are assumed to have a circular cross 
section for the contact.  The edges of the shell element surface are identified assuming 
the user contact definition (slave or master) consists of the entire physical component 
(metal sheet) in question.  It is therefore recommended to  

Define the contacts using part or part sets or otherwise false edges may be created 
in the interior of the component.  
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An edge contact element is created by extruding the shell edge in the direction of the 
shell normal by a distance corresponding to the shell thickness with appopriate 
adjustments for irregular geometries.  As mentioned above, the kinematics in creating 
these edge segments do not account for its numerical representation and whence the 
Mortar contact does not assemble the corresponding forces in a finite element consistent 
manner.  The shell edge treatment is to be seen as a simplified treatment just to 
incorporate a contact resistance for these geometries, which is probably ok in most 
practical situations.  For beam elements however, rotational degrees of freedom are 
included in a consistent way, thus causing beam elements to rotate with respect to their 
axes when tangential friction forces are applied to the lateral surface.  A sharp solid edge 
is detected when the angle 𝜃 between the normals of two adjacent contact segments is 
larger than 𝜋/3, and in this case the edge is smoothed by adding 4 segments between 
the two nodes common to the two contact segments, while at the same time adjusting 
the size of the two main contact segments.  The effect is a rounded representation of the 
edge and a smoother contact response, see Figure 27-42. The size of the smoothing is at 
most 5% of the size of the smallest of the two contact segments, so the effect is reduced 
with mesh refinement.  Since the contact area of these edge segments may be small, the 
stiffness of the contact is for those scaled by the factor 𝛽 = √3cot (𝜋−𝜃

2 )  where 𝜃 is the 
initial angle between the main segment normals.  This scale factor is applied for both 
the slave and master side, meaning that if two right angled edges come into contact the 

stiffness is scaled by 𝛽𝑠𝛽𝑚 = √3 cot (
𝜋−𝜋2

2 )√3 cot (
𝜋−𝜋2

2 ) = 9. Whether this is sufficient to 
handle most common situations is currently unknown, so this design decision is subject 
for change in the future.  If a contact segment has two sharp edges with a common 
node, then a segment is created at the location of that node to account for contact with 
the corner of the solid element geometry.  The stiffness scale factor for a corner node is 
the average of the scale factor for the connected edges.  The motivation behind the solid 
edge smoothing is two-fold; for one thing it adds the feature of resisting penetration 
between a solid edge/corner and other geometries and then it also aids establishing a 
physical contact state when solid elements slide off sharp geometrical objects.  More 
specifically it eliminates the ambiguity of which contact segments are in contact with 
which, and presumably prevents sudden spikes in the contact force, this is also 
illustrated in Figure 27-42. 
It is important to stress that the automatic Mortar contact surfaces are always located on 
the outer geometry for both slave and master sides, i.e., contact does not occur on the 
mid-surface of shells.  A common modelling problem is illustrated in Figure 27-43 that 
results in extremely large contact stress unless the ignore flag is appropriately used.  
The forming contact is treated differently not only in that shell edge or beam contact is 
not supported.  Here any shell master surface must be rigid with its segment normals 
oriented towards the slave side of the contact.  Furthermore the contact occurs here on 
the mid-surface in contrast to the automatic option, while contact on the slave side still 
occurs on the outer geometry.  The segment orientation of the (deformable) slave side is 
on one hand arbitrary, but if it consists of shell elements contact can only occur on one 
side for a given contact definition.  In a forming application for instance, the contact 
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between the tool and blank and the contact between the die and blank have to be 
defined using two different contact interfaces since these contacts typically occur on 
different sides of the blank.  Forming solid master surfaces may be rigid or deformable, 
thus allowing for effects of tool deformation and/or cooling effects. 
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Figure 27-42 29 Faceted representation of beams (including 4 quads
representing a tip end), shell and sharp solid edges, respectively, the
segment geometry indicated by red.  The contact surface representation 
of three cubic solid elements is illustrated, with a somewhat exaggerated
smoothing for illustration purposes.  The effect of edge smoothing in
contact is illustrated in a section cut bottom right, if the red objects slides
to the right and the blue objects are fixed, the sudden detection of a
parasitic contact indicated by the double arrow results in a jump in the
contact force, this is alleviated by smoothing of the edges below.
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29.21.5  Characteristic length and contact release 

The characteristic lengths 𝑑𝑐𝑠 and 𝑑𝑐𝑚 of the slave and master sides, respectively, are 
important in Mortar contact since they affect the contact stiffness but also because it 
determines the maximum allowed penetration between two arbitrary segments.  To be 
more specific, two segments cannot penetrate more than 95% of the average 
characteristic lengths, penetrations larger than that will not be detected.  In 
mathematical terms this can be stated as 

𝑑max = 0.95
𝑑𝑐𝑠 + 𝑑𝑐𝑚

2  

 
(29.117)

 

where 𝑑max is the maximum penetration, 𝑑𝑐𝑠 is the characteristic length of the slave 
segment and 𝑑𝑐𝑚 is the characteristic length of the master segment.  This is illustrated in 
Figure 29.44 that shows the contact stress as function of the relative penetration.  To 
minimize the risk of releasing contacts one could increase the stiffness parameter SFS, 
but this may lead to worse convergence in implicit analysis.  To this end, the IGAP 
parameter can be used to stiffen the contact for large penetrations without affecting 
moderate penetrations, this is also illustrated in Figure 29.44 and can be used if the 
contact pressure is locally very high.  This also highlights the following important fact:  

 
The Mortar contact has no “stick” option for improving implicit convergence. 

 

 

 

Figure 27-43 Intersected view of shells in edge-to-surface contact.  Shell mid-
surfaces indicated by dashed lines, outer surfaces by solid lines.  Slave shell nodes 
are blue, master shell nodes are red and initial volume of penetration is shaded.

  

Correct modelling if IGNORE is used, 
master edge shows excessive penetration but 
contact surface is adjusted 

Incorrect modelling if IGNORE is not used, 
master edge shows excessive penetration, 
large contact stress 

Correct modelling regardless of IGNORE, 
master edge is located on outer surface of 
slave segment, zero contact stress 
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This may on one hand lead to worse convergence characteristics but on the other rules 
out sticky behavior and underreport of contact forces in the ascii database.  
 
 The characteristic length is for shells the shell thickness, whereas for solids it is a 
smaller element size in the part that the segment belongs to.  The latter may lead to 
unrealistically high or low contact stiffness, or it may result in a too small maximum 
penetration depth, all depending on the mesh.  For this reason the user may set 
PENMAX to the characteristic length, which should correspond to some physical 
member size in the model, and/or adjust the contact stiffness, depending on what the 
issue is. 
 

29.21.6  Outputs for debugging implicit models 

In implicit analysis it is almost inevitable to run into convergence problems, especially 
when contacts are involved.  When this happens the user usually craves for information 
on what’s gone wrong.  For the Mortar contact, detailed information on penetration 
distance and potential contact release (i.e., penetration becomes too large for the contact 
to be detected in subsequent steps) can be requested through MINFO = 1 on CON-
TROL_OUTPUT. With this option information on largest penetration, both absolute and 
relative, is given in the message files after each converged step, including a warning if 
penetration is close to being released.  It also reports the elements with largest 
penetrations which makes it easy to locate critical areas of the model in LS-PrePost.  
Contact release should be avoided or otherwise results may be useless. 
 
 On the other side of the spectrum, poor convergence could be due to a too stiff 
contact.  Since the stiffness for a Mortar contact segment pair only depends on the slave 
segment it is recommended to 
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 Figure 29.44. Mortar contact stress as function of penetration relative 2𝑑max. 
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Put weak parts on the slave side 
If a steel part is in contact with rubber for instance, the rubber part should be put as 
slave side in the contact definition.  One way of find contacts that cause poor 
convergence in implicit is to turn on D3ITCTL on CONTROL_IMPLICIT_SOLUTION 
and RESPLT on DATABASE_EXTENT_BINARY, which allows the user to isolate areas 
in the model where convergence is poor.  Not rarely this is due to contacts.  
 

29.21.7  Initial penetrations 

Initial penetrations are always reported in the message files, including the maximum 
penetration and how initial penetrations are to be handled.  The IGNORE flag governs 
the latter and the options are 
 
IGNORE < 0 See explanation for the corresponding positive value, the only 

difference is that contact between segments belonging to the same 
part is not treated 

IGNORE = 0 Initial penetrations will give rise to initial contact stresses, i.e., the 
slave contact surface is not modified, this option is not available for 
Mortar contact but defaults to IGNORE = 2 

IGNORE = 1 Initial penetrations will be tracked, i.e., the slave contact surface is 
translated to the level of the initial penetrations and subsequently 
follow the master contact surface on separation until the unmodified 
level is reached  

IGNORE = 2 Initial penetrations will be ignored, i.e., the slave contact surface is 
translated to the level of the initial penetrations, optionally with an 
initial contact stress governed by MPAR1, this is the default option for 
Mortar contact 

IGNORE = 3 Initial penetrations will be removed over time, i.e., the slave contact 
surface is translated to the level of the initial penetrations and 
pushed back to its unmodified level over a time determined  by 
MPAR1 

Element thickness T 

Contact surface augment (SST × SFST-T)/2 

Contact surface augment SLDTHK 

Figure 29.45.  Illustration of contact surface location for automatic Mortar
contact, solids on top and shells below. 
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IGNORE = 4 Same as IGNORE = 3 but it allows for large penetrations by also 
setting MPAR2 to at least the maximum initial penetration 

 
 The use of IGNORE depends on the problem, if no initial penetrations are 
present there is no need to use this parameter at all.  If penetrations are relatively small 
in relation to the maximum allowed penetration, then IGNORE = 1 or IGNORE = 2 
seems to be the appropriate choice.  For IGNORE = 2 the user may specify an initial 
contact stress small enough to not significantly affect the physics but large enough to 
eliminate rigid body modes and thus singularities in the stiffness matrix.  The intention 
with this is to constrain loose parts that are initially close but not in contact by pushing 
out the contact surface using SLDTHK or SFST and applying the IGNORE = 2 option.  
Increasing SFST for shells to a number larger than unity will push the contact surface 
outside the geometry and contact will be detected accordingly, see Figure, the SLDTHK 
parameter is used for solids.  It is at least good for debugging problems with many 
singular rigid body modes. 
 
 IGNORE = 3 is the Mortar interference counterpart, used for instance if there is a 
desire to fit a rubber component in a structure or for eliminating initial penetrations by 
simulation.  With this option the contact surfaces are restored linearly in time from the 
beginning of the simulation to the time specified by MPAR1. If the intention is to 
eliminate initial penetrations completely, and since contact penetrations are 
unavoidable to some extent, it may also in this case be of importance to use SFST or 
SLDTHK to reduce the possibility that the actual geometry is penetrated.  If using a 
single surface definition on a complicated geometry with many parts, a negative value 
of IGNORE could be of interest, since the Mortar contact may otherwise detect spurious 
contacts between segments belonging to the same part. 
 
 A drawback with IGNORE = 3 is that initial penetration must be smaller than 
half the characteristic length of the contact or otherwise they will not be detected in the 
first place.  For this reason IGNORE = 4 was introduced where initial penetrations may 
be of arbitrary size, but it requires that the user provides crude information on the level 
of penetration of the contact interface.  This is done in MPAR2 which must be larger 
than the maximum penetration or otherwise an error termination will occur.  
IGNORE = 4 only applies to solid elements at the moment. 
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29.21.8  2D Mortar contact 

Automatic single and surface-to-surface Mortar contact is available and here described 
in detail as an attempt to illustrate it in a setting that is hopefully easier to understand.  
In Figure 27-46 (top) the contact between 2 slave and 2 master segments is shown as an 
example.  This particular configuration results in the treatment of 3 slave vs master 
contact pairs (bottom), and for the mathematical treatment we refer to this figure as an 
illustration. 
 
Kinematics 
First a common tangential direction is determined, this is given as 

𝒕 =
𝒙2 + 𝒚2 − 𝒙1 − 𝒚1

∥𝒙2 + 𝒚2 − 𝒙1 − 𝒚1∥ 

 
(29.118)
) 

 

𝑑(𝑡)

𝒚(𝑡) 𝒏𝑚

𝒚2 
𝒚1

𝒙2
𝒙1 

𝒏

𝒕 

𝑚2

𝑚1 

𝑠2𝑠1 

𝑠1 vs 𝑚1  
𝑠2 vs 𝑚2  

𝑠1 vs 𝑚2  𝒙(𝑡)
𝒏𝑠

27-4629 2D mortar contact, 2 slave segments in contact with 2 master 
segments results in three separate treatments. 

𝐴
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and the corresponding normal 𝒏 is perpendicular to 𝒕, with the direction convention as 
illustrated.  We can define a coordinate 𝑡 along this tangential direction, the origin can 
be chosen arbitrarily, and then 𝒙(𝑡) and 𝒚(𝑡) are the projection coordinate along 𝒏 onto 
the slave and master segment, respectively.  Obviously there is a finite interval  𝑡 ∈
[𝑡1̃, 𝑡2̃] where both 𝒙(𝑡) and 𝒚(𝑡) is well-defined, and on this interval we can define the 
penetration as 

𝑑(𝑡) = 𝒏𝑇(𝒙(𝑡) − 𝒚(𝑡)). 

 (29.119)
 

The overlapped interval is then further reduced to 𝑡 ∈ [𝑡1, 𝑡2] for which 𝑑(𝑡) ≥ 0, note 
that for the 𝑠2 vs 𝑚2 situation these two intervals are not the same.  The interval [𝑡1, 𝑡2] is 
indicated by red in the illustration.  This completes the kinematics in the normal 
direction. 
In the tangential direction we need to define the kinematics for sliding and we do this 
by associating a history variable to each slave segment.  To this end, 𝑆 as a weighted 
measure of the distance a slave segment has slid along the master surface and is defined 
as 

𝑆 = 𝑆𝑛−1 + ∑ ∫ {𝑠(𝑡) − 𝒕𝑛−1
𝑇 (𝒙𝑛−1(𝑡) − 𝒚𝑛−1(𝑡))}𝑑𝐴𝑖𝐴𝑖𝑖

 

 

(29.120)
) 

 

where 𝑠(𝑡) = 𝒕𝑇(𝒙(𝑡) − 𝒚(𝑡)) and the subscript 𝑛 − 1 refers to the corresponding value in 
the previous step.  The integral is taken over the domain 𝐴𝑖 of the intersected interval 
between the slave segment and master segment 𝑖, accounting for plane strain or axial 
symmetry.  Note that the slave segment can be in contact with several master segments, 
whence the sum.  Further noting that by construction the first term in the integrand, 
𝑠(𝑡) = 0, we can simplify this to 

𝑆 = 𝑆𝑛−1 − ∑ ∫ 𝒕𝑛−1
𝑇 (𝒙𝑛−1(𝑡) − 𝒚𝑛−1(𝑡))𝑑𝐴𝑖𝐴𝑖𝑖

. 

 

(29.121)
) 

 

 
In the illustrated situation, slave segment 1 would get sliding contributions from master 
segments 1 and 2, while slave segment 2 only from master segment 2. Likewise we 
define a weighted penetration 

𝐷 = ∑ ∫ 𝑑(𝑡)𝑑𝐴𝑖𝐴𝑖𝑖
. (29.122)

) 
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which is used together with 𝑆 to define the friction law below. 
 
Constitutive relations 
For simplicity, we drop the explicit dependence on 𝑡 from now on and define the 
contact stress (pressure) as 

𝜎𝑛 = 𝐾 𝑑2 

 (29.123)
 

where 𝐾 is the contact stiffness defined as 

𝐾 =
𝛼

0.01
1
𝑇𝑠𝑇𝑚

2𝐾𝑠𝐾𝑚
𝐾𝑠 + 𝐾𝑚

𝑓 (𝒏𝑠
𝑇𝒏𝑚). 

 
(29.124)

 

Furthermore, 𝛼 = PSF ∗ SLSFAC is a stiffness scale factor and 𝑇𝑠/𝑚 and 𝐾𝑠/𝑚 are 
characteristic lengths and material stiffnesses of the slave and master segments, 
respectively.  The function 𝑓  is used to linearly reduce stiffness for segments that are not 
parallel, note that 𝒏𝑠 and 𝒏𝑚 are the normals to the slave and master segments, and is 
given as 

𝑓 (𝑥) =

⎩{
{{
{{
⎨
{{
{{
{⎧ 0 −

1
2 ≤ 𝑥

1 + 2𝑥

1 − √3
−
√3
2 ≤ 𝑥 < −

1
2

1 𝑥 < −
√3
2

. 

 

(29.125)
 

The friction stress is defined as 

𝜎𝑡 = 𝜇𝜎𝑛𝑔 (
𝑆

𝜇𝐷) 

 
(29.126)
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with 𝜇 being the Coulomb friction coefficient and 𝑔 is a continuously differentiable 
function defined as 

𝑔(𝑥) =

⎩{
{{
{{
⎨
{{
{{
{⎧

1, 𝑥 ≥ 1.03

1 −
25
3 (𝑥 − 1.03)2, 0.97 ≥ 𝑥 > 1.03

𝑥, −0.97 ≥ 𝑥 > 0.97

−1 +
25
3 (𝑥 + 1.03)2, −1.03 ≥ 𝑥 > −0.97

−1, −1.03 > 𝑥

 (29.127)
) 

 

 
The interpretation of this law is that the magnitude of friction stress 𝜎𝑡 is at most 𝜇𝜎𝑛, 
and the fraction thereof is determined by the appropriate relation between the 
accumulated sliding and penetration.  Upon convergence, to yield a proper friction 
behavior, 𝑆 is updated for the next step according to 𝑆𝑛 =
max (−1.03𝜇𝐷, min(1.03𝜇𝐷, 𝑆)). 
 
Nodal forces 
The nodal force contribution from a given segment pair is determined from the 
principle of virtual work, i.e.,  

𝛿𝑊 = ∫ 𝜎𝑛 𝛿𝑑 𝑑𝐴
𝐴

+ ∫ 𝜎𝑡 𝛿𝑠 𝑑𝐴
𝐴

. 

 
(29.128)

 

Here 𝛿 is the variation operator, and the independent variables subject to this variation 
are the nodal coordinates.  Thus, replacing the left hand side with the expression 
involving nodal forces and coordinates, and using (29.123) and (29.126) for the right 
hand side we get 

∑ 𝒇𝐼𝑇𝛿𝒙𝐼𝐼
= 𝐾 ∫ 𝑑2 𝛿𝑑 𝑑𝐴

𝐴
+ 𝜇𝐾𝑔 ∫ 𝑑2 𝛿𝑠 𝑑𝐴

𝐴
. 

 
(29.129)
) 

 

 
The nodal forces are then readily identified as 

𝒇𝐼 = 𝐾 ∫ 𝑑2  
𝜕𝑑
𝜕𝒙𝐼

𝑑𝐴
𝐴

+ 𝜇𝐾𝑔 ∫ 𝑑2 𝜕𝑠
𝜕𝒙𝐼

𝑑𝐴
𝐴

. 

 

(29.130)
) 

 

where the exact expressions for the integrals in terms the nodal coordinates are, 
although straightforward to derive, a bit lengthy and therefore omitted. 
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Stiffness matrix 
The stiffness matrix is the second variation of the virtual work expression (29.128) 
where we neglect the variation of the overlapped area and assume the variation can be 
taken on the integrand directly 
∆𝛿𝑊𝐼 = 2𝐾 ∫ 𝑑 ∆𝑑 𝛿𝑑 𝑑𝐴𝐴 + 2𝜇𝐾𝑔 ∫ 𝑑 ∆𝑑 𝛿𝑠 𝑑𝐴𝐴 + 𝜇 𝜕𝑔

𝜕𝑥 {
1
𝜇𝐷∆𝑆 −

𝑆
𝜇𝐷2 ∆𝐷}∫ 𝜎𝑛 𝛿𝑠 𝑑𝐴𝐴 . 

(29.131)
) 

 

Here ∆ is again the variation operator, different notation to distinguish it from 𝛿 but 
performing the exact same thing.  At this point we emphasize that the (geometric) terms 
involving ∆𝛿𝑑 and ∆𝛿𝑠 have been deliberately excluded as they, albeit being symmetric, 
contribute to the indefiniteness of the tangent matrix.  In (29.131), the first term on the 
right hand side is the normal-normal interaction and is nicely symmetric, the remaining 
terms come from friction (normal-tangent and tangent-tangent interaction) and needs 
symmetrization and further simplification.  To this end we neglect any terms involving 
∆𝑑 𝛿𝑠 and ∆𝐷𝛿𝑠 which means that it remains to deal with the term involving ∆𝑆 𝛿𝑠. The 
simplifications made are to approximate 

𝜎𝑛 ≈
1
𝐴∫ 𝜎𝑛 𝑑𝐴

𝐴
 

(29.132)
) 

in the last integral, and then neglect all terms in ∆𝑆 that do not pertain to the present 
slave master segment pair.  This results in  
 

∆𝒙𝐼
𝑇𝑲𝐼𝐽

𝑇𝛿𝒙𝐽 ≈ 2𝐾 ∫ 𝑑 ∆𝑑 𝛿𝑑 𝑑𝐴
𝐴

+
𝜕𝑔
𝜕𝑥

1
𝐷 {

1
𝐴∫ 𝜎𝑛 𝑑𝐴

𝐴
} {∫ ∆𝑠 𝑑𝐴

𝐴
} {∫ 𝛿𝑠 𝑑𝐴

𝐴
} 

(29.133)
) 

and the stiffness matrix can be identified as 

𝑲𝐼𝐽 = 2𝐾 ∫ 𝑑 
𝜕𝑑
𝜕𝒙𝐼

𝜕𝑑
𝜕𝒙𝐽

 𝑑𝐴
𝐴

+
𝜕𝑔
𝜕𝑥

1
𝐷 {

1
𝐴∫ 𝜎𝑛 𝑑𝐴

𝐴
} {∫

𝜕𝑠
𝜕𝒙𝐼

𝑑𝐴
𝐴

}{∫
𝜕𝑠
𝜕𝒙𝐽

 𝑑𝐴
𝐴

}. (29.134)
) 

 

A characteristic feature of the Mortar contact, which can be deduced from this 
expression, is that not only the nodal forces are continuous but also the stiffness matrix.  
This follows from the 𝐶1 continuity of 𝑔, meaning that all involved functions above are 
continuous, and that 𝑲𝐼𝐽 tends to zero as either 𝑑 or 𝐴 tends to zero.  A mathematical 
treatment yields 

∥𝑲𝐼𝐽∥ ≤ 𝐾𝐴max
𝑡

𝑑(𝑡) {2 max
𝑡
∥
𝜕𝑑(𝑡)
𝜕𝒙𝐼

∥ ∥
𝜕𝑑(𝑡)
𝜕𝒙𝐽

∥ + max
𝑡
∥
𝜕𝑠(𝑡)
𝜕𝒙𝐼

∥ ∥
𝜕𝑠(𝑡)
𝜕𝒙𝐽

∥} (29.135)
) 

 

which tends to zero as 𝑑 or 𝐴 tends to zero as the terms inside the right bracket are 
bounded. 

29.21.9  Tied and tiebreak option 

A tied and tiebreak option with the Mortar contact is available by appending 
MORTAR_TIED or TIEBREAK_MORTAR to the automatic surface to surface contact 
keyword.  In principle, the tiebreak allows for specifying the contact stress 𝜎  as a 
function of the separation 𝑑 to accomodate a given interface law that includes softening 
and failure (loss of interface stiffness).  The law incorporates both normal and tangential 
directions, usually denoted mode I and mode II in the delamination community, and 
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the typical appearance of such a law is shown in Figure bm_figcohlaw. The law is in 
general characterized by the energy release rate 𝐸 which is the energy per unit area 
required to release the contact, and the maximum interface stress 𝜎𝑒 which is the peak 
contact stress before softening begins.  Referring to the above mentioned figure, the 
energy release rate is the integral of the curve describing the stress vs displacement 
relation.  The law can indeed be quite complicated, and we refer to the keyword manual 
for more information regarding details of the cohesive models available. For the Mortar 
tiebreak option only OPTION = 7 and OPTION = 9 are supported. The internal treatment of 
the Mortar tied and tiebreak options are very similar to that of the one-sided contacts, 
but the following remarks are in place. 

Tied Mortar contact is penalty based and exhibits a linear relationship between 
normal/tangential separation and resulting contact stress.  In referring to equa-
tion (29.21.111), 𝑓 (𝑥) = 𝑥 for all 𝑥 in all separation directions.  Since the nonlinear-
ity is significantly reduced compared to one-sided contacts, the implicit 
convergence characteristics are insensitive to scaling of the contact stiffness. 

Tiebreak Mortar contact is treated similarly but the normal and tangential contact 
stress is given by the constitutive model.  It is strongly recommended to set CN 
(OPTION = 7 and OPTION = 9) and CT2CN (only OPTION = 9) on the addition-
al card associated with the tiebreak option, otherwise the interface stiffness is 
determined internally and may be inconveniently large. 

Tiebreak Mortar contact is superposed by a one-sided contact to take compressive 
contact stress, mainly to prevent penetrations in the post-failure regime but also 
to prevent cohesive failure due to normal compression.  This contact follows the 
theory described above and automatically applies the IGNORE = 2 option to start 
with an initial zero contact stress. 

The one-sided contact associated with the tiebreak option is frictionless as long as 
the tied contact exists, this to avoid spurious interactions between the laws 
(mode II and friction) in the tangential directions.  The friction is activated as 
soon as the tied contact is released.  Furthermore, the tied interface will not take 
compressive stress as this is lent to the one-sided contact.  

Tied and tiebreak Mortar contacts are applied if the initial normal distance between 
the slave and master segment (with respect to their outer geometries) is less than 
a critical distance, 𝑑𝑡 = 0.05𝑑𝑐. In this formula 𝑑𝑐 is the characteristic length as 
described above.  Here 𝑑𝑡 =PENMAX can be used to override this tolerance for 
when to tie two segments, so the meaning of PENMAX is in this case different 
than for the unilateral contacts. 
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Figure 27-47 A rubber compression example solved in implicit with Mortar contact 
(Courtesy of Dellner Couplers AB).  The graph shows the contact force between the 
rubber parts and the moving workpiece and between the rubber parts and the two 
supports, respectively.

-150000

-100000

-50000

 0

 50000

 100000

 150000

 0  10  20  30  40  50  60

C
on

ta
ct

 F
or

ce

Workpiece Displacement

Shear Contact Forces

Workpiece
Support





LS-DYNA Theory Manual Geometric Contact Entities 

LS-DYNA DEV 06/21/18 (r:10113) 28-1 (Geometric Contact Entities) 

30    
Geometric Contact Entities 

 Contact algorithms in LS-DYNA currently can treat any arbitrarily shaped 
surface by representing the surface with a faceted mesh.  Occupant modeling can be 
treated this way by using fine meshes to represent the head or knees.  The generality of 
the faceted mesh contact suffers drawbacks when modeling occupants, however, due to 
storage requirements, computing costs, and mesh generation times.  The geometric 
contact entities were added as an alternate method to model cases of curved rigid 
bodies impacting deformable surfaces.  Much less storage is required and the 
computational cost decreases dramatically when compared to the more general contact. 
 
 Geometric contact entities are developed using a standard solids modeling 
approach.  The geometric entity is defined by a scalar function 𝐺(𝑥, 𝑦, 𝑧).  The solid is 
determined from the scalar function as follows: 

𝐺(𝑥, 𝑦, 𝑧) > 0 The point (𝑥, 𝑦, 𝑧) is outside the solid (30.1)

𝐺(𝑥, 𝑦, 𝑧) = 0 The point (𝑥, 𝑦, 𝑧) is on the surface of the solid (30.2)

𝐺(𝑥, 𝑦, 𝑧) < 0 The point (𝑥, 𝑦, 𝑧) is inside the solid (30.3)
Thus, by a simple function evaluation, a node can be immediately determined to be 
outside the solid or in contact.  Figure 30.1 illustrates this for a cylinder. 
 
 If the node is in contact with the solid, a restoring force must be applied to 
eliminate further penetration.  A number of methods are available to do this such as 
Lagrange multipliers or momentum based methods.  The penalty method was selected 
because it is the simplest and most efficient method.  Also, in our applications the 
impact velocities are at a level where the penalty methods provide almost the identical 
answer as the exact solution. 
 
 Using the penalty method, the restoring force is proportional to the penetration 
distance into the solid and acts in the direction normal to the surface of the solid.  Thus, 
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the penetration distance and the normal vector must be determined.  The surface 
normal vector is conveniently determined from the gradient of the scalar function. 
 

𝐍(𝑥, 𝑦, 𝑧) =

∂𝐺
∂𝑥 𝐢 + ∂𝐺

∂𝑦 𝐣 + 𝜕𝐺
𝜕𝑧 𝐤

√(∂𝐺
∂𝑥)

2
+ (∂𝐺

∂𝑦)
2

+ (∂𝐺
∂𝑧 )

2
, (30.4)

for all (𝑥, 𝑦, 𝑧) such that 𝐺(𝑥, 𝑦, 𝑧) = 0.  The definition of 𝐺(𝑥, 𝑦, 𝑧) guarantees that this 
vector faces in the outward direction.  When penetration does occur, the function 
𝐺(𝑥, 𝑦, 𝑧) will be slightly less than zero.  For curved surfaces this will result in some 
errors in calculating the normal vector, because it is not evaluated exactly at the surface.  
In an implicit code, this would be important, however, the explicit time integration 
scheme in DYNA3D uses such a small time step that penetrations are negligible and the 
normal function can be evaluated directly at the slave node ignoring any penetration. 

𝐺(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑅2, (30.5)

The penetrations distance is the last item to be calculated.  In general, the penetration 
distance, 𝑑, is determined by. 

𝑑 = ∣𝐗𝑛 − 𝐗′𝑛∣, (30.6)
where 𝐗𝑛 is the location of node 𝑛 and 𝐗′𝑛 is the nearest point on the surface of the 
solid. 
 
 To determine 𝐗′𝑛, a line function is defined which passes through 𝐗𝑛 and is 
normal to the surface of the solid: 

𝐋(𝑠) = 𝐗𝑛 + 𝑠𝐍 (𝐗𝑛). (30.7)
Substituting the line function into the definition of the Equation (30.2) surface of a solid 
body gives: 

G(x, y) < 0

G(x, y) > 0

G(x, y) = 0

R

Figure 30.1.  Determination of whether a node is interior or exterior to the
cylindrical surface 
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𝐺(𝐗𝑛 + 𝑠𝐍(𝐗)) = 0. (30.8)

If Equation (30.8) has only one solution, this provides the parametric coordinates s 
which locates 𝐗′𝑛.  If Equation (30.8) has more than one root, then the root which 
minimizes Equation (30.6) locates the point 𝐗′𝑛. 
 
 The penalty method defines the restoring forces as: 

𝐟 = 𝑝𝑑𝐍(𝐗′̅̅ ̅̅ ̅̅ ̅
𝑛), (30.9)

where 𝑝 is a penalty factor and is effectively a spring constant.  To minimize the 
penetration of the slave node into the solid, the constant 𝑝 is set large, however, it 
should not be set so large that the Courant stability criteria is violated.  This criteria for 
the slave node tells us that: 

Δ𝑡 ≤
2

𝜔max
=

2

√𝐾𝑛
𝑚𝑛

= 2√
𝑚𝑛
𝐾𝑛

, (30.10)

where 𝐾𝑛 is the stiffness of node 𝑛 and 𝑚𝑛 is the mass of node 𝑛. 
 
 The penalty factor, 𝑝, is determined by choosing a value which results in a 
penalty/slave mass oscillator which has a characteristic time step that is ten times larger 
than the Courant time step: 

10Δ𝑡 = 2√
𝑚𝑛
𝑝𝑛

. (30.11)

Solving for 𝑝𝑛 gives: 

𝑝𝑛 =
4𝑚𝑛

(100Δ𝑡2)
. (30.12)

 
 Inclusion of any structural elements into the occupant model will typically result 
in very large stiffnesses due to the small time step and the (1/Δ𝑡)2 term.  Thus the 
method is highly effective even with impact velocities on the order of 1km/sec. 
 
 The scalar function 𝐺(𝐗) is frequently more conveniently expressed as 
𝑔(𝐱)where, 𝑔 is the function defined in local coordinates and 𝐱 is the position in local 
coordinates.  The local entity is related to the global coordinates by: 

𝐱 = [T](𝐗𝑗 − 𝐐𝑗), (30.13)

where 𝐐𝑗 is the offset and [T] is a rotation matrix.  The solid scalar function and the 
penetration distance can be evaluated in either local or global coordinates with no 
difference to the results.  When working in local coordinates, the gradient of the local 
scalar function provides a normal vector which is in the local system and must be 
transformed into the global by: 
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𝐍(𝐗̅̅̅̅̅) = [T]T𝐧(𝐱). (30.14)

An ellipsoid is defined by the function: 

𝐺(𝑥, 𝑦, 𝑧) = (
𝑥
𝑎)

2
+ (

𝑦
𝑏)

2
+ (

𝑧
𝑐)

2
− 1. (30.15)

The gradient of 𝐺 is 2𝑥
𝑎2 𝐢 + 2𝑦

𝑎2 𝐣 + 2𝑧
𝑎2 𝐤 and the normal vector is: 

𝐧(𝑥, 𝑦, 𝑧) =
( 𝑥

𝑎 2 𝐢 + 𝑦
𝑏 2 𝐣 + 𝑧

𝑐 2 𝐤)

√𝑥 2

𝑎 4 + 𝑦 2

𝑏 4 + 𝑧 2

𝑐 4

, (30.16)

Substituting Equations (30.7) and (30.15) into Equation (27.2) gives: 

[(
𝑛𝑥
𝑎 )

2
+ (

𝑛𝑦

𝑏 )
2

+ (
𝑛𝑧
𝑐 )

2
] 𝑠 2 + 2 [

𝑛𝑥𝑥𝑛
𝑎 2 +

𝑛𝑦𝑦𝑛

𝑏 2 +
𝑛𝑧𝑧𝑛
𝑐 2 ] 𝑠  

                            + [(
𝑥𝑛
𝑎 )

2
+ (

𝑦𝑛
𝑏 )

2
+ (

𝑧𝑛
𝑐 )

2
− 1] = 0.

 (30.17)

 
 Solving this quadratic equation for 𝑠 provides the intercepts for the nearest point 
on the ellipsoid and the opposite point of the ellipsoid where the normal vector, 𝐗𝑛, also 
points toward.   
 
 Currently, this method has been implemented for the case of an infinite plane, a 
cylinder, a sphere, and an ellipsoid with appropriate simplifications.  The ellipsoid is 
intended to be used with rigid body dummy models.  The methods are, however, quite 
general so that many more shapes could be implemented.  A direct coupling to solids 
modeling packages should also be possible in the future.
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31    
Nodal Constraints 

 In this section nodal constraints and linear constraint equations are described. 
 

31.1  Nodal Constraint Sets 

 This option forces groups of nodes to move together with a common 
translational acceleration in either one or more degrees of freedom.  The implementa-
tion is straightforward with the common acceleration defined by 

𝑎𝑖common
=
∑ 𝑀𝑗

𝑛
𝑗 𝑎𝑖

𝑗

∑ 𝑀𝑗
𝑛
𝑗

, (31.1)

where 𝑛 is the number of nodes, 𝑎𝑖
𝑗 is the acceleration of the jth constrained node in the 

ith direction, and 𝑎𝑖common
 is the common acceleration.   

 
 Nodal constraint sets eliminate rigid body rotations in the body that contains the 
node set and, therefore, must be applied very cautiously. 
 

31.2  Linear Constraint Equations 

 Linear constraint equations of the form: 

∑𝐶𝑘

𝑛

𝑘=1
𝑢𝑘 = 𝐶0, (31.2)

can be defined where 𝑛 is the number of constrained degrees of freedom, 𝑢𝑘 is a 
constrained nodal displacement, and the 𝐶𝑘 are user-defined coefficients.  Unless LS-
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DYNA is initialized by linking to an implicit code to satisfy this equation at the 
beginning of the calculation, the constant 𝐶0 is assumed to be zero.  The first 
constrained degree of freedom is eliminated from the equations of motion: 

𝑢1 = 𝐶0 − ∑
𝐶𝑘
𝐶1

𝑛

𝑘=2
𝑢𝑘. (31.3)

 
 Its velocities and accelerations are given by 

𝑢1̇ = − ∑
𝐶𝑘
𝐶1

𝑛

𝑘=2
𝑢𝑘̇,

𝑢1̈ = − ∑
𝐶𝑘
𝐶1

𝑛

𝑘=2
𝑢𝑘̈

(31.4)

respectively.  In the implementation a transformation matrix 𝐋 is constructed relating 
the unconstrained 𝑢 and constrained 𝑢constrained degrees of freedom.  The constrained 
accelerations used in the above equation are given by: 

𝑢constrained = [𝐋T𝐌𝐋]−1𝐋T𝐅, (31.5)

where 𝐌 is the diagonal lumped mass matrix and 𝐅 is the righthand side force vector.  
This requires the inversion of the condensed mass matrix which is equal in size to the 
number of constrained degrees of freedom minus one.  The inverse of the condensed 
mass matrix is computed in the initialization phase and stored in core.
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32    
Vectorization and Parallelization 

32.1  Vectorization 

 In 1978, when the author first vectorized DYNA3D on the CRAY-1, a four-fold 
increase in speed was attained.  This increase was realized by recoding the solution 
phase to process vectors in place of scalars.  It was necessary to process elements in 
groups rather than individually as had been done earlier on the CDC-7600 
supercomputers. 
 
 Since vector registers are generally some multiple of 64 words, vector lengths of 
64 or some multiple are appropriate.  In LS-DYNA, groups of 128 elements or possibly 
some larger integer multiple of 64 are utilized.  Larger groups give a marginally faster 
code, but can reduce computer time sharing efficiency because of increased core 
requirements.  If elements within the group reference more than one material model, 
subgroups are formed for consecutive elements that reference the same model.  LS-
DYNA internally sorts elements by material to maximize vector lengths. 
 
 Conceptually, vectorization is straightforward.  Each scalar operation that is 
normally executed once for one element, is repeated for each element in the group.  This 
means that each scalar is replaced by an array, and the operation is put into a DO-loop.  
For example, the nodal force calculation for the hexahedron element appeared in a 
scalar version of DYNA3D as: 
 
 E11=SGV1*PX1+SGV4*PY1+SGV6*PZ1 
 E21=SGV2*PY1+SGV4*PX1+SGV5*PZ1 
 E31=SGV3*PZ1+SGV6*PX1+SGV5*PY1 
 E12=SGV1*PX2+SGV4*PY2+SGV6*PZ2 
 E22=SGV2*PY2+SGV4*PX2+SGV5*PZ2 
 E32=SGV3*PZ2+SGV6*PX2+SGV5*PY2 
 E13=SGV1*PX3+SGV4*PY3+SGV6*PZ3 
 E23=SGV2*PY3+SGV4*PX3+SGV5*PZ3 
 E33=SGV3*PZ3+SGV6*PX3+SGV5*PY3 
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 E14=SGV1*PX4+SGV4*PY4+SGV6*PZ4 
 E24=SGV2*PY4+SGV4*PX4+SGV5*PZ4 
 E34=SGV3*PZ4+SGV6*PX4+SGV5*PY4 
 
and in the vectorized version as: 
 
 DO 110 I = LFT, LLT 
 E11(I)=SGV1(I)*PX1(I)+SGV4(I)*PY1(I)+SGV6(I)*PZ1(I) 
 E21(I)=SGV2(I)*PY1(I)+SGV4(I)*PX1(I)+SGV5(I)*PZ1(I) 
 E31(I)=SGV3(I)*PZ1(I)+SGV6(I)*PX1(I)+SGV5(I)*PY1(I) 
 E12(I)=SGV1(I)*PX2(I)+SGV4(I)*PY2(I)+SGV6(I)*PZ2(I) 
 E22(I)=SGV2(I)*PY2(I)+SGV4(I)*PX2(I)+SGV5(I)*PZ2(I) 
 E32(I)=SGV3(I)*PZ2(I)+SGV6(I)*PX2(I)+SGV5(I)*PY2(I) 
 E13(I)=SGV1(I)*PX3(I)+SGV4(I)*PY3(I)+SGV6(I)*PZ3(I) 
 E23(I)=SGV2(I)*PY3(I)+SGV4(I)*PX3(I)+SGV5(I)*PZ3(I) 
 E33(I)=SGV3(I)*PZ3(I)+SGV6(I)*PX3(I)+SGV5(I)*PY3(I) 
 E14(I)=SGV1(I)*PX4(I)+SGV4(I)*PY4(I)+SGV6(I)*PZ4(I) 
 E24(I)=SGV2(I)*PY4(I)+SGV4(I)*PX4(I)+SGV5(I)*PZ4(I) 
110 E34(I)=SGV3(I)*PZ4(I)+SGV6(I)*PX4(I)+SGV5(I)*PY4(I) 
where 1 ≤ LFT ≤ LLT ≤ n.  Elements LFT to LLT inclusive use the same material model 
and n is an integer multiple of 64. 
 
 Gather operations are vectorized on most supercomputers.  In the gather 
operation, variables needed for processing the element group are pulled from global 
arrays into local vectors.  For example, the gather operation: 
 
 DO 10 I  =  LFT, LLT 
 X1(I)  =  X(1,IX1(I)) 
 Y1(I)  =  X(2,IX1(I)) 
 Z1(I)  =  X(3,IX1(I)) 
 VX1(I)  =  V(1,IX1(I)) 
 VY1(I)  =  V(2,IX1(I)) 
 VZ1(I)  =  V(3,IX1(I)) 
 X2(I)  =  X(1,IX2(I)) 
 Y2(I)  =  X(2,IX2(I)) 
 Z2(I)  =  X(3,IX2(I)) 
 VX2(I)  =  V(1,IX2(I)) 
 VY2(I)  =  V(2,IX2(I)) 
 VZ2(I)  =  V(3,IX2(I)) 
 X3(I)  =  X(1,IX3(I)) 
 X3(I)  =  X(2,IX3(I)) 
 X3(I)  =  X(3,IX3(I)) 
 X8(I)  =  X(1,IX8(I)) 
 Y8(I)  =  X(2,IX8(I)) 
 Z8(I)  =  X(3,IX8(I)) 
 VX8(I)  =  V(1,IX8(I)) 
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 VY8(I)  =  V(2,IX8(I)) 
10 VZ8(I)  =  V(3,IX8(I)) 
 
initializes the nodal velocity and coordinate vector for each element in the subgroup 
LFT to LLT.  In the scatter operation, element nodal forces are added to the global force 
vector.  The force assembly does not vectorize unless special care is taken as described 
below. 
 
 In general, the element force assembly is given in FORTRAN by: 
 
  DO 30 I = 1,NODFRC 
  DO 20 N = 1,NUMNOD 
  DO 10 L = LFT,LLT 
  RHS(I,IX(N,L))=RHS(I,IX(N,L))+FORCE(I,N,L) 
 10 CONTINUE 
 20 CONTINUE 
 30 CONTINUE 
 
where NODFRC is the number of force components per node (3 for solid elements, 6 for 
shells), LFT  and LLT span the number of elements in the vector block,  NUMNOD is 
the number of nodes defining the element, FORCE contains the force components of the 
individual elements, and RHS is the global force vector.  This loop does not vectorize 
since the possibility exists that more that one element may contribute force to the same 
node.  FORTRAN vector compilers recognize this and will vectorize only if directives 
are added to the source code.  If all elements in the loop bounded by the limits LFT and 
LLT are disjoint, the compiler directives can be safely added.  We therefore attempt to 
sort the elements as shown in Figure 32.1 to guarantee disjointness. 
 
ELEMENT BLOCKING FOR VECTORIZATION 
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 The current implementation was strongly motivated by Benson [1989] and by 
work performed at General Motors [Ginsberg and Johnson 1988, Ginsberg and Katnik 
1989], where it was shown that substantial improvements in execution speed could be 
realized by blocking the elements in the force assembly.  Katnik implemented element 
sorting in a public domain version of DYNA3D for the Belytschko-Tsay shell element 
and added compiler directives to force vectorization of the scatter operations associated 
with the addition of element forces into the global force vector.  The sorting was 
performed immediately after the elements were read in so that subsequent references to 
the stored element data were sequential.  Benson performed the sorting in the element 
loops via indirect addressing.  In LS-DYNA the published GM approach is taken. 
 
 Implementation of the vectorization of the scatter operations is implemented in 
for all elements including the solid, shell, membrane, beam, and truss elements.  The 
sorting is completely transparent to the user. 

32.2  Parallelization 

 In parallelization, the biggest hurdle is overcoming Amdahl’s law for 
multitasking [Cray Research Inc.  1990] 

𝑆𝑚 =
1

𝑓𝑠 +
𝑓𝑝
𝑁

, (32.1)

where 
 

Block 1 Block 2

Block 3 Block 3

 Figure 32.1.  Group of 48 elements broken into 4 disjoint blocks. 
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𝑆𝑚 = maximum expected speedup from multitasking 
𝑁 = number of processors available for parallel execution 
𝑓𝑝 = fraction of a program that can execute in parallel 
𝑓𝑠 = fraction of a program that is serial 

 
 Table 29.1 shows that to obtain a speed factor of four on eight processors it is 
necessary to have eighty-six percent of the job running in parallel.  Obviously, to gain 
the highest speed factors the entire code must run in parallel. 
 
 LS-DYNA has been substantially written to function on all shared memory 
parallel machine architectures.  Generally, shared memory parallel speed-ups of 5 on 8 
processors are possible but this is affected by the machine characteristics.  We have 
observed speeds of 5.6 on full car crash models on a machine of one manufacturer only 
to see a speed-up of 3.5 on a different machine of another manufacturer. 
 

% N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 12
8 

N = 256 

86.0% 1.75 2.82 4.04 5.16 5.99 6.52 6.82 6.98 
90.0% 1.82 3.08 4.71 6.40 7.80 8.77 9.34 9.66 
92.0% 1.85 3.23 5.13 7.27 9.20 10.60 11.47 11.96 
94.0% 1.89 3.39 5.63 8.42 11.19 13.39 14.85 15.71 
96.0% 1.92 3.57 6.25 10.00 14.29 18.18 21.05 22.86 
98.0% 1.96 3.77 7.02 12.31 19.75 28.32 36.16 41.97 
99.0% 1.98 3.88 7.48 13.91 24.43 39.26 56.39 72.11 
99.2% 1.98 3.91 7.58 14.29 25.64 42.55 63.49 84.21 
99.4% 1.99 39.3 7.68 14.68 26.98 46.44 72.64 101.19 
99.6% 1.99 3.95 7.78 15.09 28.47 51.12 84.88 126.73 
99.7% 1.99 3.96 7.84 15.31 29.28 53.83 92.69 145.04 
99.8% 2.00 3.98 7.89 15.53 30.13 56.84 102.07 169.54 
99.9% 2.00 3.99 7.94 15.76 31.04 60.21 113.58 203.98 
100.0% 2.00 4.00 8.00 16.00 32.00 64.00 128.00 256.00 

 
Table 29.1.Maximum theoretical speedup Sm, on N CPUs with parallelism [Cray 
Research Inc.  1990]. 
 
 In the element loops element blocks with vector lengths of 64 or some multiple 
are assembled and sent to separate processors.  All elements are processed in parallel.  
On the average a speed factor of 7.8 has been attained in each element class 
corresponding to 99.7% parallelization.   
 
 A significant complication in parallelizing code is that a variable can sometimes 
be updated simultaneously by different processors with incorrect results.  To force the 
processors to access and update the variable in a sequential manner, a GUARD 
compiler directive must be introduced.  This results in an interruption to the parallel 
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execution and can create a bottleneck.  By sorting the data in the parallel groups or by 
allocating additional storage it is usually possible to eradicate the GUARDS from the 
coding.  The effort may not be worth the gains in execution speed. 
 
 The element blocks are defined at the highest level and each processor updates 
the entire block including the right hand side force assembly.  The user currently has 
two options: GUARD compiler directives prevent simultaneous updates of the RHS 
vector (recommended for single CPU processors or when running in a single CPU 
mode on a multi-processor), or assemble the right hand side in parallel and let LS-
DYNA prevent conflicts between CPU’s.  This usually provides the highest speed and is 
recommended, i.e., no GUARDS.   
 
 When executing LS-DYNA in parallel, the order of operations will vary from run 
to run.  This variation will lead to slightly different numerical results due to round-off 
errors.  By the time the calculation reaches completion variations in nodal accelerations 
and sometimes even velocities are observable.  These variations are independent of the 
precision and show up on both 32 and 64 bit machines.  There is an option in LS-DYNA 
to use an ordered summation of the global right hand side force vector to eliminate 
numerical differences.  To achieve this the element force vectors are stored.  After 
leaving the element loop, the global force vector is assembled in the same order that 
occurs on one processor.  The ordered summation option is slower and uses more 
memory than the default, but it leads to nearly identical, if not identical, results run to 
run.   
 
 Parallelization in LS-DYNA was initially done with vector machines as the target 
where the vector speed up is typically 10 times faster than scalar.  On vector machines, 
therefore, vectorization comes first.  If the problem is large enough then parallelization 
is automatic.  If vector lengths are 128, for example, and if 256 beam elements are used 
only a factor of 2 in speed can be anticipated while processing beam elements.  Large 
contact surfaces will effectively run in parallel, small surfaces having under 100 
segments will not.  The speed up in the contact subroutines has only registered 7 on 8 
processors due to the presence of GUARD statements around the force assembly.  
Because real models often use many special options that will not even vectorize 
efficiently it is unlikely that more than 95% of a given problem will run in parallel on a 
shared memory parallel machine.
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33    
Airbags 

 Additional information on the airbag modeling and comparisons with 
experimental data can be found in a report [Hallquist, Stillman, Hughes, and Tarver 
1990] based on research sponsored by the Motor Vehicles Manufacturers Association 
(MVMA). 

33.1  Control Volume Modeling 

 A direct approach for modeling the contents of the airbag would be to discretize 
the interior of the airbag using solid elements.  The total volume and pressure-volume 
relationship of the airbag would then be the sum of all the elemental contributions.  
Although this direct approach could be applied in a straight forward manner to an 
inflated airbag, it would become very difficult to implement during the inflation phase 
of the airbag deployment.  Additionally, as the model is refined, the solid elements 
would quickly overwhelm all other computational costs and make the numerical 
simulations prohibitively expensive. 
 
 An alternative approach for calculating the airbag volume, that is both applicable 
during the inflation phase and less computationally demanding, treats the airbag as a 
control volume.  The control volume is defined as the volume enclosed by a surface.  In 
the present case, the ‘control surface’ that defines the control volume is the surface 
modeled by shell or membrane elements comprising the airbag fabric material. 
 
 Because the evolution of the control surface is known, i.e., the position, 
orientation, and current surface area of the airbag fabric elements are computed and 
stored at each time step, we can take advantage of these properties of the control 
surface elements to calculate the control volume, i.e., the airbag volume.  The area of the 
control surface can be related to the control volume through Green’s Theorem 

∭𝜙
∂𝜓
∂𝑥 𝑑𝑥𝑑𝑦𝑑𝑧 = −∭𝜓

∂𝜙
∂𝑥 𝑑𝑥𝑑𝑦𝑑𝑧 + ∮𝜙𝜓𝑛𝑥𝑑𝛤, (33.1)
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where the first two integrals are integrals over a closed volume, i.e., 𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧, the 
last integral is an integral over the surface enclosing the volume, and 𝑛𝑥 is the direction 
cosine between the surface normal and the 𝑥 direction (corresponding to the x-partial 
derivative); similar forms can be written for the other two directions.  The two arbitrary 
functions 𝜙 and 𝜓 need only be integrated over the volume and surface. 
 
 The integral form of the volume can be written as 

𝑉 = ∭𝑑𝑥𝑑𝑦𝑑𝑧. (33.2)

Comparing the first of the volume integrals in Equation (33.1) to Equation (33.2), we can 
easily obtain the volume integral from Equation (33.1) by choosing for the two arbitrary 
functions 

𝜙 = 1, (33.3)

𝜓 = 𝑥𝑥, (33.4)
leading to 

𝑉 = ∫ ∫ ∫ 𝑑𝑥𝑑𝑦𝑑𝑧 = ∮𝑥𝑛𝑥𝑑𝛤. (33.5)

The surface integral in Equation (33.5) can be approximated by a summation over all the 
elements comprising the airbag, i.e., 

  ∮  𝑥𝑛𝑥𝑑𝛤 ≈ ∑ 𝑥𝑖̅𝑛𝑖𝑥𝐴𝑖

𝑁

𝑖=1
, (33.6)

where for each element i: 𝑥𝑖̅ is the average x coordinate, 𝑛𝑖𝑥 is the direction cosine 
between the elements normal and the 𝑥 direction, and 𝐴𝑖 is the surface area of the 
element. 
 
 Although Equation (33.5) will provide the exact analytical volume for an 
arbitrary direction, i.e., any 𝑛, the numerical implementation of Equation (33.5), and its 
approximation Equation (33.6), has been found to produce slightly different volumes, 
differing by a few percent, depending on the choice of directions:  if the integration 
direction is nearly parallel to a surface element, i.e., the direction cosine is nearly zero, 
numerical precision errors affect the volume calculation.  The implementation uses as 
an integration direction, a direction that is parallel to the maximum principle moment 
of inertia of the surface.  Numerical experiments have shown this choice of integration 
direction produces more accurate volumes than the coordinate or other principle inertia 
directions. 
 
 Because airbag models may contain holes, e.g., holes for inflation and deflation, 
and Green’s Theorem only applies to closed surfaces, a special treatment is needed for 
calculating the volume of airbags with holes.  This special treatment consists of the 
following: 
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 • The n-sized polygon defining the hole is identified automatically, using 
edge locating algorithms in LS-DYNA. 
 • The n-sized polygon is projected onto a plane, i.e., it is assumed to be flat; 
this is a good approximation for typical airbag hole geometries.  Planar symmetry 
should work with the control volume capability for one symmetry plane. 
 • The area of the flat n-sided polygon is calculated using Green’s Theorem 
in two dimensions. 
 • The resulting holes are processed as another surface element in the airbag 
control volume calculation. 
 

33.2  Equation of State Model 

 As explained above, at each time step in the calculation the current volume of the 
airbag is determined from the control volume calculation.  The pressure in the airbag 
corresponding to the control volume is determined from an equation of state (EOS) that 
relates the pressure to the current gas density (volume) and the specific internal energy 
of the gas. 
 
 The equation of state used for the airbag simulations is the usual ‘Gamma Law 
Gas  
Equation of State’, 

𝑝 = (𝑘 − 1)𝜌𝑒, (33.7)
where 𝑝 is the pressure, 𝑘 is a constant defined below, 𝜌 is the density, and 𝑒 is the 
specific internal energy of the gas.  The derivation of this equation of state is obtained 
from thermodynamic considerations of the adiabatic expansion of an ideal gas.  The 
incremental change in internal energy, 𝑑𝑈, in 𝑛 moles of an ideal gas due to an 
incremental increase in temperature, 𝑑𝑇, at constant volume is given by  

𝑑𝑈 = 𝑛𝑐v𝑑𝑇, (33.8)
where 𝑐v is the specific heat at constant volume.  Using the ideal gas law we can relate 
the change in temperature to a change in the pressure and total volume, 𝑣, as 

𝑑(𝑝𝑣) = 𝑛𝑅𝑑𝑇, (33.9)
where 𝑅 is the universal gas constant.  Solving the above for 𝑑𝑇 and substituting the 
result into Equation (33.8) gives 

𝑑𝑈 =
𝑐v𝑑(𝑝𝑣)
𝑅 =

𝑑(𝑝𝑣)
(𝑘 − 1), (33.10)

where we have used the relationship 
𝑅 = 𝑐p − 𝑐v, (33.11)

and the notation 
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𝑘 =
𝑐p
𝑐v

. (33.12)

Equation (33.10) may be rewritten as 

𝑑𝑈 =
𝜌0𝑣0
𝑘 − 1 𝑑 (

𝑝
𝜌), (33.13)

and integrated to yield 

𝑒 =
𝑈

𝜌0𝑣0
=

𝑝
𝜌(𝑘 − 1). (33.14)

Solving for the pressure 
𝑝 = (𝑘 − 1)𝜌𝑒. (33.15)

 
 The equation of state and the control volume calculation can only be used to 
determine the pressure when the specific internal energy is also known.  The evolution 
equation for the internal energy is obtained by assuming the change in internal energy 
is given by 

𝑑𝑈 = −𝑝𝑑𝑣, (33.16)
where the minus sign is introduced to emphasize that the volume increment is negative 
when the gas is being compressed.  This expression can be written in terms of the 
specific internal energy as 

𝑑𝑒 =
𝑑𝑈

𝜌0𝑣0
= −

𝑝𝑑𝑣
𝜌0𝑣. (33.17)

Next, we divide the above by the equation of state, Equation (4.11.144), to obtain  
𝑑𝑒
𝑒 = −

𝜌(𝑘 − 1)𝑑𝑣
𝜌0𝑣0

= −
(𝑘 − 1)𝑑𝑣

𝑣 , (33.18)

which may be integrated to yield 
ln𝑒 = (1 − 𝑘)ln𝑉, (33.19)

or evaluating at two states and exponentiating both sides yields 

𝑒2 = 𝑒1 (
𝑣2
𝑣1

)
(1−𝑘)

. (33.20)

 
 The specific internal energy evolution equation, Equation (33.20), the equation of 
state, Equation (4.11.144), and the control volume calculation completely define the 
pressure-volume relation for an inflated airbag. 
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33.3  Airbag Inflation Model 

 Airbag inflation models have been used for many years in occupant simulation 
codes such as CAL3D [Fleck, 1981].   
 
 The inflation model we chose to implement in LS-DYNA is due to Wang and 
Nefske[1988] and more recent improvements to the model in LS-DYNA were suggested 
by Wang [1992].  In their development they consider the mass flow due to the vents and 
leakage through the bag.  We assume that the mass flow rate and the temperature of the 
gas going into the bag from an inflator are provided as tabulated functions of time.  
 
 A pressure relation is defined: 

𝑄 =
𝑝e
𝑝2

, (33.21)

where 𝑝e is the external pressure and 𝑝2 is the internal pressure in the bag.  A critical 
pressure relationship is defined as: 

𝑄crit = (
2

𝑘 + 1)
𝑘

𝑘−1⁄
, (33.22)

where 𝑘 is the ratio of specific heats: 

𝑘 =
𝑐p
𝑐v

. (33.23)

If 𝑄 ≤ 𝑄crit then 𝑄 = 𝑄crit. 
 
 Wang and Nefske define the mass flow through the vents and leakage by 

𝑚̇23 = 𝐶23𝐴23
𝑝2

𝑅√𝑇2
𝑄

1
𝑘⁄ √2𝑔𝑐 (

𝑘𝑅
𝑘 − 1) (1 − 𝑄

𝑘−1
𝑘⁄ ), (33.24)

and 

𝑚̇23
′ = 𝐶′23𝐴′23

𝑝2

𝑅√𝑇2
𝑄

1
𝑘⁄ √2𝑔𝑐 (

𝑘𝑅
𝑘 − 1) (1 − 𝑄

𝑘−1
𝑘⁄ ), (33.25)

where 𝐶23, 𝐴23, 𝐶′23, 𝐴′23, 𝑅 and 𝑔𝑐 are the vent orifice coefficient, vent orifice area, the 
orifice coefficient for leakage, the area for leakage, the gas constant, and the 
gravitational conversion constant, respectively.  The internal temperature of the airbag 
gas is denoted by 𝑇2.  We note that both 𝐴23 and 𝐴′23 can be defined as a function of 
pressure [Wang, 1992] or if they are input as zero they are computed within LS-DYNA.  
This latter option requires detailed modeling of the airbag with all holes included. 
 
 A uniform temperature and pressure is assumed; therefore, in terms of the total 
airbag volume 𝑉2 and air mass, 𝑚2, the perfect gas law is applied: 
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𝑝2𝑉 = 𝑚2𝑅𝑇2. (33.26)
Solving for 𝑇2: 

𝑇2 =
𝑝2𝑉
𝑚2𝑅

, (33.27)

and substituting Equation (33.27) into equations (33.25), we arrive at the mass transient 
equation: 

𝑚̇out = 𝑚̇23 + 𝑚̇23
′ = 𝜇√2𝑝2𝜌⎷

√√
√

𝑘 (𝑄
2
𝑘 − 𝑄

𝑘+1
𝑘⁄ )

𝑘 − 1
(33.28)

where 
𝜌 = density of airbag gas, 
𝜇 = bag characterization parameter, 

𝑚̇out = total mass flow rate out of bag. 
 
 In terms of the constants used by Wang and Nefske: 

𝜇 = √𝑔𝑐(𝐶23𝐴23 + 𝐶′23𝐴′23). (33.29)

We solved these equations iteratively, via function evaluation.  Convergence usually 
occurs in 2 to 3 iterations. 
 
 The mass flow rate and gas temperature are defined in load curves as a function 
of time.  Using the mass flow rate we can easily compute the increase in internal energy: 

𝐸̇in = 𝑐p𝑚̇in𝑇in, (33.30)

where 𝑇in is the temperature of the gas flowing into the airbag.  Initializing the variables 
pressure, 𝑝, density, 𝜌, and energy, 𝐸, to their values at time 𝑛, we can begin the 
iterations loop to compute the new pressure, 𝑝𝑛 + 1, at time 𝑛 + 1. 

𝑝𝑛+1
2⁄ =

𝑝𝑛 + 𝑝𝑛+1

2  

𝜌𝑛+1
2⁄ =

𝜌𝑛 + 𝜌𝑛+1

2  

𝐸𝑛+1
2⁄ =

𝐸𝑛 + 𝐸𝑛+1

2  

𝑄𝑛+1
2⁄ = max

⎝
⎜⎜
⎜⎜
⎛ 𝑝𝑒

𝑝2
𝑛+1

2
, 𝑄crit

⎠
⎟⎟
⎟⎟
⎞

. 

(33.31)

The mass flow rate out of the bag, 𝑚̇out can now be computed: 

𝑚̇out
𝑛+1

2⁄ = 𝜇√2𝑝2
𝑛+1

2⁄ 𝜌𝑛+1
2⁄
⎷
√√
√
√

𝑘
⎝
⎜⎛𝑄𝑛+1

2⁄
2

𝑘⁄
− 𝑄𝑛+1

2⁄
𝑘+1

𝑘⁄

⎠
⎟⎞

𝑘 − 1 , 
(33.32)
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where 

𝑝2
𝑛+1

2⁄ = 𝑝𝑛+1
2⁄ + 𝑝e, (33.33)

and the total mass updated: 

𝑚𝑛+1 = 𝑚𝑛 + Δ𝑡 (𝑚̇in
𝑛+1

2⁄ − 𝑚out
𝑛+1

2⁄ )

𝑚𝑛+1
2⁄ =

𝑚𝑛 + 𝑚𝑛+1

2 .
(33.34)

 
 The energy exiting the airbag is given by: 

𝐸̇out
𝑛+1

2⁄ = 𝑚̇out
𝑛+1

2⁄ 𝐸𝑛+1
2⁄

𝑚𝑛+1
2⁄
, (33.35)

we can now compute our new energy at time 𝑛 + 1 

𝐸𝑛+1 = 𝐸𝑛 + Δ𝑡 (Ėin
n+1

2⁄ − 𝐸̇out
𝑛+1

2⁄ ) − 𝑝𝑛+1
2⁄ Δ𝑉𝑛+1

2⁄ , (33.36)

where Δ𝑉𝑛+1
2⁄  is the change in volume from time 𝑛 to 𝑛 + 1.  The new pressure can now 

be computed: 

𝑝𝑛+1 = (𝑘 − 1)
𝐸𝑛+1

𝑉𝑛+1, (33.37)

which is the gamma-law (where 𝑘 = 𝛾) gas equation.  This ends the iteration loop. 
 

33.4  Wang's Hybrid Inflation Model 

 Wang's proposed hybrid inflator model [1995a, 1995b] provides the basis for the 
model in LS-DYNA.  The first law of thermodynamics is used for an energy balance on 
the airbag control volume. 

𝑑
𝑑𝑡 (𝑚𝑢)cv = ∑ 𝑚̇𝑖 ℎ𝑖 − ∑ 𝑚̇𝑜 ℎ𝑜 − 𝑊̇cv − 𝑄̇cv, (33.38)

where 
𝑑
𝑑𝑡 (𝑚𝑢)cv =  rate of change of airbag internal energy 

∑ 𝑚𝑖 ℎ𝑖 =  energy into airbag by mass flow (e. g. , inflator) 
∑ 𝑚𝑜 ℎ𝑜 =  energy out of airbag by mass flow (e. g. , vents) 
𝑊̇cv = ∫𝑃𝑑𝑉̇ =  work done by airbag expansion 
𝑄̇cv =  energy out by heat transfer through airbag surface. 
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 The rate of change of internal energy, the left hand side of Equation (33.38), can 
be differentiated: 

𝑑
𝑑𝑡 (𝑚𝑢) =

𝑑𝑚
𝑑𝑡 𝑢 + 𝑚

𝑑𝑢
𝑑𝑡 =

𝑑𝑚
𝑑𝑡 𝑢 + 𝑚

𝑑
𝑑𝑡 (𝑐v𝑇) = 𝑚̇𝑢 + 𝑚𝑐v̇𝑇 + 𝑚𝑐v

𝑑𝑇
𝑑𝑡 , (33.39)

where we have used the definition 
𝑢 = 𝑐v𝑇. (33.40)

 
 Then, the energy equation can be re-written for the rate of change in temperature 
for the airbag 

𝑑𝑇cv
𝑑𝑡 =

∑𝑚̇𝑖 ℎ𝑖 −∑𝑚̇𝑜 ℎ𝑜 − 𝑊̇cv − 𝑄̇cv − (𝑚̇𝑢)cv − (𝑚𝑐v̇𝑇)cv
(𝑚𝑐v)cv

 (33.41)

Temperature dependent heat capacities are used.  The constant pressure molar heat 
capacity is taken as: 

𝑐p̅ = 𝑎 ̅+ 𝑏̅𝑇, (33.42)

and the constant volume molar heat capacity as:  

𝑐v̅ = 𝑎 ̅+ 𝑏̅𝑇 − 𝑟,̅ (33.43)

where 
𝑟 ̅ =  gas constant = 8.314 J/gm-mole K 
𝑎 ̅ =  constant [J/gm-mole K] 
𝑏̅ =  constant [J/gm-mole K2] 

 
 Mass based values are obtained by dividing the molar quantities by the 
molecular weight, 𝑀, of the gas 

𝑎 =
𝑎 ̅
𝑀 , 𝑏 =

𝑏̅
𝑀 , 𝑟 =

𝑟 ̅
𝑀. (33.44)

The constant pressure and volume specific heats are then given by 
𝑐p = 𝑎 + 𝑏𝑇 (33.45)

𝑐v = 𝑎 + 𝑏𝑇 − 𝑟. (33.46)
The specific enthalpy and internal energy becomes: 

ℎ = ∫ 𝑐𝑝𝑑𝑇
𝑇

0
= 𝑎𝑇 +

𝑏𝑇2

2 (33.47)

𝑢 = ∫ 𝑐𝑣𝑑𝑇
𝑇

0
= 𝑎𝑇 +

𝑏𝑇2

2 − 𝑟𝑇. (33.48)

 
 For ideal gas mixtures the molecular weight is given as: 
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𝑀 =
1

∑ 𝑓𝑖
𝑀𝑖

, (33.49)

and the constant pressure and volume specific heats as: 

𝑐p = ∑ 𝑓𝑖 𝑐p(𝑖) (33.50)

𝑐v = ∑ 𝑓𝑖 𝑐v(𝑖), (33.51)

where 
𝑓𝑖 =  mass fraction of gas 𝑖 
𝑀𝑖 =  molecular weight of gas 𝑖 

𝑐p(𝑖) =  constant pressure specific heat of gas 𝑖 
𝑐v(𝑖) = constant volume specific heat of gas 𝑖. 

 
 The specific enthalpy and internal energy for an ideal gas mixture with 
temperature dependent heat capacity are 

ℎ = ∫ ∑ 𝑓𝑖
𝑇

0
𝑐p(𝑖)𝑑𝑇 = ∑ 𝑓𝑖 (𝑎𝑖𝑇 +

𝑏𝑖𝑇2

2 ) (33.52)

𝑢 = ∫ ∑ 𝑓𝑖
𝑇

0
𝑐v(𝑖)𝑑𝑇 = ∑ 𝑓𝑖 (𝑎𝑖𝑇 +

𝑏𝑖𝑇2

2 − 𝑟𝑖𝑇). (33.53)

 
 The rate of change of temperature for the airbag is 

𝑑𝑇cv
𝑑𝑡 =

∑𝑚̇𝑖 ℎ𝑖 −∑𝑚̇𝑜 ℎ𝑜 − 𝑊̇cv − 𝑄̇cv − (𝑚̇𝑢)cv − (𝑚𝑐v̇𝑇)cv
(𝑚𝑐v)cv

. (33.54)

 
 The energy in by mass flow becomes: 

∑ 𝑚̇𝑖 ℎ𝑖 = ∑ 𝑚̇𝑖 (𝑎𝑖𝑇𝑖 +
𝑏𝑖𝑇𝑖

2

2 ), (33.55)

𝑚̇𝑖 is specified by an inflator mass inflow vs.  time table 
𝑇𝑖 is specified by an inflator temperature vs.  time table 
𝑎, 𝑏 are input constants for gas 𝑖 
 
 And the energy out by mass flow: 

∑ 𝑚̇𝑜 ℎ𝑜 = ∑ 𝑚̇𝑜 [∑ 𝑓𝑖 (𝑎𝑖𝑇𝑐𝑣 +
𝑏𝑖𝑇cv2

2 )
gases

]. (33.56)

 
 The gas leaves the airbag at the control volume temperature 𝑇𝑐𝑣.  The mass flow 
rate out through vents and fabric leakage is calculated by the one dimensional 
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isentropic flow equations per Wang and Nefske.  The work done by the airbag 
expansion is given by: 

𝑊̇cv = ∫𝑃𝑑𝑉̇, (33.57)

𝑃 is calculated by the equation of state for a perfect gas, 𝑝 = 𝜌𝑅𝑇 and 𝑉̇ is calculated by 
LS-DYNA 
 
 For the energy balance, we must compute the energy terms (𝑚̇𝑢)cv and (𝑚𝑐v)cv.  
Conservation of mass leads to: 

𝑚̇cv = 𝑚̇𝑖 − 𝑚̇𝑜
𝑚cv = ∫ 𝑚̇cv 𝑑𝑡. (33.58)

 
 The internal energy is given by  

𝑢cv = ∑ 𝑓𝑖 (𝑎𝑖𝑇cv +
𝑏𝑖𝑇cv2

2 − 𝑟𝑖𝑇cv), (33.59)

and the heat capacity at contact volume is: 

(𝑐v)cv = ∑ 𝑓𝑖 (𝑎𝑖 + 𝑏𝑖𝑇cv − 𝑟𝑖). (33.60)

 

33.5  Constant Volume Tank Test 

 Constant volume tank tests are used to characterize inflators.  The inflator is 
ignited within the tank and, as the propellant burns, gas is generated.  The inflator 
temperature is assumed to be constant.  From experimental measurements of the time 
history of the tank pressure it is straightforward to derive the mass flow rate, 𝑚̇. From 
energy conservation, where 𝑇i and 𝑇t are defined to be the temperature of the inflator 
and tank, respectively, we obtain: 

𝑐p𝑚̇𝑇i = 𝑐v𝑚̇𝑇t + 𝑐v𝑚𝑇̇t. (33.61)

 
 For a perfect gas under constant volume, 𝑉̇ = 0, hence, 

𝑝𝑉̇ = 𝑚̇𝑅𝑇t + 𝑚𝑅𝑇̇t, (33.62)

and, finally, we obtain the desired mass flow rate: 

𝑚̇ =
𝑐v𝑝𝑉̇
𝑐p𝑅𝑇i

. (33.63)
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34    
Dynamic Relaxation and System 
Damping 

 Dynamic relaxation allows LS-DYNA to approximate solutions to linear and 
nonlinear static or quasi-static processes.  Control parameters must be selected with 
extreme care or bad results can be obtained.  The current methods are not compatible 
with displacement or velocity boundary conditions, but various body loads, thermal 
loads, pressures, and nodal loads are allowed.  The solutions to most nonlinear 
problems are path dependent, thus results obtained in the presence of dynamic 
oscillations may not be the same as for a nonlinear implicit code, and they may diverge 
from reality. 
 
 In LS-DYNA we have two methods of damping the solution.  The first named 
“dynamic relaxation” is used in the beginning of the solution phase to obtain the initial 
stress and displacement field prior to beginning the analysis.  The second is system 
damping which can be applied anytime during the solution phase either globally or on 
a material basis. 
 

34.1  Dynamic Relaxation For Initialization 

 In this phase only a subset of the load curves is used to apply the static load 
which is flagged in the load curve section of the manual.  The calculation begins and 
executes like a normal LS-DYNA calculation but with damping incorporated in the 
update of the displacement field.  
 Our development follows the work of Underwood [1986] and Papadrakakis 
[1981] with the starting point being the dynamic equilibrium equation, Equation (23.1) 
with the addition of a damping term, at time 𝑛: 

𝐌𝐚𝑛 + 𝐂𝐯𝑛 +𝐐𝑛(𝐝) = 0, (34.1)
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𝐐𝑛(𝐝) = 𝐅𝑛 − 𝐏𝑛 − 𝐇𝑛, (34.2)
where we recall that 𝐌 is the mass matrix, 𝐂 is the damping matrix, 𝑛 indicates the nth 
time step, 𝐚𝑛 is the acceleration, 𝐯𝑛 the velocity, and 𝐝 is the displacement vector.  With 
Δ𝑡 as the fixed time increment we get for the central difference scheme: 

𝐯𝑛+1
2⁄ =

(𝐝𝑛+1 − 𝐝𝑛)
Δ𝑡 ; 𝐚𝑛 =

(𝐯𝑛+1
2⁄ − 𝐯𝑛−1

2⁄ )
Δ𝑡 . (34.3)

For 𝐯𝑛 we can assume an averaged value 

𝐯𝑛 =
1
2 (𝐯𝑛+1

2⁄ + 𝐯𝑛−1
2⁄ ), (34.4)

and obtain 

𝐯𝑛+1
2⁄ = (

1
Δ𝑡𝐌+

1
2𝐂)

−1
[(

1
Δ𝑡𝐌−

1
2𝐂)𝐯𝑛−1

2⁄ − 𝐐𝑛], (34.5)

𝐝𝑛+1 = 𝐝𝑛 + Δ𝑡𝐯𝑛+1
2⁄ . (34.6)

 
 In order to preserve the explicit form of the central difference integrator, 𝐌 and 
𝐂 must be diagonal.  For the dynamic relaxation scheme 𝐂 has the form 

𝐂 = 𝑐 ⋅ 𝐌. (34.7)
If Equation (34.7) is substituted into (34.5) the following form is achieved 

𝐯𝑛+1
2⁄ =

2 − 𝑐Δ𝑡
2 + 𝑐Δ𝑡 𝐯

𝑛−1
2⁄ +

2Δ𝑡
2 + 𝑐Δ𝑡 ⋅ 𝐌

−1 ⋅ 𝐐𝑛. (34.8)

Since 𝐌 is diagonal, each solution vector component may be computed individually 
from 

𝐯𝑖
𝑛+1

2⁄ =
2 − 𝑐Δ𝑡
2 + 𝑐Δ𝑡 𝐯𝑖

𝑛−1
2⁄ +

2Δ𝑡
2 + 𝑐Δ𝑡

𝐐𝑖
𝑛

𝑚𝑖
. (34.9)

As a starting procedure it is suggested by Underwood  

𝐯0 = 0
𝐝0 = 0.

(34.10)

Since the average value is used for 𝐯𝑛, which must be zero at the beginning for a quasi-
static solution 

𝐯−1
2⁄ = −𝐯

1
2⁄ , (34.11)

thus the velocity at time +1 ⁄ 2 is 

𝐯
1

2⁄ = −
Δ𝑡
2 𝐌

−1𝐐𝑜. (34.12)

A damping coefficient must now be selected to obtain convergence to the static solution 
in minimal time.  The best estimate for damping values is based on the frequencies of 
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the structure.  One choice is to focus on an optimal damping parameter as suggested by 
Papadrakakis [1981].  Then dynamic relaxation is nothing else but a critically damped 
dynamic system 

𝐶 = 𝐶cr = 2𝜔min𝑚, (34.13)
with 𝑚 as modal mass.  The problem is finding the dominant eigenvalue in the structure 
related to the “pseudo-dynamic” behavior of the structure.  As the exact estimate would 
be rather costly and not fit into the explicit algorithm, an estimate must be used.  
Papadrakakis suggests 

𝜆𝐷 =
∥𝐝𝑛+1 − 𝐝𝑛∥
∥ 𝐝𝑛 − 𝐝𝑛−1∥

. (34.14)

When this quantity has converged to an almost constant value, the minimum 
eigenvalue of the structure can be estimated: 

𝜔min
2 = −

(𝜆𝐷2 − 𝜆𝐷 ⋅ 𝛽 + 𝛼)
𝜆𝐷 ⋅ 𝛾

, (34.15)

where 

𝛼 =
2 − 𝑐Δ𝑡
2 + 𝑐Δ𝑡

𝛽 = 𝛼 + 1 

𝛾 =
2Δ𝑡2

2 + 𝑐Δ𝑡.

(34.16)

 
 The maximum eigenvalue determines the time step and is already known from 
the model 

𝜔max
2 =

4.0
(Δ𝑡)2. (34.17)

Now the automatic adjustment of the damping parameter closely follows the paper of 
Papadrakakis, checking the current convergence rate compared to the optimal 
convergence rate.  If the ratio is reasonably close, then an update of the iteration 
parameters is performed. 

𝑐 =
4.0
Δ𝑡

√𝜔min
2 ⋅ 𝜔max

2

(𝜔min
2 + 𝜔max

2 )
. (34.18)

As is clearly visible from Equation (34.18) the value of highest frequency has always a 
rather high influence on the damping ratio.  This results in a non-optimal damping 
ratio, if the solution is dominated by the response in a very low frequency compared to 
the highest frequency of the structure.  This is typically the case in shell structures, 
when bending dominates the solution.  It was our observation that the automatic choice 
following Papadrakakis results in very slow convergence for such structures, and this is 
also mentioned by Underwood for similar problems.  The damping ratio should then be 
fully adjusted to the lowest frequency by hand by simply choosing a rather high 
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damping ratio.  An automatic adjustment for such cases is under preparation.  For 
structures with dominant frequencies rather close to the highest frequency, convergence 
is really improved with the automatically adjusted parameter. 
 
 If the automated approach is not used then we apply the damping as 

𝐯𝑛+1
2⁄ = 𝜂𝐯𝑛−1

2⁄ + 𝐚𝑛Δ𝑡, (34.19)

where 𝜂is an input damping factor (defaulted to .995).  The factor, 𝜂, is equivalent to the 
corresponding factor in Equations (31.7- 31.8). 
 
 The relaxation process continues until a convergence criterion based on the 
global kinetic energy is met, i.e., convergence is assumed if 

𝐸ke < CVTOL ⋅ 𝐸𝑘𝑒
max, (34.20)

where CVTOL is the convergence tolerance (defaulted to .001).  The kinetic energy 
excludes any rigid body component.  Initial velocities assigned in the input are stored 
during the relaxation.  Once convergence is attained the velocity field is initialized to 
the input values.  A termination time for the dynamic relaxation phase may be included 
in the input and is recommended since if convergence fails, LS-DYNA will continue to 
execute indefinitely. 
 

34.2  Mass Weighted Damping 

 With mass weighted damping, the Equation (23.2) is modified as: 

𝐚𝑛 = 𝐌−1(𝐏𝑛 − 𝐅𝑛 + 𝐇𝑛 − 𝐅damp
𝑛 ), (34.21)

where 
𝐹damp

𝑛 = 𝐷𝑠𝑚𝑣. (34.22)

 
 As seen from Figure 34.1 and as discussed above the best damping constant for 
the system is usually the critical damping constant:  Therefore,  

𝐷𝑠 = 2𝜔min (34.23)
is recommended. 
 

34.3  Dynamic Relaxation—How Fast Does it Converge? 
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The number of cycles required to reduce the amplitude of the dynamic response by a 
factor of 10 can be approximated by [see Stone, Krieg, and Beisinger 1985]  

ncycle = 1.15
𝜔max
𝜔min

. (34.24)

Structural problems which involve shell and beam elements can have a very large ratio 
and 
consequently very slow convergence.

Figure 34.1.  Displacement versus time curves with a variety of damping
coefficients applied to a one degree-of-freedom oscillator. 
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35    
Heat Transfer 

 LS-DYNA can be used to solve for the steady state or transient temperature field 
on three-dimensional geometries.  Material properties may be temperature dependent 
and either isotropic or orthotropic.  A variety of time and temperature dependent 
boundary conditions can be specified including temperature, flux, convection, and 
radiation.  The implementation of heat conduction into LS-DYNA is based on the work 
of Shapiro [1985]. 
 

35.1  Conduction of Heat in an Orthotropic Solid 

 The differential equations of conduction of heat in a three-dimensional 
continuum is given by 

𝜌𝑐𝑝
∂𝜃
∂𝑡 = (𝑘𝑖𝑗𝜃,𝑗),𝑖

+ 𝑄 (35.1)

subject to the boundary conditions, 𝜃 = 𝜃𝑠 on Γ1, 𝑘𝑖𝑗𝜃,𝑗𝑛𝑖 + 𝛽𝜃 = 𝛾 on Γ2, and initial 
conditions at 𝑡0: 

𝜃Γ = 𝜃0(𝑥𝑖) at  𝑡 = 𝑡0. (35.2)
where 

𝜃 = 𝜃(𝑥𝑖, 𝑡)   temperature 
𝑥𝑖 = 𝑥𝑖(𝑡)   coordinates as a function of time 
𝜌 = 𝜌(𝑥𝑖)   density 

𝑐𝑝 = 𝑐𝑝(𝑥𝑖, 𝜃)   specific heat 
𝑘𝑖𝑗 = 𝑘𝑖𝑗(𝑥𝑖, 𝜃)   specific heat 
𝑄 = 𝑄(𝑥𝑖, 𝜃)   internal heat generation rate per unit volume Ω 
𝜃Γ =  prescribed temperature on Γ1 
𝑛𝑖 = normal vector to  Γ2 

Equations (35.1)-(35.2) represent the strong form of a boundary value problem to be 
solved for the temperature field within the solid. 
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 DYNA3D employs essentially the same theory as TOPAZ [Shapiro 1985] in 
solving Equation (35.1) by the finite element method.  Those interested in a more 
detailed description of the theory are referred to the TOPAZ User’s Manual.  Brick 
elements are integrated with a 2 × 2 × 2 Gauss quadrature rule, with temperature 
dependence of the properties accounted for at the Gauss points.  Time integration is 
performed using a generalized trapezoidal method shown by Hughes to be 
unconditionally stable for nonlinear problems.  Newton’s method is used to satisfy 
equilibrium in nonlinear problems. 
 
 The finite element method provides the following equations for the numerical 
solution of Equations (35.1)-(35.2) 

[
𝐶𝑛+𝛼

Δ𝑡 + 𝛼𝐻𝑛+𝛼] {𝜃𝑛+1 − 𝜃𝑛} = {𝐹𝑛+𝛼 − 𝐻𝑛+𝛼𝜃𝑛} (35.3)

where  

[𝐶] = ∑[𝐶𝑖𝑗
𝑒 ]

𝑒
= ∑ ∫ 𝑁𝑖𝜌𝑐𝑁𝑗𝑑Ω

Ω𝑒𝑒
(35.4)

[𝐻] = ∑[𝐻𝑖𝑗
𝑒 ]

𝑒
= ∑

⎣
⎢⎡ ∫ ∇𝑇𝑁𝑖𝐾∇𝑁𝑗𝑑Ω + ∫ 𝑁𝑖𝛽𝑁𝑗𝑑Γ

Γ𝑒Ω𝑒 ⎦
⎥⎤

𝑒
 (35.5)

[𝐹] = ∑[𝐹𝑖
𝑒]

𝑒
= ∑

⎣
⎢⎡ ∫ 𝑁𝑖𝑞𝑔𝑑Ω + ∫ 𝑁𝑖𝛾𝑑Γ

Γ𝑒Ω𝑒 ⎦
⎥⎤

𝑒
(35.6)

 
 The parameter 𝛼 is taken to be in the interval [0,1].  Some well-known members 
of this 𝛼-family are 

•𝛼 Method 

• 0 forward difference; forward Euler 

• 1⁄2 midpoint rule; Crank-Nicolson 

• 2⁄3 Galerkin 

• 1 backward difference, fully implicit 

 
 

35.2  Thermal Boundary Conditions 

 Boundary conditions are represented by 
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𝑘𝑥
∂𝜃
∂𝑥 𝑛𝑥 + 𝑘𝑦

∂𝜃
∂𝑦 𝑛𝑦 + 𝑘𝑧

∂𝜃
∂𝑧 𝑛𝑧 = 𝛾 − 𝛽𝜃 = 𝑞′′̇. (35.7)

By convention, heat flow is positive in the direction of the surface outward normal 
vector.  Surface definition is in accordance with the right hand rule.  The outward 
normal vector points to the right as one progresses from node N1 to N2 to N3 and 
finally to N4.  See Figure 35.1. 
 
 Boundary conditions can be functions of temperature or time.  More than one 
boundary condition can be specified over the same surface such as in a case of 
combined convection and radiation.  For situations where it is desired to specify 
adiabatic (i.e., 𝑞′′̇ = 0) conditions, such as at an insulated surface or on a line of 
symmetry, no boundary condition need be specified.  This is the default boundary 
condition in LS-DYNA. 
 
 Temperature boundary condition can be specified on any node whether on the 
physical boundary or not. 
 
 Flux, convection, and radiation boundary conditions are specified on element 
surface segments defined by 3 (triangular surface) or 4 nodes (quadrilateral surface).  
These boundary conditions can be specified on any finite element surface whether on 
the physical boundary or not.  

• Flux:  Set 𝑞′′̇ = 𝑞𝑓 , where 𝑞𝑓  is defined at the node points comprising the flux 
boundary condition surface.  

• Convection: A convection boundary condition is calculated using 𝑞′′̇ = ℎ(𝑇 −
𝑇∞), where ℎ is heat transfer coefficient, (𝑇 − 𝑇∞) is temperature potential.  LS-
DYNA evaluates ℎ at the film temperature 

N1

N2

N3

N4

 Figure 35.1.  Definition of the outward normal vector 
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𝑇 =
1
2 (𝑇surf + 𝑇∞) (35.8)

• Radiation:  A radiation boundary condition is calculated using 𝑞′′̇ = ℎ 𝑟(𝑇4 −
𝑇∞4 ), where ℎ 𝑟 = 𝜎𝜀𝐹 is a radiant-heat-transfer coefficient.  

 

35.3  Thermal Energy Balances 

 Various energy terms are printed and written into the plot file for post 
processing using the code LS-PREPOST.  The energy terms are: 
 
 • change in material internal energy for time step, 
 • change in material internal energy from initial time, 
 • heat transfer rates on boundary condition surfaces, 
 • heat transfer rates on enclosure radiation surfaces, 
 • 𝑥, 𝑦, and 𝑧 fluxes at all nodes. 
 

35.4  Heat Generation 

 Volumetric heat generation rates may be specified by element, by material, or 
both (in which case the effect is additive).  Volumetric heat generation rates can be a 
function of time or temperature. 
 

35.5  Initial Conditions 

 Initial temperature conditions can be specified on the nodal data input cards or 
on the nodal temperature initial condition cards.  If no temperatures are specified, the 
default is 0.  For nonlinear steady state problems the temperature initial condition 
serves as a first guess for the equilibrium iterations. 
 

35.6  Material Properties 

 Heat capacity and thermal conductivity may be functions of temperature.  Since 
the density and heat capacity appear only as a product in the governing equations, the 
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temperature dependence of the density may be included in the temperature 
dependence of the heat capacity.  Material properties are evaluated at the element 
Gauss point temperature or average element temperature. 
 
 The thermal conductivity may be either isotropic or orthotropic.  For an 
orthotropic material, the three material axes (𝑥′1, 𝑥′2, 𝑥′3) are orthogonal and the 
thermal conductivity tensor 𝐊 is diagonal. 
 
 The thermal conductivity tensor 𝐊 in the global coordinate system is related by 

𝐾𝑖𝑗 = 𝐾′𝑖𝑗𝛽𝑚𝑖𝛽𝑛𝑗, (35.9)

where 

𝛽𝑖𝑗 = cos(𝑥′𝑖, 𝑥𝑗). (35.10)

 

35.7  Nonlinear Analysis 

 In a nonlinear problem, 𝐶, 𝐻, and 𝐹 are functions of temperature. Newton’s 
method is used to transform equation 32.4 into an alternate form which contains 
temperature derivatives of 𝐶, 𝐻, and 𝐹 (i.e., the tangent matrix).  Iterations are required 
to solve this alternate form. 
 
 In a steady state nonlinear problem, an initial guess should be made of the final 
temperature distribution and included in the input file as an initial condition.  If your 
guess is good, a considerable savings in computation time is achieved. 
 

35.8  Units 

 Any consistent set of units with the governing equation may be used.  Examples 
are: 
 

Quantity Units 
temperature K C F 
space m cm ft 
time s s hr 
density kg/m3 g/cm3 Lbm/ft3 
heat capacity J/kg k cal/g c Btu/LbmF 
thermal conductivity W/m K cal/s cm C Btu/hr ft F 
thermal generation W/M3 cal/s cm3 Btu/hr ft3 
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heat flux W/m2 cal/s cm2 Btu/hr ft2 
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 LS-DYNA includes an h-adaptive method for the shell elements.  In an 
h-adaptive method, the elements are subdivided into smaller elements wherever an 
error indicator shows that subdivision of the elements will provide improved accuracy.  
An example of an adaptive calculation on a thin wall square cross section beam is 
shown in Figure 36.1.  In Figures 36.2 through 36.4 a simple metal stamping simulation 
is shown [also see Galbraith, Finn, et.  al., 1991].  In the following, the methodologies 
used in the h-adaptive method in LS-DYNA are described.  The objective of the 
adaptive process used in LS-DYNA is to obtain the greatest accuracy for a given set of 
computational resources.  The user sets the initial mesh and the maximum level of 
adaptivity, and the program subdivides those elements in which the error indicator is 
the largest.  Although this does not provide control on the error of the solution, it makes 
it possible to obtain a solution of comparable accuracy with fewer elements, and, hence, 
less computational resources, than with a fixed mesh. 
 
 LS-DYNA uses an h-adaptive process, where parts of the mesh are selectively 
refined during the course of the solution procedure.  The methodology used is based on 
Belytschko, Wong, and Plaskacz [1989].  In the former, elements were also fused or 
combined when it was felt that they were no longer needed.  It was found that the 
implementation of fusing procedures for general meshes, such as occur in typical 
applications of commercial programs, is too complex, so only fission is included.  
Adaptivity in LS-DYNA can be restricted to specific groups of shell elements.  Elements 
that fall in this group are said to be in the active adaptivity domain. 
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 Figure 36.1.  One level adaptive calculation on a square cross section beam. 

 Figure 36.2.  Aluminum blank with 400 shells in blank and four rigid tools. 
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 In the h-adaptive process, elements are subdivided into smaller elements where 
more accuracy is needed; this process is called fission.  The elements involved in the 
fission process are subdivided into elements with sides ℎ/2, where ℎ is the characteristic 
size of the original elements.  This is illustrated in Figure 36.5 for a quadrilateral 
element.  In fission, each quadrilateral is subdivided into four quadrilaterals (as 
indicated in Figure 36.2) by using the mid-points of the sides and the centroid of the 
element to generate four new quadrilaterals.  
 
 

 Figure 36.3.  Adaptive calculations using two adaptive levels. 

 Figure 36.4.  Final shape of formed part with 4315 shell elements per quarter.
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 The fission process for a triangular element is shown in Figure 36.6 where the 
element is subdivided into four triangles by using the mid-points of the three sides.  
The adaptive process can consist of several levels of fission.  Figure 36.5 shows one 
subdivision, which is called the second refinement level.  In subsequent steps, the 
fissioned elements can again be fissioned in a third refinement level, and these elements 
can again, in turn, be fissioned in a fourth level, as shown in Figure 36.7.  The levels of 
adaptivity that occur in a mesh are restricted by three rules: 

• The number of levels is restricted by the maximum level of adaptivity that is 
allowed in the mesh, which is generally set at 3 or 4.  At the fourth level up to 64 
elements will be generated for each element in the initial mesh. 

• The levels of adaptivity implemented in a mesh must be such that the levels of 
adaptivity implemented in adjacent elements differ by, at most, one level. 

• The total number of elements can be restricted by available memory.  Once the 
specified memory usage is reached, adaptivity ceases. 

 
 The second rule is used to enforce a 2-to-1 rule given by Oden, Devloo and 
Strouboulis [1986], which restricts the number of elements along the side of any element 
in the mesh to two.  The enforcement of this rule is necessary to accommodate 
limitations in the data structure.   
 
 The original mesh provided by the user is known as the parent mesh, the 
elements of this mesh are called the parent elements, and the nodes are called parent 

nodes.  Any elements that are generated by the adaptive process are called descendant 

 Figure 36.5.  Fissioning of a Quadrilateral Element 

 Figure 36.6.  Fissioning of a Triangular Element 
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elements, and any nodes that are generated by the adaptive process are called 
descendant nodes.  Elements generated by the second level of adaptivity are called first-
generation elements, those generated by third level of adaptivity are called second-
generation elements, etc. 
 
 The coordinates of the descendant nodes are generated by using linear 
interpolation.  Thus, the coordinates of any node generated during fission of an element 
are given by 

𝑥𝑁 =
1
2 (𝑥𝐼 + 𝑥𝐽), (36.1)

where 𝑥𝑁 is the position of the generated node and 𝑥𝐼 and 𝑥𝐽 are the nodes along the 
side on which 𝑥𝑁 was generated for a typical element as shown in Fig. 33.1.  The 
coordinate of the mid-point node, which is generated by fission of a quadrilateral 
element, is given by 

𝑥𝑀 =
1
4 (𝑥𝐼 + 𝑥𝐽 + 𝑥𝐾 + 𝑥𝐿), (36.2)

where 𝑥𝑀 is the new midpoint node of the fissioned quadrilateral and 𝑥𝐼, 𝑥𝐽, 𝑥𝐾 and 𝑥𝐿 
are the nodes of the original quadrilateral.  The velocities of the nodes are also given by 
linear interpolation.  The velocities of edge nodes are given by  

𝑣𝑁 =
1
2 (𝑣𝐼 + 𝑣𝐽), (36.3)

and the angular velocities are given by 

𝜔𝑁 =
1
2 (𝜔𝐼 + 𝜔𝐽). (36.4)

The velocities of a mid-point node of a fissioned quadrilateral element are given by 

𝑣𝑀 =
1
4 (𝑣𝐼 + 𝑣𝐽 + 𝑣𝐾 + 𝑣𝐿), (36.5)

𝜔𝑀 =
1
4 (𝜔𝐼 + 𝜔𝐽 + 𝜔𝐾 + 𝜔𝐿). (36.6)

 

 Figure 36.7.  Quadrilateral Element Fissioned to the fourth level 
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 The stresses in the descendant element are obtained from the parent element by 
setting the stresses in the descendant elements equal to the stresses in the parent 
element at the corresponding through-the-thickness quadrature points. 
 
 In subsequent steps, nodes which are not corner nodes of an all attached 
elements are treated as slave nodes.  They are handled by the simple constraint 
equation. 
 
 Refinement indicators are used to decide the locations of mesh refinement.  One 
deformation based approach checks for a change in angles between contiguous 
elements as shown in Figure 36.8.  If  𝜁 > 𝜁tol then refinement is indicated, where 𝜁tol is 
user defined.  
 

undeformed deformed

out-of-plane

 Figure 36.8.  Refinement indicator based on angle change. 
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 After the mesh refinement is determined, we can refine the mesh and continue 
the calculation or back up to an earlier time and repeat part of the calculation with the 
new mesh.  For accuracy and stability reasons the latter method is generally preferred; 
however, the former method is preferred for speed.  Whether LS-DYNA backs up and 
repeats the calculation or continues after remeshing is determined by an input 
parameter, ADPASS.  This is illustrated in Figure 36.9.

Figure 36.9.  The input parameter, ADPASS, controls whether LS-DYNA
backs up and repeats the calculation after adaptive refinement. 
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37    
Implicit 

37.1  Introduction 

Implicit solvers are properly applied to static, quasi-static, and dynamic problems with 
a low frequency content.  Such applications include but are not limited to 

• Static and quasi-static structural design and analysis 

• Metal forming, especially, the binderwrap and springback 

• Gravitational loading of automotive structures 

• Linear buckling and vibration analysis 

An advantage of the implicit solver on explicit integration is that the number of load or 
time steps is typically 100 to 10000 times fewer.  The major disadvantage is that the cost 
per step is unknown since the speed depends mostly on the convergence behavior of 
the equilibrium iterations which can vary widely from problem to problem.   
 
An incremental-iterative numerical algorithm is implemented in LS-DYNA.  The 
method is stable for wide range of nonlinear problems that involve finite strain and 
arbitrarily large rotations.  Accuracy consideration usually limits the load increment or 
time step size.  An inaccurate solution will often not converge.  Nine iterative schemes 
are available including the full Newton method and eight quasi-Newton methods.  
These are: 

• Full Newton, 

• BFGS (default), 

• Broyden, 

• Davidon-Fletcher-Powell (DFP) [Schweizerhof 1986], 

• Davidon symmetric, [Schweizerhof 1986], 

• modified constant arc length with BFGS, 
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• modified constant arc length with Broyden’s, 

• modified constant arc length with DFP, 

• modified constant arc length with Davidon. 

A line search is combined with each of these schemes along with automatic stiffness 
reformations, as needed, to avoid non-convergence.  LS-DYNA defaults to the BFGS 
quasi-Newton method which is the most robust although the other methods are 
sometimes superior.  Generally, the quasi-Newton methods require fewer iterations 
than the modified Newton method since they exhibit superlinear local convergence due 
to the rank one or rank two updates of the stiffness matrix as the iterations proceed.  In 
this chapter, important aspects of the static and dynamic algorithm are explained, 
hopefully, in a way that will be understandable to all users.  The arc length methods are 
generally used in solving snap through buckling problems and details on one specific 
implementation is taken up in the next chapter. 

37.2  Equations 

37.2.1  Discretization 

Neglecting constraints, discretization formally leads to the matrix equations of motion 
𝑹 = 𝑴𝒙̈ + 𝑭𝑖 − 𝑭𝑒 = 𝟎 (37.1)

where 
𝒙̈ = acceleration vector of length 𝑛 

𝑴 = 𝑛 × 𝑛 mass matrix 
𝑭𝑒 = body force and external load vector of length 𝑛 

𝑭𝑖 = internal force vector of length 𝑛. 

It is implicitly assumed that the involved vectors 𝑭𝑖 and 𝑭𝑒 depend on6 

𝒙,̇ 𝒙 =  velocity and coordinate vectors of length 𝑛 
𝑡 = simulation time 

as well as on some history of the deformation, while 𝑴 is constant.  In practice, the only 
independent variable is 𝒙 since the velocity 𝒙 ̇and acceleration 𝒙 ̈are typically expressed 
in terms of this coordinate vector by the time integration scheme used, and 𝑡 is given.  
Deformation history is typically accounted for in internal variables associated with 
features in the model, such as plastic strains in materials and frictional sliding in 
contacts. 
                                                 
6 This is true prior to time discretization, vectors ࡲ௜ and ࡲ௘ depend on ࢞ and on ࢞ሶ  only through the exact 
time differentiation. Once time discretization is done according to some scheme, the dependence is on ࢞ 
and not necessarily on the discretized ࢞ሶ  but rather ∆ݐ∆/࢞, see Section 1.4.1. 
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A diagonal lumped mass matrix is obtained by row summing according to  

𝑀𝑖𝑖 = ∫ 𝜌𝜙𝑖 ∑ 𝜙𝑗𝑗
𝑑𝑉

𝑉
= ∫ 𝜌𝜙𝑖𝑑𝑉
𝑉

(37.2)

where 𝜌 is material density and 𝑉 denotes the body over which integration occurs. 
 
The primary nonlinearities, which are due to geometric effects and inelastic material 
behavior, are accounted for in 𝑭𝑖, 

𝑭𝑖 = ∫𝑩𝑇𝝈𝑑𝑉
𝑉

, (37.3)

where 𝑩 is the strain-displacement matrix and 𝝈 is the stress. 
 
Additional nonlinearities arise in 𝑭𝑒 due to geometry dependent applied loads, such as 
contacts and loads on segments. 
 
Explicit integration trivially satisfies (37.1) since the calculation of the acceleration 
guarantees equilibrium, i.e., from time step 𝑗 to 𝑗 + 1 we use 

𝒙𝑗̈ = 𝑴 −1[𝑭𝑒
𝑗 − 𝑭𝑖

𝑗]. (37.4)

The explicit update of the velocities and coordinates is given by 

𝒙 ̇𝑗+1/2 = 𝒙̇ 𝑗−1/2 + 𝛥𝑡𝑗𝒙𝑗̈, (37.5)

𝒙𝑗+1 = 𝒙𝑗 + 𝛥𝑡𝑗+1/2𝒙𝑗̇+1/2. (37.6)

Stability places a limit on the time size.  This step size may be very small and, 
consequently, a large number of steps may be required.  Implicit analysis employs 
schemes that are unconditionally stable, thus allowing for larger steps at the cost of a 
more expensive update of the geometry. 
 

37.2.2  Constraints 

Constraints is obviously an important ingredient in nonlinear finite elements, and may 
include for instance simple point or motion constraints, slave nodes constrained to rigid 
bodies, joints and tied contacts.  Constraints are divided into two categories, those that 
are directly eliminated (first kind) and those that are treated with Lagrangian 
multipliers 𝝀 (second kind).  The principle behind (37.1) is that of virtual work, stating 
that 

𝛿𝒙𝑇(𝑹 + 𝑪𝜆𝑇𝝀) = 0 (37.7)

for any admissible virtual displacement field 𝛿𝒙. Admissible displacement fields are 
those that satisfy the first kind of constraints.  The second kind is instead treated by the 
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second term inside the parenthesis, for which we require satisfaction of 𝑚𝜆 additional 
constraints 
 

𝑯𝜆(𝒙, 𝑡) = 𝟎 (37.8)
 
and 
 

𝑪𝜆 =
𝜕𝑯𝜆
𝜕𝒙 . (37.9)

If there are no constraint of the first kind, any displacement field is admissible and 
hence 𝑹 + 𝑪𝜆𝑇𝝀 = 𝟎. The presence of first kind constraints put restrictions on 𝛿𝒙 and the 
following is an attempt to derive the proper nonlinear equations in this context. 
 
Constraints of the first kind augment the 𝑛 equations of motion by imposing 𝑚 
additional equations 

𝑯(𝒙, 𝑡) = 𝟎, (37.10)
and consequently (37.1) is to be reduced to 𝑛 − 𝑚 equations.  To this end, we introduce 
the 𝑚 × 𝑛 constraint matrix 

𝑪 =
𝜕𝑯
𝜕𝒙 , (37.11)

and conveniently partition the global vector 𝒙 into an independent (solution) part 𝒙𝐼 of 
length 𝑛 − 𝑚 and dependent part 𝒙𝐷 of length 𝑚. This partitioning is represented by 
projection matrices 𝑷𝐼 and 𝑷𝐷 such that 

𝒙𝐼 = 𝑷𝐼𝒙, 𝒙𝐷 = 𝑷𝐷𝒙 (37.12)
and 

𝒙 = 𝑷𝐼
𝑇𝒙𝐼 + 𝑷𝐷𝑇𝒙𝐷, (37.13)

and the space of admissible virtual displacements is that of any 𝛿𝒙𝐼. The criterion for a 
valid partitioning is that the 𝑚 × 𝑚 matrix given by 

𝑪𝐷 = 𝑪𝑷𝐷𝑇 , (37.14)

is non-singular, which is always possible unless there are conflicting or redundant 
constraints.  The Linear Constraint PACKage (LCPACK) in LS-DYNA performs this 
partitioning and invalid constraints will result in error termination.  Introducing the 𝑚 ×
(𝑛 − 𝑚) matrix 

𝑪𝐼 = 𝑪𝑷𝐼
𝑇 (37.15)

we can combine the variations of (37.10) and (37.13) and use (37.14) and (37.15) to obtain 

𝛿𝒙 = 𝑷𝑇𝛿𝒙𝐼, (37.16)

where 
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𝑷 = 𝑷𝐼 − 𝑪𝐼
𝑇𝑪𝐷−𝑇𝑷𝐷 (37.17)

is a projection-like matrix from the global variable space to the independent solution 
space.  Using this expression for 𝛿𝒙 in the principle of virtual work (37.7), the 
arbitrariness of 𝛿𝒙𝐼 results in  

𝑸 = 𝟎, (37.18)
with 

𝑸 = 𝑷(𝑹 + 𝑪𝜆𝑇𝝀). (37.19)

This can be interpreted as to solve for zero force in the direction of deformation that is 
not constrained, in other directions the constraints induce reaction forces that are 
typically monitored in the LS-DYNA ascii and binout databases associated with the 
constraint type.  The reaction forces corresponding to those constraints of the second 
kind is contained in 𝝀. 

37.2.3  Reaction forces due to constraints 

Alternatively, we may form the lagrangian ℒ  for the entire system as 
 

ℒ(𝒙, 𝝀, 𝑡) = ℇ(𝒙, 𝑡) + 𝝀𝑇𝑯(𝒙, 𝑡) (37.20)
 
where ℇ is an assumed potential for the residual force 𝑹. It is important to stress that the 
potential may not exist in general, this requires that the system is conservative in the 
sense of e.g. hyperelasticity.  But it serves the purpose here for deriving the Lagrangian 
multiplier 𝝀 and subsequently the reaction forces due to the constraints 𝑯 . The Karush-
Kuhn-Tucker conditions for equilibrium is now (omitting arguments) 
 

𝑹 + 𝑪𝑇𝝀 = 𝟎
𝑯 = 𝟎

 (37.21)
 
where 𝝀 is a vector of length 𝑚 to be interpreted as the resisting force needed to 
maintain the constraints.  Continuing, we split 𝑹 and 𝑪 into their respective 
independent and dependent parts, leading to a rewrite of the first of (37.21) 
 

𝑹𝐼 + 𝑪𝐼
𝑇𝝀 = 𝟎

𝑹𝐷 + 𝑪𝐷𝑇𝝀 = 𝟎
 (37.22)

 
from which the Lagrangian multipliers can be solved from the second of (37.22) as 
 

𝝀 = −𝑪𝐷−𝑇𝑹𝐷. (37.23)
 
This is the (generalized) force needed to enforce the second of (37.21). To obtain the 
corresponding nodal (reaction) force vector associated with a single constraint 𝑗 ∈ [1, 𝑚] 
we form 
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𝒓𝑗 = 𝜆𝑗𝒄𝑗 (37.24)
 
where 𝒄𝑗 is the 𝑗:th row in the constraint matrix 𝑪, and 𝜆𝑗 is the corresponding 
component of 𝝀. These are the equations that form the basis for the detailed database 
outputs, such as bndout in the case of prescribed motion. 

37.3  Implicit Statics 

37.3.1  Linearization 

For the implicit static solution 𝑴 = 𝟎 in (37.1) and the residual and constraint vector at a 
given time 𝑡 becomes an implicit function of 𝒙 only.  We seek the vector 𝒙 and multiplier 
𝝀 such that (37.8) and (37.10) holds together with 

𝑸(𝒙, 𝝀) = 𝟎. (37.25)

Assume an approximation 𝒙𝑘 to 𝒙 and 𝝀𝑘 to 𝝀 for 𝑘 = 1, 2, 3...etc.  In the neighborhood of 
𝒙𝑘 and 𝝀𝑘 we use a linear approximation to (37.10) and (37.25) given by 

𝑲(𝒙𝑘)𝛥𝒙𝐼
𝑘 + 𝑷𝑪𝜆𝑇𝛥𝝀𝑘 = 𝑭(𝒙𝑘, 𝝀𝑘), (37.26)

and iterate for the solution 

𝒙𝐼
𝑘+1 = 𝒙𝐼

𝑘 + 𝑠𝛥𝒙𝐼
𝑘, 𝝀𝑘+1 = 𝝀𝑘 + 𝑠𝛥𝝀𝑘 (37.27)

Here 𝑠 is a convenient step size to be discussed below, as will be the update of the 
dependent part 𝒙𝐷𝑘+1. The linear system (37.26) is derived using the assumption that 𝑷 is 
independent of 𝒙, which is generally not true.  Many constraints in LS-DYNA are 
nonlinear and a strict linearization would have to take the second variation of 
constraints into account.  But this would be inherently complex, thus linearizing (37.25) 
using (37.19) just becomes 

𝑸(𝒙𝑘+1, 𝝀𝑘+1) ≈ 𝑸(𝒙𝑘, 𝝀𝑘) + 𝑷
𝜕𝑹
𝜕𝒙 (𝒙𝑘)∆𝒙𝑘 + 𝑷𝑪𝜆𝑇𝛥𝝀𝑘 = 𝟎. (37.28)

To be able to solve for ∆𝒙𝑘 and Δ𝝀𝑘 this needs first to be combined with a linearized 
equation of the constraint (37.10) 

𝑯(𝒙𝑘+1) ≈ 𝑯(𝒙𝑘) + 𝑪(𝒙𝑘)∆𝒙𝑘 = 𝟎, (37.29)

and an incremental correspondent to (37.13) 

∆𝒙𝑘 = 𝑷𝐼
𝑇∆𝒙𝐼

𝑘 + 𝑷𝐷𝑇∆𝒙𝐷𝑘 . (37.30)

These last two equations together with (37.14) and (37.15) can be used to yield an 
expression for the dependent part of the displacement increment 

∆𝒙𝐷𝑘 = −𝑪𝐷−1(𝒙𝑘)[𝑯(𝒙𝑘) + 𝑪𝐼(𝒙𝑘)∆𝒙𝐼
𝑘]. (37.31)

Using (19.22) in (37.30) in (37.28) results in expressions of the vector 𝑭 and jacobian 𝑲 in 
(37.26) as 
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𝑭(𝒙𝑘, 𝝀𝑘) = −𝑸(𝒙𝑘, 𝝀𝑘) + 𝑷
𝜕𝑹
𝜕𝒙 (𝒙𝑘)𝑷𝐷𝑇𝑪𝐷−1(𝒙𝑘)𝑯(𝒙𝑘) (37.32)

and 

𝑲(𝒙𝑘) = 𝑷
𝜕𝑹
𝜕𝒙 (𝒙𝑘)𝑷𝑇. (37.33)

The dependent part of the solution vector is in general analogous to (37.27) of the 
indendent part 

𝒙𝐷𝑘+1 = 𝒙𝐷𝑘 + 𝑠∆𝒙𝐷𝑘 (37.34)

except for those constraint equations where there is an explicit expression 𝒙𝐷 = 𝒙𝐷(𝒙𝐼), 
then of course 

𝒙𝐷𝑘+1 = 𝒙𝐷(𝒙𝐼
𝑘+1). (37.35)

The constraint vector corresponding to those of the second kind needs also to be 
linearized,  
 

𝑯𝜆(𝒙𝑘+1) ≈ 𝑯𝜆(𝒙𝑘) + 𝑪𝜆(𝒙𝑘)∆𝒙𝑘 = 𝟎, (37.36)

 
and repeating the same procedure as above, we are lead to 
 

𝑪𝜆(𝒙𝑘)𝑷𝑇∆𝒙𝐼
𝑘 = 𝑮(𝒙𝑘) (37.37)

 
with 
 

𝑮(𝒙) = −𝑯𝜆(𝒙) + 𝑪𝜆(𝒙)𝑷𝐷𝑇𝑪𝐷−1(𝒙)𝑯(𝒙), (37.38)

 
which completes the linearization.  In sum, the Newton step thus means solving the 
combined system (37.26) and (37.37) for ∆𝒙𝑘 and ∆𝝀𝑘 and update the solution using 
(37.27). For simplicity, we will hereforth assume 𝑚𝜆 = 0, i.e., all constraints are of the 
first kind, to simplify the exposition. 
 
The jacobian matrix 𝑲 is the assembly of the tangent moduli of materials, external loads, 
contacts, etc., and is in practice only an approximation due to the complexity of taking 
all dependencies into account.  In particular it does not include the geometric stiffness 
contribution from internal forces by default, see IGS on CON-
TROL_IMPLICIT_GENERAL. A speculative reason is that this has a smoothing effect 
and eliminates negative eigenvalues due to compressive stresses.  If the deformation 
mode is known to be mainly in tension or if the material is hyper-elastic, including the 
geometric stiffness could improve convergence however.  Often the stiffness matrix is 
assumed symmetric and positive definite, but is not limited to those characteristics.  
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Note also that (37.32) indicates that both 𝑸 and 𝑯  must vanish to render a zero 𝑭, thus a 
zero displacement increment ∆𝒙 in the iterative scheme. 

 

37.3.2  Linear theory 

For a linear solution, (37.26) is solved once to obtain the linear displacement vector 𝒖 =
∆𝒙, and often the following assumptions apply.  The configuration 𝒙 to which the linear 
approximation apply is stress free and all constraints are fulfilled, so the right hand side 
𝑭 in (37.32) is essentially the external applied load 𝑭𝑒, 𝑭 = 𝑷𝑭𝑒, which is constant.  
Furthermore, 𝑷 is constant due to trivial constraints and the stiffness matrix 𝑲 in (37.33) 
thus evaluates from the linearization of internal forces 

𝑲 = 𝑷 ∫𝑩𝑇𝑬𝑩𝑑𝑉
𝑉

𝑷𝑇, (37.39)

where we used 𝑬 = 𝜕𝝈
𝜕𝜺  to denote the constitutive matrix.  So in more conventional 

terms, the linear equation is written 
𝑲𝒖 = 𝑭. (37.40)

Once solved, the stress 
𝝈 = 𝑬𝑩𝒖 (37.41)

can be evaluated from the constitutive law for the resulting deformation.  The stiffness 
matrix 𝑲 in (37.40) is symmetric and positive definite if 𝑬 is and 𝑷 eliminates all rigid 
body modes, whence the solution 𝒖 is unique.  Furthermore, linearity implies that 
substituting the right hand side for 𝑭𝜆 = 𝜆𝑭, the solution changes to 𝒖𝜆 = 𝜆𝒖 and the 
resulting stress changes to 

𝝈𝜆 = 𝜆𝝈. (37.42)
A linear solution is obtained by putting NSOLVR = 1 on CON-
TROL_IMPLICIT_SOLUTION. 

Figure 3735-1 Linear axial buckling of an aluminium beverage can. 



LS-DYNA Theory Manual Implicit 

LS-DYNA DEV 06/21/18 (r:10113) 35-9 (Implicit) 

 
Now go back to the nonlinear static equation and scale a constant external load 𝑭𝑒 with 𝜆  

𝑷[𝑭𝑖 − 𝜆𝑭𝑒] = 𝟎 (37.43)
and assume an updated configuration 𝒙𝜆 with resulting stress 𝝈𝜆 to be the solution.  To 
see how the solution changes with 𝜆 we can perturb (37.43) to obtain 

𝑷 [
𝜕𝑭𝑖
𝜕𝒙 𝑷

𝑇𝛿𝒙𝜆 − 𝛿𝜆𝑭𝑒] = 𝟎 (37.44)

where we applied (37.16). This is conveniently rewritten as 
𝑲𝜆𝛿𝒙𝜆 = 𝛿𝜆𝑭, (37.45)

where the presence of stress will change the evaluation of the stiffness matrix from that 
in (37.39) to 

𝑲𝜆 = 𝑲 + 𝑷 ∫𝓑𝑇𝝈𝜆𝓑𝑑𝑉
𝑉

𝑷𝑇. (37.46)

Here the second term is the geometric contribution to the tangent stiffness matrix where 
𝓑  is a matrix consisting of shape function derivatives for the finite element.  We are 
interested in the question of uniqueness of 𝛿𝒙𝜆 as the solution to (37.45), and this 
uniqueness is lost when 

det(𝑲𝜆) = 0. (37.47)
If one assumes that deformations are small enough to keep 𝑉,𝑩, 𝑬 and 𝓑  independent 
of 𝜆, and that (37.42) holds with (37.41) and (37.40), then (37.47) can be stated as the 
following eigenvalue problem 

𝑲𝛿𝒖 = −𝜆𝑲𝜎𝛿𝒖 (37.48)
with the geometric (nonlinear) stiffness matrix given by 

𝑲𝜎 = 𝑷 ∫𝓑𝑇𝝈𝓑𝑑𝑉
𝑉

𝑷𝑇 (37.49)

and 𝑲 is the material (linear) stiffness matrix again given by (37.39). This is the theory 
behind linear buckling, see CONTROL_IMPLICIT_BUCKLE, with 𝜆 being the buckling 
load parameter and 𝛿𝒖 the associated buckling mode.  Usually solutions with 𝜆 > 0 are 
of interest, and from (37.48) and (37.49) it then follows that the principal stresses cannot 
be positive throughout the domain of integration.  In other words, the model must 
somehow be in a compressed state.  The full procedure is  

1.Assemble 𝑲 by (37.39). 
2.Solve (37.40) for a constant reference load 𝑭. 
3.Evaluate resulting stress 𝝈 by (37.41). 
4.Assemble 𝑲𝜎  by (37.49). 
5.Solve (37.48) for 𝜆 and 𝛿𝒖. 

 
An example of linear buckling is shown in Figure 3735-1, simulating the stepping on an 
aluminium beverage can. 
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37.3.3  Quasi-Newton iterations 

Now back to the nonlinear theory.  To obtain the solution at load increment 𝑗 + 1 given 
the solution at load increment 𝑗, linearized equations of the form 

𝑲𝑘𝛥𝒙𝑘 = 𝑭𝑘, (37.50)
are assembled and solved where 𝑘 is the iteration number and 

𝑲𝑘 = Tangent stiffness matrix 
Δ𝒙𝑘 = Desired increment in displacements 
𝑭𝑘 = Residual load vector. 

This should be seen a generalization of (37.26) in the sense that the tangent stiffness 
matrix 𝑲 need not be calculated as (37.33) but can be based on other approximations to 
be presented.  We do however assume, without loss of generality, that (37.50) is in the 
independent system of variables so the residual vector 𝑭 is given by (37.32). We here 
just substitute the sub-index 𝐼 in the incremental displacement ∆𝒙 for the iteration 
counter 𝑘 to simplify the notation in the following.  The coordinate vector is updated 

𝒙𝑘+1 = 𝒙𝑘 + sΔ𝒙𝑘, (37.51)
where 𝑠 is a parameter between 0 and 1 found from a line search. 
 
If the tangent stiffness matrix is calculated as (37.33) for each 𝑘 then this is termed a full 
Newton method, but it may be beneficial to use so called quasi-Newton updates of 𝑲−1 to 
avoid the cost of solving a linear system of equations in each iteration. Four such 
methods for updating the stiffness matrix are available 

• Broyden’s first method 

𝐹2 

𝐹1 

𝐹0𝐹 

𝑥
𝑥0𝑥1 𝑥2 

𝐹2

𝐹1 

𝐹0 𝐹

𝑥
𝑥0 𝑥1 𝑥2 

 

Figure 3735-2 Full Newton (left) compared to quasi-Newton secant updates 
(right), the linear approximation to obtain 𝑥2 is for full Newton the exact 
tangent in (𝑥1, 𝐹1) while it is the linear extension between the points (𝑥0, 𝐹0)
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• Davidon 

• DFP 

• BFGS 

and these involve rank 1 or rank 2 stiffness updates.  Quasi-Newton methods are less 
expensive than the full Newton method but often still result in robust program.  In one 
dimension, quasi-Newton corresponds to secant iterations and this method compared 
to full Newton is illustrated in Figure 3735-2.  Henceforth we assume that 𝑲0 represents 
the last assembled matrix according to (37.33) and then 𝑲𝑘, 𝑘 = 1,2,3,… are quasi-
Newton updates to be given in the following. 
 
The secant matrices 𝑲𝑘 are found via the quasi-Newton equations 

𝑲𝑘Δ𝒙𝑘−1 = Δ𝑭𝑘, (37.52)
where 

Δ𝑭𝑘 = 𝑭𝑘−1 − 𝑭𝑘. (37.53)
Two classes of matrix updates that satisfy the quasi-Newton equations are of interest; 
rank 1 updates 

𝑲𝑘 = 𝑲𝑘−1 + 𝛼𝒛𝒚𝑇, (37.54)

and rank 2 updates 

𝑲𝑘 = 𝑲𝑘−1 + 𝛼𝒛𝒚𝑇 + 𝛽𝒗𝒖𝑇. (37.55)

Substituting (37.54) into (37.52) gives 

𝑲𝑘−1𝛥𝒙𝑘−1 + 𝛼𝒛𝒚𝑇𝛥𝒙𝑘−1 = 𝛥𝑭𝑘. (37.56)

By choosing 𝛼 = 1
𝒚𝑇𝛥𝒙𝑘−1

  and 𝒛 = −𝑭𝑘, equation (37.52) is satisfied.  Note that 𝒚 is an 
arbitrary vector but is restricted such that 

𝒚𝑇𝛥𝒙𝑘−1 ≠ 0. (37.57)

The tangent stiffness update is 

𝑲𝑘 = 𝑲𝑘−1 −
𝑭𝑘𝒚𝑇

𝒚𝑇𝛥𝒙𝑘−1
, (37.58)

resulting generally in non-symmetric secant matrices.  The inverse forms are found by 
the Sherman-Morrison formula 

(𝑨 + 𝒂𝒃𝑇)−1 = 𝑨−1 −
𝑨−1𝒂 𝒃𝑇𝑨−1

1 + 𝒃𝑇𝑨−1𝒂
. (37.59)

where 𝑨 is a nonsingular matrix and 𝒂 and 𝒃 are arbitrary vectors such that 1 +
𝒃𝑇𝑨−1𝒂 ≠ 0.  The inverse form for (37.58) can be found by letting 

𝑨 = 𝑲𝑘−1, 𝒂 =
−𝑭𝑘

𝒚𝑇𝛥𝒙𝑘−1
, 𝒃 = 𝒚, (37.60)
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in the Sherman-Morrison formula.  Therefore, 

𝑲𝑘
−1 =

⎣
⎢⎡𝑰 +

[𝑲𝑘−1
−1 𝑭𝑘]𝒚𝑇

𝒚𝑇𝛥𝑭𝑘 ⎦
⎥⎤𝑲𝑘−1

−1 . (37.61)

Broyden´s method use 𝒚 = ∆𝒙𝑘−1 resulting in non-symmetric stiffness updates, and an 
algorithm for this exploits that 

𝑲𝑘
−1 = [𝑰 +

𝒅𝑘∆𝒙𝑘−1
𝑇

 𝛾𝑘
] [𝑰 +

𝒅𝑘−1∆𝒙𝑘−2
𝑇

𝛾𝑘−1
]…[𝑰 +

𝒅1∆𝒙0
𝑇

𝛾1
]𝑲0

−1 (37.62)

where 
𝒅𝑘 = 𝑲𝑘−1

−1 𝑭𝑘, 𝛾𝑘 = ∆𝒙𝑘−1
𝑇 ∆𝑭𝑘. (37.63)

To illustrate the efficiency of a quasi-Newton method we outline the steps to obtain ∆𝒙𝑘. 
1.Assume ∆𝒙0, 𝑭𝑘 and 𝑭𝑘−1 (recalling (37.53)) are known, as well as ∆𝒙𝑖, 𝒅𝑖 and 𝛾𝑖 for 

𝑖 = 1,… , 𝑘 − 1. 
2.Solve 𝒆0 = 𝑲0

−1𝑭𝑘. 
3.Recursively compute 𝒆𝑖 = 𝒆𝑖−1 + ∆𝒙𝑖−1

𝑇 𝒆𝑖−1
𝛾𝒊

𝒅𝑖 for 𝑖 = 1,… , 𝑘 − 1. 
4.Set 𝒅𝑘 = 𝒆𝑘−1 and 𝛾𝑘 = ∆𝒙𝑘−1

𝑇 ∆𝑭𝑘. 

5.Compute ∆𝒙𝑘 = [1 + ∆𝒙𝑘−1
𝑇 𝒅𝑘
𝛾𝒌 ] 𝒅𝑘. 

Noteworthy here is that an iteration consists of a forward and backward substitution of 
an already factorized matrix (step 2) plus a sequence of vector operations (steps 3-5), 
which altogether presumably is much less expensive than solving an entire system of 
linear equations.  The algorithm requires an in-core storage consisting of 2𝑘 vectors and 
𝑘 scalars to complete iteration 𝑘. 

 
Again, recalling the quasi-Newton equation (37.52), and substituting (37.55) gives 

𝑲𝑘−1𝛥𝒙𝑘−1 + 𝛼𝒛𝒚𝑇𝛥𝒙𝑘−1 + 𝛽𝒗𝒖𝑇𝛥𝒙𝑘−1 = 𝛥𝑭𝑘, (37.64)

and set 𝛼 = 1
𝒚𝑇𝛥𝒙𝑘−1

, 𝒛 = −𝑭𝑘−1, 𝛽 = 1
𝒖𝑇𝛥𝒙𝑘−1

 and 𝒗 = 𝛥𝑭𝑘. Here  𝒚 and 𝒖 are arbitrary 
vectors that are non-orthogonal to 𝛥𝒙𝑘−1, i.e., 

𝒚𝑇𝛥𝒙𝑘−1 ≠ 0, (37.65)

and 

𝒖𝑇𝛥𝒙𝑘−1 ≠ 0. (37.66)

In the BFGS method 
𝒚 = 𝑭𝑘−1 𝒖 = 𝛥𝑭𝑘, (37.67)

which leads to the following update formula 

𝑲𝑘 = 𝑲𝑘−1 +
𝛥𝑭𝑘𝛥𝑭𝑘

𝑇

𝛥𝒙𝑘−1
𝑇 𝛥𝑭𝑘

−
𝑭𝑘−1𝑭𝑘−1

𝑇

𝛥𝒙𝑘−1
𝑇 𝑭𝑘−1

, (37.68)

that preserves symmetry of the secant matrix.  A double application of the Sherman-
Morrison formula then leads to the inverse form. 
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Special product forms have been derived for the DFP and BFGS updates and exploited 
by Matthies and Strang [1979], 

𝑲𝑘
 −1 = [𝑰 + 𝒒𝑘𝒑𝑘

𝑇] 𝑲𝑘−1
−1 [𝑰 + 𝒑𝑘𝒒𝑘

𝑇]. (37.69)

The primary advantage of the product form is that the determinant of 𝑲𝑘 and therefore, 
the change in condition number can be easily computed to control updates.  The 
updates vectors are defined as 

𝒑𝑘 = −𝛥𝑭𝑘 − 𝑭𝑘−1√
𝛥𝒙𝑘−1
𝑇 𝛥𝑭𝑘

𝛥𝒙𝑘−1
𝑇 𝑭𝑘−1

, (37.70)

𝒒𝑘 =
𝛥𝒙𝑘−1

𝛥𝒙𝑘−1
𝑇 𝛥𝑭𝑘

. (37.71)

Noting that the determinant of 𝑲𝑘 is given by 

det(𝑲𝑘) = det(𝑲𝑘−1)[1 + 𝒒𝑘
𝑇𝒑𝑘]

2
, (37.72)

it can be shown that the change in condition number, 𝑐, is 

𝑐 =
[√𝒑𝑘

𝑇𝒑𝑘 𝒒𝑘
𝑇𝒒𝑘 + √𝒑𝑘

𝑇𝒑𝑘 𝒒𝑘
𝑇𝒒𝑘 + 4 (1 + 𝒑𝑘

𝑇𝒒𝑘)]
4

[4 (1 + 𝒑𝑘
𝑇𝒒𝑘 )]2 . (37.73)

Following the approach of Matthies and Strang [1979] this condition number is used to 
decide whether or not to do a given update.  The quasi-Newton condition (37.52) is 
easily verified using (37.69) for a real non-singular tangent matrix 𝑲𝑘−1 and it follows 
that BFGS preserves not only symmetry but also positive definiteness.  Interestingly 
enough the converse is not true; if 𝑲𝑘−1 is indefinite then 𝑲𝑘 may still be positive 
definite. 
 
An algorithm would utilize that 

𝑲𝑘
−1 = [𝑰 + 𝒒𝑘𝒑𝑘

𝑇]… [𝑰 + 𝒒1𝒑1
𝑇]𝑲0

−1[𝑰 + 𝒑1𝒒1
𝑇]… [𝑰 + 𝒑𝑘𝒒𝑘

𝑇], (37.74)
so the computation of ∆𝒙𝑘 = 𝑲𝑘

−1𝑭𝑘 requires a sequence of vector operations, followed 
by a forward and backward substitution of a factorized matrix, followed by yet another 
sequence of vector operations.  The BFGS algorithm requires an in-core storage of the 
vectors 𝒑𝑖 and 𝒒𝑖, 𝑖 = 1,… , 𝑘 − 1, and ∆𝒙𝑘−1 and 𝑭𝑘−1 to complete iteration 𝑘. It is the 
default and most robust quasi-Newton algorithm for the nonlinear implicit solver and 
there is no reason to switch.  The only practical issue is how to control when to reform 
the tangent stiffness matrix, which typically depends on the degree of nonlinearity for 
the problem at hand.  In fact, if LCPACK = 2 on CONTROL_IMPLICIT_SOLVER, i.e., 
working with independent variables only, BFGS is mandatory and comes in two 
flavors, NSOLVR = 2 or NSOLVR = 12 on CONTROL_IMPLICIT_SOLUTION. 
 
There is also the option LCPACK = 3, for which LS-DYNA uses a non-symmetric matrix 
assembly when solving the linear system of equations.  This adds to the computational 



Implicit LS-DYNA Theory Manual 

35-14 (Implicit) LS-DYNA DEV 06/21/18 (r:10113) 

cost for each iteration but my improve convergence because of better tangents of certain 
features.  The non-symmetric solver is illustrated in Figure 3735-3 for simulating a 
clamped cantilever beam subject to a follower load.  In general the stiffness matrix is 
symmetric when the force is derived from an energy potential, or in other words is 
conservative. This is for instance the case for a hyperelastic material response or a 
physically admissible pressure load, see Schweizerhof and Ramm [1984] for a 
discussion.  Non-symmetry arise e.g. from non-conservative forces, such as frictional 
contact, or physically inadmissible design dependent loads.  The example in Figure 
3735-3 serves as one of the latter since the load is not coming from a physical source, 
such as a water pressure, and it should be seen as an academic example to prove a 
point. 

 

37.3.4  Tangent stiffness reformations 

In the previous section we have used 𝑲0 in (37.62) and (37.74) to represent the last 
assembled tangent stiffness matrix according to (37.33). While the quasi-Newton 
updates 𝑲𝑘, 𝑘 = 1,2,… are justified in the context of moderate nonlinearities and/or for 
a few iterations, it will eventually break down convergence for more complex problems.  
Whence there are criteria for reforming the tangent stiffness matrix and start over with 
the quasi-Newton (BFGS) updates. 
 
The first criterion is simply a user defined upper limit of 𝑘, governed by ILIMIT on 
CONTROL_IMPLICIT_SOLUTION. Using ILIMIT = 1 means that no quasi-Newton 
updates are performed and should be used for highly nonlinear problems, larger values 

𝐹 = 1/4 𝐹 = 1/2 𝐹 = 1 𝐹 = 1/16 

Follower load 𝐹 

Figure 3735-3 Nonlinear implicit solution of an elastic cantilever beam with a 
follower force, von Mises stress is fringed.. 
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of ILIMIT can be used if the nonlinearities are considered less severe.  ILIMIT = 11 is the 
default and is a reasonable value to use for starters. 
 
A second criterion is that of increased residual norm, i.e., if any of the quantities 

𝑇𝑘 = √𝑭𝑘
𝑇𝑱𝑡𝑭𝑘 (37.75)

or 
𝑅𝑘 = √𝑭𝑘

𝑇𝑱𝑟𝑭𝑘 (37.76)
for some 𝑘 is their respective largest attained since start iterating, the stiffness matrix is 
reformed.  Here 𝑱𝑡 and 𝑱𝑟 are diagonal matrices with ones or zeros on the diagonal that 
extract the translational and rotational degrees of freedom, respectively, and one speaks 
of translational or rotational divergence. 
 
A third criterion is called energy explosion, if 

log(1 + ∣∆𝒙𝑘−1
𝑇 𝑱𝑡𝑭𝑘−1∣) + log(1 + ∣∆𝒙𝑘−1

𝑇 𝑱𝑡𝑭𝑘∣) > 36 (37.77)
or 

log(1 + ∣∆𝒙𝑘−1
𝑇 𝑱𝑟𝑭𝑘−1∣) + log(1 + ∣∆𝒙𝑘−1

𝑇 𝑱𝑟𝑭𝑘∣) > 36 (37.78)
the stiffness matrix is reformed.  One can speak also here of translational and rotational 
energy explosion and this simply indicates that something really bad has happened 
with the last search direction. 
 
Finally, a necessary criterion for continuing with BFGS updates is deemed 

∆𝒙𝑘
𝑇𝑭𝑘 > 0 (37.79)

since this would otherwise indicate a search direction corresponding to a zero or 
negative eigenvalue in the tangent matrix.  If this criterion is violated the tangent 
stiffness matrix is reformed with a warning message issued that negative energy is 
detected during quasi-Newton updates.  This can only happen if there are negative 
eigenvalues in the tangent stiffness matrix in the first place. 

37.3.5  Line search 

Line search is critical for decent convergence characteristics, and there are several 
criteria to choose from, see LSMTD and LSTOL on CONTROL_IMPLICIT_SOLUTION. 
One of the criteria available is that the norm of residual 𝑭 must somehow decrease, 
LSMTD = 2, but this will inevitably lead to ridiculously small steps and is not 
recommended or presented further here.  A more useful criterion is instead that an 
iterate 𝑘 + 1 is accepted if 

∣∆𝒙𝑘
𝑇𝑭𝑘+1∣ ≤ 𝜀𝑠∆𝒙𝑘

𝑇𝑭𝑘 (37.80)
where 𝜀𝑠 is the line search convergence tolerance LSTOL. See Figure 3735-4 for an 
illustration.  This criterion is derived from a hypothetical assumption of the existence of 
an energy potential 𝑊(𝒙𝑘 + 𝑠∆𝒙𝑘) for the residual force 𝑭 and that the potential is 
minimized along the search direction 

𝜕𝑊
𝜕𝑠 =

𝜕𝑊
𝜕𝒙

𝜕𝒙
𝜕𝑠 = 𝑭𝑇∆𝒙𝑘 = 0. (37.81)
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So in a sense, (37.80) is the solution of (37.81) to within a certain tolerance and a Ridder 
algorithm is used to narrowing in on a candidate.  It is not unusual however that (37.80) 
is not well-posed, an indefinite stiffness matrix may result in a negative right hand side 
or the search direction may be bad enough to not render a solution, see Figure 3735-4. In 
those special cases some conservative approach is taken to provide a reasonable iterate 
𝑘 + 1. This summarizes in brief LSMTD = 4. 
 
A closer examination (and numerical experiments) reveals that 𝑭𝑘+1 is not necessarily 
bounded by (37.80). Therefore this criterion can be complemented with  

√𝑭𝑘+1
𝑇 𝑭𝑘+1 ≤ [1 + 𝜀𝑠]√𝑭𝑘

𝑇𝑭𝑘. (37.82)
This option is invoked with LSMTD = 5 and means that both (37.80) and (37.82) are to 
be satisfied for accepting an iterate 𝑘 + 1. While this is a more robust approach, it also 
requires more residual force evaluations and is not recommended as default.  It has 
proved to work well for implicit rubber simulations and complicated contact problems. 

37.3.6  Convergence check 

Convergence criteria are based on displacement, energy and residual force quantities.  
The exact definitions of norms and scalar products used depend to a great extent on 
parameter settings on CONTROL_IMPLICIT_SOLUTION, in particular on the 
parameter NLNORM. Historically it has been assumed that rotational degrees of 
freedom are not appropriate for checking convergence and therefore only translational 
degrees of freedom have been considered.  With advancements in the development of 
the implicit solver, this is today considered an old fashioned way of thinking, but 
backward compatibility is maintained and the user is referred to the keyword manual 
for information regarding the choices in this context.  Here the principles behind 
convergence checks are presented from a pragmatic standpoint assuming the following 
generic displacement and force norms and (energy) scalar products 

Negative starting values 
indicate negative 
eigenvalues in tangent 

(1.60) not solvable 

𝑠 = 1

Acceptable interval 
according to (37.80) 

𝑠 

𝜀𝑠𝑭𝑘
𝑇∆𝒙𝑘 

𝑭𝑘
𝑇∆𝒙𝑘 

𝑭𝑇∆𝒙𝑘 

 

 

Figure 3735-4 Illustration of line search based on energy, may be 
complemented with norm of 𝑭. Dashed line indicates a line search that 
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‖∆𝒙‖ = √∆𝒙𝑇𝑱𝑱∆𝒙,      ‖𝑭‖ = √𝑭𝑇𝑱†𝑱†𝑭, 〈∆𝒙, 𝑭〉 = ∆𝒙𝑇𝑱𝑱†𝑭. (37.83)
Here 𝑱 is a diagonal matrix that appropriately scales the various degrees of freedom to 
account for units, i.e., scaling radians with some characteristic length for consistency.  It 
also accounts for user input in the sense that 𝑱 may contain zeros on the diagonal to 
indicate that rotational degrees of freedom should not be accounted for. 𝑱† is the 
pseudo-inverse of 𝑱, a notation introduced since 𝑱 actually may be singular due to the 
zeros on the diagonal.  For some convergence option check is performed on 
translational and rotational degrees of freedom separately, we don’t elaborate on such 
details here but instead refer to the keyword manual. 
 
Convergence for accepting an iterate 𝑗 + 1 is assumed if the three conditions 

‖𝛥𝒙𝑘‖ < max(𝜀𝑑𝑢max, √max(𝜀𝑎, 0)) (37.84
) 

〈∆𝒙𝑘, 𝑭𝑘〉 < max(𝜀𝑒𝑒0, 10000max(𝜀𝑎, 0)) (37.85
) 

‖𝑭𝑘‖ < max(𝜀𝑟𝑓0, 10000max(𝜀𝑎, 0)) (37.86)

are satisfied simultaneously.  Here 𝜀𝑑, 𝜀𝑒, 𝜀𝑟 and 𝜀𝑎 are the displacement, energy, 
residual and absolute tolerances corresponding to DCTOL, ECTOL, RCTOL and 
ABSTOL, respectively.  In the right hand side of (37.84), 𝑢max = ∥𝒖max∥ is the maximum 
attained displacement in any iteration 𝑘 measured from the position at the start of this 
implicit step 𝑗 if DNORM = 1 and from the start of the simulation if DNORM = 2. In the 
right hand side of (37.85), 𝑒0 = 〈∆𝒙0, 𝑭0〉 where ∆𝒙0 and 𝑭0 are the first incremental 
displacement and residual vectors for this implicit step 𝑗. Likewise 𝑓0 = ∥𝑭0∥ in the right 
hand side of (37.86) is the norm of the first residual vector for this implicit step 𝑗. If 𝑱 has 
full rank and the tangent stiffness matrix is symmetric and positive definite then these 
conditions make intuitive sense, small changes in displacements and/or small residual 
forces indicate that an iterate is “close-enough” to the solution.  Under these conditions 
the left hand side of (37.85) define norms in both the incremental displacement ∆𝒙𝑘 and 
residual force 𝑭𝑘, and 𝑒0 > 0. 
 
Optionally, these convergence criteria can be combined with bounds on the maximum 
norms, here denoted 

‖∆𝒙‖∞ = max|𝑱∆𝒙|𝑖,      ‖𝑭‖∞ = max∣𝑱†𝑭∣𝑖, 〈∆𝒙, 𝑭〉∞ = max∣∆𝒙𝑇𝑱𝑱†𝑭∣𝑖, (37.87)
where the max is taken over all nodes and rigid bodies in the model, i.e., 𝑖 ranges over 
all nodes and rigid bodies.  If any of these options are activated, then convergence for 
accepting an iterate 𝑗 + 1 is assumed if the three conditions (37.84), (37.85) and (37.86) 
are satisfied and 

‖𝛥𝒙𝑘‖∞ < 𝜀𝑑∞𝑢max
∞ (37.88

) 

〈∆𝒙𝑘, 𝑭𝑘〉∞ < 𝜀𝑒
∞𝑒0
∞ (37.89

) 
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‖𝑭𝑘‖∞ < 𝜀𝑟∞𝑓0∞ (37.90)

are satisfied.  Here 𝜀𝑑∞, 𝜀𝑒
∞ and 𝜀𝑟∞ are the displacement, energy and residual tolerances 

corresponding to DMTOL, EMTOL and RMTOL, respectively, and if any of these 
parameters are zero that means the condition is not active.  The remaining parameters 
on the right hand sides are interpreted in analogy to those appearing in the right hand 
sides of (37.84), (37.85) and (37.86), except for that the Euclidian norm is now 
substituted for the maximum norm. 
 
A backdoor out is an absolute convergence test on the maximum norm on translational 
displacement.  That is, convergence is always detected if the maximum value of any 
translational degree of freedom in the incremental displacement array ∆𝒙𝑘 is smaller 
than 𝑑√max (𝜀𝑎, 0), where 𝑑 is a characteristic size calculated as the diagonal of the 
smallest box aligned along the global coordinate system that encapsulates the model.  
Setting ABSTOL to a negative number is an alternative, then all absolute convergence 
checks above become inactive and instead the backdoor out is to assume convergence 
when ‖𝑭𝑘‖ < max(0, −𝜀𝑎). This latter option requires some a priori knowledge of the 
force level and may require monitoring the residual norm for a few trial iterations to 
pick a decent 𝜀𝑎, but it could be a sensible choice if the problem shows erratic behavior 
in displacement and energy due to severe nonlinearities. 
 
Another criterion that must be met for convergence is that simple prescribed motion 
constraints on nodes and rigid bodies, if they exist, must be “almost” satisfied.  The 
background is that only partial line searches (𝑠 < 1) will not satisfy simple motion 
constraints, and at least one full line search step (𝑠 = 1) must be accomplished during 
the iterations.  For difficult problems, this sometimes never happens and therefore 
convergence is prevented due to unfulfilled boundary conditions until all prescribed 
motion is satisfied to within 1%. 

37.3.7  Automatic time stepping 

If convergence is not attained after reforming the stiffness matrix a given amount of 
times, see MAXREF on CONTROL_IMPLICIT_SOLUTION, one of two things will 
happen.  By default, LS-DYNA terminates with an error message, but if automatic time 
stepping is turned on, see IAUTO on CONTROL_IMPLICIT_AUTO, then LS-DYNA 
will try to resolve the problem with a smaller step size.  More specifically, if 
convergence is not attained with a time step ∆𝑡old, then LS-DYNA backs up to 
beginning of step and retries with a time step 

∆𝑡new = max(∆𝑡min, 10−0.3∆𝑡old) (37.91)
where ∆𝑡min is a user defined minimum step.  If ∆𝑡old = ∆𝑡min when attempting this 
then LS-DYNA will terminate with an error. 
 
With the automatic time stepper turned on, LS-DYNA will not only cut the time step for 
convergence failure but also adjust the time step when converging.  The adjustment is 
based on a user defined iteration window, i.e., a range of iteration numbers that are 
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deemed acceptable for convergence, and if the number of iterations for convergence 
falls outside this window the next time step will be adjusted as follows.  If convergence 
is attained for more iterations than acceptable then the time step for the next implicit 
step is given by (37.91). If instead convergence is attained for fewer iterations then the 
next time step is given by 

∆𝑡new = min(∆𝑡max, 100.2∆𝑡old) (37.92)
where ∆𝑡max is a maximum defined step.  In this way LS-DYNA narrows in on an 
optimum time step for which the number of iterations to converge falls within the 
specified window.  
 
There is much more information regarding this option in the keyword manual and the 
user is referred thereto for practical issues. 

37.4  Implicit Dynamics 

37.4.1  Newmark time integration 

Nonlinear implicit dynamics principally follows the exact same solution algorithm as 
for nonlinear implicit statics, the only difference is that dynamic terms are included in 
the residual force.  That is, (37.1) now reads 

𝑹 = 𝑴𝒙̈ + 𝑫𝒙̇ + 𝑭𝑖 − 𝑭𝑒 = 𝟎, (37.93)
where global damping is introduced through the matrix 𝑫, so the residual is now 
essentially a function of 𝒙, 𝒙 ̇and 𝒙.̈ The dependence on the latter two is eliminated by 
introducing the Newmark time integration scheme 

𝒙̈ =
𝛥𝒙
𝛽𝛥𝑡2 −

𝒙𝑗̇

𝛽𝛥𝑡 −
1
𝛽(

1
2 − 𝛽) 𝒙𝑗̈, (37.94)

𝒙̇ = 𝒙𝑗̇ + 𝛥𝑡(1 − 𝛾)𝒙̈ 𝑗 + 𝛾𝛥𝑡𝒙,̈ (37.95)

𝒙 = 𝒙𝑗 + 𝛥𝒙. (37.96)

Here, Δ𝑡 is the time step size, 𝛽 and 𝛾 are the free parameters of integration and we have 
used ∆𝒙 to denote the total displacement from step 𝑗 to step 𝑗 + 1.  For 𝛾 = 1 ⁄ 2 and 𝛽 =
1 ⁄ 4 the method becomes the trapezoidal rule and is energy conserving.  If 

𝛾 >
1
2, (37.97)

𝛽 >
1
4 (

1
2 + 𝛾)

2
, (37.98)

numerical damping is induced into the solution leading to a loss of energy and 
momentum.  By inserting (37.94) and (37.95) into (37.93) and using (37.96) to eliminate 
∆𝒙, we are back to an equation in 𝒙 only and can apply the algorithm starting with 
(37.25) and everything thereafter holds. 
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37.4.2  Practical considerations 

Linearizing (37.93) using (37.94), (37.95) and (37.96) results in a tangent matrix 
𝜕𝑹
𝜕𝒙 =

𝑴
𝛽∆𝑡2 +

𝛾𝑫
𝛽∆𝑡 +

𝜕[𝑭𝑖 − 𝑭𝑒]
𝜕𝒙 , (37.99)

and leads to an interesting observation.  Since 𝑴 is symmetric and positive definite the 
first term assures that the resulting tangent is positive definite as long as the time step 
∆𝑡 is sufficiently small, so including dynamics will enhance the robustness of the 
numerical procedure.  In fact, the eigenvalues of the resulting tangent can be made 
arbitrarily large by decreasing ∆𝑡 at the cost of requiring more steps to obtain the 
solution. 
  
Not only robustness but also the accuracy in dynamic implicit depends on the size of 
the time step ∆𝑡, roughly speaking only frequencies up to ~∆𝑡−1 can be resolved.  The 
method is therefore not perfectly suitable for contact-impact and restitution problems, 
for contact a crude rule of thumb is that the time a node or body is in contact should 
span at least a few time steps to appropriately resolve the resulting impulse.  Having 
said this, these problems are still difficult to solve reasonably well. 
 
For implicit static contact problems, a common usage of dynamics is to temporarily 
suppress rigid body modes while a desired contact state is being established.  In such a 
case it is recommended to use numerical damping by for instance choosing 𝛾 = 0.6 and 
𝛽 = 0.38 to render a smooth response.  This technique has proved successful and it is 
often sufficient to have dynamics initially turned on and then turned off at a time when 
all rigid body modes have been eliminated by contact.  But it is also possible to 
arbitrarily switch dynamics on and off during a simulation, all this is explained on 
CONTROL_IMPLICIT_DYNAMICS in the keyword manual. 

37.4.3  Linear theory 

Linearization of (37.93) with respect to a configuration 𝒙 that is in static equilibrium, i.e.,  
𝑷[𝑭𝑖 − 𝑭𝑒] = 𝟎, can be written as  

𝑴𝒖̈ + 𝑫𝒖̇ + 𝑲𝒖 = 𝑭, (37.100)
where we use 𝒖 = ∆𝒙 to denote the displacement measured from the reference point 𝒙. 
For the sake of clarity we also abused some notation, using 𝑴 and 𝑫 to actually mean 
𝑷𝑴𝑷𝑇 and 𝑷𝑫𝑷𝑇, respectively.  Furthermore, 𝑲 denotes the sum of the material (37.39) 
and geometric (37.49) contributions to the static tangent stiffness matrix as well as any 
contributions from the external force, e.g., contacts, 

𝑲 = 𝑷 ∫[𝑩𝑇𝑬𝑩 +𝓑𝑇𝝈𝓑]𝑑𝑉
𝑉

𝑷𝑇 − 𝑷
𝜕𝑭𝑒
𝜕𝒙 𝑷

𝑇. (37.101)

The right hand side 𝑭 in (37.100) should be interpreted as an external (small) load that 
only depends on time 𝑡 and serves to dynamically perturb the static equilibrium.  This 
equation can be discretized in time using the Newmark time integration scheme above 
and then efficiently integrated with no update of the tangent stiffness matrix between 
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steps.  This of course assumes that the displacements 𝒖 are small enough to not affect 𝑲 
to great extent. 
 
Consider undamped free vibration in (37.100), i.e, 𝑫 = 𝟎 and 𝑭 = 𝟎, and transform this 
equation from time to frequency plane assuming constant 𝑴 and 𝑲. This results in an 
eigenvalue problem 

𝑲𝒖 = 𝜔2𝑴𝒖 (37.102)
that can be solved in LS-DYNA for the angular frequency 𝜔 and mode shape 𝒖. The 
stress 𝝈 in (37.101) affects the frequency 𝜔 in the following way.  If the model is in a 
tensile state, i.e., the principal stresses are positive, then the eigenvalues of  𝑲 increase 
compared to a stress free state and from (37.102) the frequencies will increase.  
Conversely, the frequencies will decrease if the principal stresses decrease, this is the 
effect of tuning a guitar string by increasing or decreasing its tension.  If linearizing 
with respect to a contact state, the last term in (37.101) will in effect constrain relative 
motion between parts or nodes in contact.  More specifically, the relative normal 
displacement in 𝒖 will be zero, and the relative tangential motion will be governed by 
the present stick/slip condition.  If in stick mode the relative tangential displacement in 
𝒖 will be zero, and if in slip mode it is unconstrained.  See CON-
TROL_IMPLICIT_EIGENVALUE for the available options to solve (37.102). 
 
An example using modal analysis in this respect is shown in Figure 3735-5. 
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Figure 3735-5 Intermittent eigenvalue analysis of tire.  Model shown in 
top left, followed by lowest frequency modes for unpressurized tire (top 
right), inflated tire (bottom left) and inflated tire and frictional contact 
(bottom right).  Resultant mode displacements are fringed. 

𝑓 = 15 𝐻𝑧

𝑓 40 𝐻 𝑓 43 𝐻
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In general 𝑫 ≠ 𝟎 and 𝑫 and/or 𝑲 may be non-symmetric as discussed in Section 37.3.3, 
but we assume 𝑴 is symmetric and positive definite and still 𝑭 = 𝟎. The characteristic 
equation approach for solving (37.100) makes use of the harmonic ansatz 

𝒖(𝑡) = ∑ exp(𝜇𝑗𝑡)𝚽𝑗
𝑗

 (37.103)

which is inserted into (37.100) to yield 
∑ exp (𝜇𝑗𝑡){𝜇𝑗

2𝑴 + 𝜇𝑗𝑫 + 𝑲}𝚽𝑗
𝑗

= 𝟎 (37.104)

to which the quadratic eigenvalue problem is associated7 
{𝜇2𝑴 + 𝜇𝑫 + 𝑲}𝚽 = 𝟎. (37.105)

Because of the non-symmetry of the involved matrices, the eigenvalues to (37.105) may 
be complex but come in conjugate pairs.  That is, if 𝜇 = 𝑟 + 𝑖𝑠 is an eigenvalue then 𝜇̅̅̅̅ =
𝑟 − 𝑖𝑠 is also an eigenvalue, and if 𝚽 = 𝚼 + 𝑖𝚿 is the eigenvector associated with 𝜇 then 
𝚽̅̅̅̅̅̅ = 𝚼 − 𝑖𝚿 is the eigenvector for 𝜇̅̅̅̅. However, examining the sum of two such terms in 
(37.104) yields 

exp(𝜇𝑡){𝜇2𝑴 + 𝜇𝑫 + 𝑲}𝚽 + exp(𝜇̅̅̅̅𝑡){𝜇̅̅̅̅2𝑴 + 𝜇̅̅̅̅𝑫 + 𝑲}𝚽̅̅̅̅̅̅
= 2exp(𝑟𝑡){((𝑟2 − 𝑠2)𝑴 + 𝑟𝑫 + 𝑲)(cos(𝑠𝑡) 𝚼 − 𝑠𝑖𝑛(𝑠𝑡)𝚿)
− 𝑠(2𝑟𝑴 +𝑫)(sin(𝑠𝑡) 𝚼 + cos(𝑠𝑡)𝚿)}, 

(37.106)

meaning that the solution in time domain is real as expected.  If all eigenvalues are 
purely complex, i.e., 𝜇𝑗 = 𝑖𝑠𝑗 and the real parts 𝑟𝑗 = 0 vanish, then the solution to 
(37.100) is harmonic with angular frequencies 𝜔𝑗 = ∣𝑠𝑗∣. This is apparent from (37.106) 
and corresponds to the traditional solution to (37.102), with the exception of a non-zero 
damping matrix 𝑫. But if an eigenvalue has a real part 𝑟𝑗 > 0 then from (37.106) the 
solution is exponentially growing and thus unstable.  Solving (37.105) can therefore be 
used to detect instabilities in a system, eigenvalues with positive real parts correspond 
to unstable modes.  A common indicator used for this is the damp ratio defined as 

𝜗 = −2
𝑟
|𝑠|, (37.107)

so basically a negative damp ratio indicates an unstable mode.  An application of this is 
brake squeal, see Figure 3735-6, for which friction instabilities may result in unwanted 

noise and erratic behavior.  Noticable is that if 𝑫 = 𝟎 and 𝜇 is an eigenvalue then – 𝜇 is 

also an eigenvalue, so then complex eigenvalues come in clusters of four, {𝜇, 𝜇̅̅̅̅, −𝜇, −𝜇̅̅̅̅}. 
Then it suffice that eigenvalues have nonzero real parts 𝑟𝑗 ≠ 0 for a system to be 
unstable, which corresponds to negative eigenvalues in (37.102). 
To solve the system (37.105), it is transformed to a first order eigenvalue problem using 
𝚽̃ = 𝜇𝚽, resulting in 

[ 𝟎 𝑰
−𝑲 −𝑫][𝚽𝚽̃] = 𝜇[𝑰 𝟎

𝟎 𝑴][𝚽𝚽̃], (37.108)

                                                 
7 The eigenvalue problem (1.105) is readily obtained by Laplace transforming (1.100). 
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which can be solved by well-established eigenvalue algorithms.  In the output files, LS-
DYNA reports eigenvalues with positive imaginary parts only, i.e., 𝑠𝑗 > 0, and the real 
and imaginary parts (when non-zero) of the associated eigenvector 𝚽. 
 

 

Figure 3735-6 Brake squeal application.  Pressure pads are applied to a rotating 
disc and a nonsymmetric eigenvalue solution reveals friction instabilities.  The 
damp ratio 𝜗 is plotted at the top as function of mode number, see (37.107). 
Mode #6 is the unstable mode and is depicted bottom right with displacements 
fringed
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38    
Arc-length 

Arc-length methods are available in LS-DYNA for NSOLVR specified between 6 and 9, 
this and all other parameters in this Section are located on the *CONTROL_IMPLICIT_-
SOLUTION  keyword.  These solvers use the Riks/Crisfield methods but unfortunately 
go under the old LSDIR.EQ.1 option which makes them somewhat limited in terms of 
applicability.  For LSDIR.EQ.2 the arc-length method described in Ritto-Corrêa and 
Camotim [2008] is implemented for the combination of NSOLVR.EQ.12 and 
ARCMTH.EQ.3.  For this method the parameters ARCPSI (𝜓), ARCALF (𝛼) and 
ARCTIM apply, out of which the last simply tells at what time arc-length is initiated 
and the first two are to be described in more detail below.  We begin by an explanatory 
overview of the arc-length method in general for which we will constantly be referring 
to Figure 38.7 below.  After that the mathematical details are revealed. 

38.1  Overview 

An implicit static problem is driven by a parameter 𝑡 referred to as the time, and 
assuming that a solution is obtained at 𝑡 = 𝑡𝑛 the objective is to determine the solution 
given the constraint 𝑡 = 𝑡𝑛+1, where 𝑡𝑛+1 is given.  We assume that the problem can be 
associated with representative force and displacement parameters 𝑓  and 𝑑 and we 
distinguish between load- and displacement-driven problems.  An example of a load-
driven problem is when 𝑓 = 𝑓 (𝑡) is an external load and 𝑑 is the resulting displacement 
of the associated nodes, and likewise a displacement-driven problem is when 𝑑 = 𝑑(𝑡) is 
a prescribed displacement and 𝑓  is the corresponding reaction force.  A solution is likely 
obtained if the problem is stable, i.e., the force-displacement curve is monotonically 
increasing, but this method is not designed to handle limit or turning points.  A limit 
point is illustrated in figure (a) and a turning point in figure (b), the solution in the next 
step may not be the one desired or not even exist, in both cases we want to find the 
solution that continuously follow the path corresponding to the force-displacement 
curve. 
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The solution for this is to set the stepping parameter 𝑡 free, i.e., replace the constraint 𝑡 =
𝑡𝑛+1 with an arc-length constraint 𝑔(𝑑, 𝑓 ) = 0.  In words, this basically means that a 
multidimensional sphere (arc) is put around the last converged solution and the next 
solution is to be found on that given sphere, the stepping parameter 𝑡 is now a solution 
variable.  This makes the problem well-posed but unfortunately there are multiple 
solutions to the problem, and it may turn out that the wrong solution is found.  In 
figures (c) and (d), the effect of the arc-length constraints is illustrated and there are two 
possible solutions, one feasible that allows us to continue in the right direction and one 
infeasible that takes us in the wrong direction.  The latter phenomenon is termed 
doubling back, and is in practice not easily avoided.  Two additional parameters are 
available that have shown to improve the robustness in this respect. 
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In figure (d), two of the infeasible solutions can in practice be avoided by including the 
stepping parameter in the arc-length constraint, thus converting a cylinder to a sphere 
in space-time.  This is adjusted by the paremeter 0 ≤ 𝜓 < 1, and the constraint reads 
(1 − 𝜓)𝑔(𝑑, 𝑓 ) + 𝜓(𝑡 − 𝑡𝑛)2 = 0, the effect of this constraint is illustrated in figures (e) 
and (f), and should be compared with figures (c) and (d).  Note that two infeasible 
solutions are avoided when comparing figures (d) and (f), it may sometimes be worth 
using a non-zero value for 𝜓, e.g., 𝜓 = 0.1.  
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Converged solution at step n

Infeasible solution at step n + 1

Feasible solution at step n + 1

Center of arc for α < 0, makes infeasible solution less probable

Figure 38.7.  Representative force-displacement curves for illustrating arc-
length and accompanying parameters 
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Another problem is that the feasible and infeasible solution may be too close to the last 
converged solution, making the result from the simulation very unpredictable.  For this 
a parameter 𝛼 is introduced that translates the center of the spatial sphere in the 
direction of the linear prediction (i.e., the first Newton iterate of the implicit solution 
procedure).  Assuming that this prediction is in the direction we want, using 𝛼 < 0 will 
move the center, and consequently the infeasible solution, away from where the iterates 
are taking place.  In addition, the radius of the arc will increase making it less probable 
to find the incorrect solution.  This option has shown effective in solving snap-through 
problems when using small steps to resolve maximum load values, and is illustrated in 
figures (g) and (h).  For snap-back problems, using 𝛼 = 1 could be an interesting choice 
since this centers the arc right between the previously converged point and the first 
predictor in the arc length method, thus encouraging the next solution to be found in 
the reversed direction.  An example of a snap-back problem is shown in Figure 35-9. 

38.2  Nonlinear equations 

The following, except for a change in notation, is very similar to the nonlinear theory 
presented in the previous chapter.  The generalization is that 𝑡 will here be treated as an 
independent variable that is constrained by arc-length instead of given as a constant.  
The nonlinear variables are denoted 

𝒙 = [𝒙𝐼
𝒙𝐷], (38.109)

that we assume can be divided into a set of independent and dependent variables.  
Furthermore we have the time parameter 𝑡 which may serve as the actual time (for 
dynamic problems) or just a stepping parameter (for quasi-static problems).  The 
division into independent and dependent variables is motivated by the constraint 
equation that must be fulfilled, i.e., 

𝒉(𝒙, 𝑡) = 𝒉(𝒙𝐼, 𝒙𝐷, 𝑡) = 𝟎. (38.110)
From the constraint, the constraint matrix is evaluated as 

𝜕𝒉
𝜕𝒙 = [

𝜕𝒉
𝜕𝒙𝐼

𝜕𝒉
𝜕𝒙𝐷

] = [𝑪𝐷𝐼 𝑪𝐷𝐷], (38.111)

which in turn determines the space of trial functions used to establish the nonlinear 
finite element equation,  

[𝑰𝐼𝐼 −(𝑪𝐷𝐷−1 𝑪𝐷𝐼)
𝑇][ 𝒓𝐼𝒓𝐷] = 𝟎, (38.112)

where  

𝒓(𝒙, 𝑡) = 𝒓(𝒙𝐼, 𝒙𝐷, 𝑡) = [ 𝒓𝐼𝒓𝐷] (38.113)

is the full residual divided into the set of independent and dependent variables.  See 
previous chapter for further details leading up to (38.112). 
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38.3  Newton iterations 

Here we assume that we are in a given configuration given by 

𝒙(𝑛,𝑖) = 𝒙(𝑛) + ∆𝒙(𝑛,𝑖),
𝑡(𝑛,𝑖) = 𝑡(𝑛) + ∆𝑡(𝑛,𝑖).

(38.114)

where superscript 𝑛 = 0, 1, 2,… represents converged implicit states and 𝑖 = 0, 1, 2,… 
represents non-converged Newton iterates.  We implicitly assume that 𝒙(0) = 𝒙,̅ 
∆𝒙(𝑛,0) = 𝟎, 𝑡(0) = 0 and ∆𝑡(𝑛,0) = 0 are given.  In this configuration LS-DYNA computes 
the full residual given as 

𝒓(𝑛,𝑖) = [ 𝒓𝐼𝒓𝐷], (38.115)

as well as its dependence on the time parameter 

(
𝜕𝒓
𝜕𝑡)

(𝑛,𝑖)
=

⎣
⎢⎢
⎢
⎡ 𝜕𝒓𝐼

𝜕𝑡
𝜕𝒓𝐷
𝜕𝑡 ⎦

⎥⎥
⎥
⎤

, (38.116)

together with the stiffness matrix given as 

(
𝜕𝒓
𝜕𝒙)

(𝑛,𝑖)
= [𝑲𝐼𝐼 𝑲𝐼𝐷
𝑲𝐷𝐼 𝑲𝐷𝐷

]. (38.117)

Likewise the constraint residual, its dependence on the time parameter and constraint 
matrix are evaluated and given by 

𝒉(𝑛,𝑖) = 𝒉,

(
𝜕𝒉
𝜕𝑡)

(𝑛,𝑖)
=

𝜕𝒉
𝜕𝑡 , 

(
𝜕𝒉
𝜕𝒙)

(𝑛,𝑖)
= [𝑪𝐷𝐼 𝑪𝐷𝐷].

(38.118)

The reduced residual and stiffness matrix are then formed as 

𝑲̂𝐼𝐼 = [𝑰𝐼𝐼 −(𝑪𝐷𝐷−1 𝑪𝐷𝐼)
𝑇] [𝑲𝐼𝐼 𝑲𝐼𝐷
𝑲𝐷𝐼 𝑲𝐷𝐷

] [
𝑰𝐼𝐼

−𝑪𝐷𝐷−1 𝑪𝐷𝐼
] , 

𝒓𝐼̂ = [𝑰𝐼𝐼 −(𝑪𝐷𝐷−1 𝑪𝐷𝐼)
𝑇] {[ 𝒓𝐼𝒓𝐷] − [𝑲𝐼𝐷

𝑲𝐷𝐷
]𝑪𝐷𝐷−1 𝒉} , 

𝜕𝒓𝐼̂
𝜕𝑡 = [𝑰𝐼𝐼 −(𝑪𝐷𝐷−1 𝑪𝐷𝐼)

𝑇]

⎩{
{⎨
{{
⎧

⎣
⎢⎢
⎢
⎡ 𝜕𝒓𝐼

𝜕𝑡
𝜕𝒓𝐷
𝜕𝑡 ⎦

⎥⎥
⎥
⎤

− [𝑲𝐼𝐷
𝑲𝐷𝐷

]𝑪𝐷𝐷−1 𝜕𝒉
𝜕𝑡

⎭}
}⎬
}}
⎫

, 

(38.119)

and the independent search direction is given by 

𝛿𝒙𝐼 = 𝑠𝛿𝒙𝐼
𝑠 + 𝛿𝑡

𝜕𝒙𝐼
𝑠

𝜕𝑡 . (38.120)
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Here 𝑠 is the line search parameter and 

𝛿𝒙𝐼
𝑠 = −𝑲̂𝐼𝐼

−1𝒓𝐼̂,
𝜕𝒙𝐼

𝑠

𝜕𝑡 = −𝑲̂𝐼𝐼
−1 𝜕𝒓𝐼̂

𝜕𝑡 .
(38.121)

The full search direction is completed by computing the dependent part as 

𝛿𝒙𝐷 = 𝑠𝛿𝒙𝐷𝑠 + 𝛿𝑡
𝜕𝒙𝐷𝑠

𝜕𝑡 , (38.122)

where 

𝛿𝒙𝐷𝑠 = −𝑪𝐷𝐷−1 𝑪𝐷𝐼𝛿𝒙𝐼
𝑠 − 𝑪𝐷𝐷−1 𝒉,

𝜕𝒙𝐷𝑠

𝜕𝑡 = −𝑪𝐷𝐷−1 𝑪𝐷𝐼
𝜕𝒙𝐼

𝑠

𝜕𝑡 − 𝑪𝐷𝐷−1 𝜕𝒉
𝜕𝑡 .

(38.123)

Finally the new configuration is updated by means of 

∆𝒙𝐼
(𝑛,𝑖+1) = ∆𝒙𝐼

(𝑛,𝑖) + 𝛿𝒙𝐼,
∆𝒙𝐷

(𝑛,𝑖+1) = ∆𝒙𝐷
(𝑛,𝑖) + 𝛿𝒙𝐷, 

∆𝑡(𝑛,𝑖+1) = ∆𝑡(𝑛,𝑖) + 𝛿𝑡.
(38.124)

Upon convergence we set 

∆𝒙𝐼
(𝑛) = ∆𝒙𝐼

(𝑛,𝑖+1),
∆𝒙𝐷

(𝑛) = ∆𝒙𝐷
(𝑛,𝑖+1), 

∆𝑡(𝑛) = ∆𝑡(𝑛,𝑖+1),
(38.125)

and hence 

𝒙𝐼
(𝑛+1) = 𝒙𝐼

(𝑛) + ∆𝒙𝐼
(𝑛) ,

𝒙𝐷
(𝑛+1) = 𝒙𝐷

(𝑛) + ∆𝒙𝐷
(𝑛), 

𝑡(𝑛+1) = 𝑡(𝑛) + ∆𝑡(𝑛).
(38.126)
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38.4  Arc-length constraint – predictor step 

For the predictor step, 𝑖 = 0, the following constraint is imposed 

(1 − 𝜓)
(∆𝒙𝐼

(𝑛,1))
𝑇
∆𝒙𝐼

(𝑛,1)

(∆𝒙𝐼
(0,1))

𝑇
∆𝒙𝐼

(0,1)
+ 𝜓

∆𝑡(𝑛,1)∆𝑡(𝑛,1)

∆𝑡(0,1)∆𝑡(0,1) − 1 = 0, (38.127)

where for 𝑛 = 0 we use 

∆𝒙𝐼
(0,1) = ∆𝑡 ̅𝜕𝒙𝐼

𝑠

𝜕𝑡
∆𝑡(0,1) = ∆𝑡.̅ 

 

(38.128)

Previously converged solution

Infeasible solution

Feasible solution

Predictore solution, found in the outward

Normal direction of previous arc

Infeasible predictor solution

Corrector steps occur along the arc

 Figure 38.8.  Predictor and corrector steps 
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Referring to Figure 38.8 this constraint is geometrically interpreted as to find a predictor 
solution on the arc with the previously converged solution as its center.  Writing out the 
above in terms of known quantities results in the following two possible values of the 
increment in time step parameter 

𝛿𝑡± = ±
⎝
⎜⎛𝜓𝑥 (

𝜕𝒙𝐼
𝑠

𝜕𝑡 )
𝑇 𝜕𝒙𝐼

𝑠

𝜕𝑡 + 𝜓𝑡
⎠
⎟⎞

−1/2

, (38.129)

corresponding to the two possible predictor solutions on the arc, where 

𝜓𝑥 =
1 − 𝜓

(∆𝒙𝐼
(0,1))

𝑇
∆𝒙𝐼

(0,1)
,

𝜓𝑡 =
𝜓

∆𝑡(0,1)∆𝑡(0,1).
(38.130)

The actual value used is detemined from the sign of 

𝜓𝑥

(1 − 𝛼
2)

2 (∆𝒙𝐼
(𝑛−1) −

𝛼
2 ∆𝒙𝐼

(𝑛−1,1))
𝑇 𝜕𝒙𝐼

𝑠

𝜕𝑡 + 𝜓𝑡∆𝑡(𝑛−1), (38.131)

if positive 𝛿𝑡 = 𝛿𝑡+, otherwise 𝛿𝑡 = 𝛿𝑡−.  This condition is to say that the solution 
continues in the direction of the previously converged state, for the initial step 𝑛 = 0, 
𝛿𝑡 = 𝛿𝑡+. Again referring to Figure 38.8 we simply want to avoid going backwards to the 
infeasible predictor solution. 

38.5  Arc-length constraint – corrector steps 

For the corrector steps, 𝑖 > 0, the following constraint is imposed 

(1 − 𝜓)
(∆𝒙𝐼

(𝑛,𝑖+1) − 𝛼
2 ∆𝒙𝐼

(𝑛,1))
𝑇
(∆𝒙𝐼

(𝑛,𝑖+1) − 𝛼
2 ∆𝒙𝐼

(𝑛,1))

(1 − 𝛼
2)

2
(∆𝒙𝐼

(0,1))
𝑇
∆𝒙𝐼

(0,1)
+ 𝜓

∆𝑡(𝑛,𝑖+1)∆𝑡(𝑛,𝑖+1)

∆𝑡(0,1)∆𝑡(0,1) − 1 = 0, (38.132)

which geometrically says that we should find the next iterate on the arc.  Expanding, 
this amounts to 

𝛼𝑥 (∆𝒙𝐼
(𝑛,𝑖) + 𝑠𝛿𝒙𝐼

𝑠 + 𝛿𝑡
𝜕𝒙𝐼

𝑠

𝜕𝑡 −
𝛼
2 ∆𝒙𝐼

(𝑛,1))
𝑇

(∆𝒙𝐼
(𝑛,𝑖) + 𝑠𝛿𝒙𝐼

𝑠 + 𝛿𝑡
𝜕𝒙𝐼

𝑠

𝜕𝑡 −
𝛼
2 ∆𝒙𝐼

(𝑛,1)) + 

𝛼𝑡(∆𝑡(𝑛,𝑖) + 𝛿𝑡)(∆𝑡(𝑛,𝑖) + 𝛿𝑡) − 1 = 0,
(38.133)

where 

𝛼𝑥 =
1 − 𝜓

(1 − 𝛼
2)

2
(∆𝒙𝐼

(0,1))
𝑇
∆𝒙𝐼

(0,1)

𝛼𝑡 =
𝜓

∆𝑡(0,1)∆𝑡(0,1).
(38.134)
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This can be written in terms of a polynomial in 𝑠 and 𝛿𝑡 as 

𝑎𝑠𝑠𝑠2 + 𝑎𝑡𝑡𝛿𝑡2 + 2𝑎𝑠𝑡𝑠𝛿𝑡 + 2𝑎𝑠𝑠 + 2𝑎𝑡𝛿𝑡 (38.135)

where 

𝑎𝑠𝑠 = 𝛼𝑥 (𝛿𝒙𝐼
𝑠)𝑇𝛿𝒙𝐼

𝑠

𝑎𝑡𝑡 = 𝛼𝑥 (
𝜕𝒙𝐼

𝑠

𝜕𝑡 )
𝑇 𝜕𝒙𝐼

𝑠

𝜕𝑡 + 𝛼𝑡 

𝑎𝑠𝑡 = 𝛼𝑥(𝛿𝒙𝐼
𝑠)𝑇

𝜕𝒙𝐼
𝑠

𝜕𝑡  

𝑎𝑠𝑡 = 𝛼𝑥(𝛿𝒙𝐼
𝑠)𝑇

𝜕𝒙𝐼
𝑠

𝜕𝑡   

𝑎𝑠 = 𝛼𝑥 (∆𝒙𝐼
(𝑛,𝑖) −

𝛼
2 ∆𝒙𝐼

(𝑛,1))
𝑇

𝛿𝒙𝐼
𝑠 

𝑎𝑡 = 𝛼𝑥 (∆𝒙𝐼
(𝑛,𝑖) −

𝛼
2 ∆𝒙𝐼

(𝑛,1))
𝑇 𝜕𝒙𝐼

𝑠

𝜕𝑡 + 𝛼𝑡∆𝑡(𝑛,𝑖).

(38.136)

For a given line search parameter value, the time increment can have two possible 
values 

𝛿𝑡± =
−𝑎𝑠𝑡𝑠 − 𝑎𝑡 ± √(𝑎𝑠𝑡

2 − 𝑎𝑡𝑡𝑎𝑠𝑠)𝑠2 + 2(𝑎𝑠𝑡𝑎𝑡 − 𝑎𝑠𝑎𝑡𝑡)𝑠 + 𝑎𝑡2

𝑎𝑡𝑡
. (38.137)

and the value we use for the update is given by 𝛿𝑡 = 𝛿𝑡+ if 𝑎𝑡 ≥ 0, otherwise 𝛿𝑡 = 𝛿𝑡−.  
This decision is based on the requirement of having 𝛿𝑡 → 0 when 𝑠 → 0. 
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39    
Sparse Direct Linear Equation Solvers 

 LS-DYNA has 5 options for direct solution of the sparse systems of linear 
equations that arise in LS-DYNA.  All 5 options are based on the multifrontal algorithm 
[Duff and Reid, 1983].  Multifrontal is a member of the current generation of sparsity 
preserving factorization algorithms that also have very fast computational rates.  That is 
multifrontal works with a sparsity preserving ordering to reduce the overall size of the 
direct factorization and the amount of work it takes to compute that factorization. 
 

39.1  Sparsity Preserving Orderings 

 In LS-DYNA there are two ordering algorithms for preserving the sparsity of the 
direct factorization.  The algorithms are Multiple Minimum Degree (MMD) and METIS 

[Karypis and Kumar, 1998].  MMD computes the ordering using locally based decisions 
and a bottom-up approach.  It is inexpensive and very effective for small problems that 
are problems with fewer than 100,000 rows.  METIS computes the ordering from a top 
down approach.  While METIS usually takes more time than MMD to compute the 
ordering, the METIS ordering reduces the work for the factorization enough to recover 
the additional ordering cost.  METIS is especially effective for large problems, especially 
those that are modeling three-dimensional solids.    
 
 The user can specify either algorithm using keyword *CONTROL_IMPLICIT_-
LINEAR.  The default is to use MMD for problems with fewer than 100,000 rows and 
METIS for problems with more than 100,000 rows.  We recommend that the user try 
both orderings as sometimes MMD is better than METIS on large problems that are not 
three-dimensional solids. 
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39.2  Multifrontal Algorithm 

 The multifrontal algorithm factors a sparse matrix in a way that vastly reduces 
the amount of work required to compute the factorization compared to methods such as 
the frontal, profile, skyline, and variable band.  These older methods counted on 
clustering the nonzero entries of the factorization close to the diagonal to keep the size 
of the factorization and the amount of work required to compute the factorization to a 
minimum.  The factorization was then computed in a serial, left-to-right fashion, 
essentially following a chain of computations.   
 
 The multifrontal algorithm instead follows a tree of computations where the tree 
structure is established by the sparsity preserving orderings, See Figure 39.1.  It is this 
tree structure that greatly reduces the work required to compute a factorization and the 
size of the resulting factorization.  At the bottom of the tree, a frontal matrix is 
assembled with the original matrix data and those columns that are fully assembled are 
eliminated.  The remainder of the frontal matrix is updated from the factored columns 
and passed up the tree to the parent front in what is called an update matrix.  As the 
computation works its way up the tree, a frontal matrix is formed by assembling the 
original matrix data and the update matrices from its children in the tree.  The fully 
assembled columns are factored and the remaining columns updated and passed up the 
tree.  At the root (top) of the tree, the remaining columns are factored.  
 
 By organizing the factorization as a sequence of partial factorization of dense 
frontal matrices, the multifrontal algorithm can be very fast in performing the required 
computations.  It can use all of the modern technology for dense linear algebra to get 
high performance computational kernels that should achieve near peak computational 
performance for a given processor.  Only 1% to 5% of the work of the factorization is 
performed with slower operations such as scatter/gather. 
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39.3  The Five Solver Options  

 In LS-DYNA three new direct solution options were added.  For backward 
compatibility, the two older options were kept.  The five options are: 
 

Solver  Method 

Multifrontal elimination tree

 Figure 39.1.  Multifrontal algorithm. 

original matrix data

computations in single front

To parent front

From children fronts

 Figure 39.2.  Single front algorithm. 
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No. 
1 Older implementaion of Solver No.  4.  Uses Real*4 arithmetic, has out of 

memory capabilities as well as distributed memory parallelism.  Only uses 
MMD ordering.  Was former default method.  Retained for backward 
compatibility.  We recommend switching to Solver No.  4 for improved 
performance. 

3 Same as 1 except uses Real*8 arithmetic.  We recommend switching to Solver 
No.  5 or 6 for improved performance. 

4 Real*4 implementation of multifrontal which includes automatic out-of-
memory capabilities as well as distributed memory parallelism.  Can use 
either MMD or METIS orderings.  Default method. 

5 Real*8 implementation of Solver No.  4. 
6 Multifrontal solver from BCSLIB-EXT [Boeing Company, 1999].  Uses Real*8 

arithmetic with extensive capabilities for large problems and some Shared 
Memory Parallelism. 
Can use either MMD or METIS orderings.  If the other solvers cannot factor 
the problem in the allocated memory, try using this solver. 

 
 We strongly recommend using Solvers 4 through 6.  Solvers 1 and 3 are included 
for backward compatibility with older versions of LS-DYNA but are slower the Solvers 
4 through 6.  Solvers 4 and 5 are 2 to 6 times faster than the older versions, respectively.  
Solver 6 on a single processor computer should be comparable to Solver 5 but has more 
extensive capabilities for solving very large problems with limited memory.  Solvers 4 
and 5 should be used for distributed memory parallel implementations of LS-DYNA.  
Solver 6 can be used in shared memory parallel. 
 
 In an installation of LS-DYNA where both integer and real numbers are stored in 
8 byte quantities, then Solvers 1 and 3 are equivalent and Solvers 4 and 5 are equivalent. 
 

39.4  Treating Matrix Singularities 

 LS-DYNA has two different techniques for preventing singularities in the 
stiffness matrix, K.  The most common type of matrix singularity arises from the use of 
certain types of shell elements.  These shell elements generate no matrix contribution in 
the normal direction for each node.  Depending on the geometry around the node and 
what other types of elements are connected to the node, there may or may not be a 
matrix singularity associated with the rotation around the normal direction at one or 
more nodes.  This is commonly called the drilling rotation singularity.   
 
 The first way LS-DYNA has for preventing such matrix singularities is to add a 
small amount of stiffness in the normal direction at each node of every shell element 
that has the drilling rotation problem.  This “drilling” stiffness matrix is orthogonal to 
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rigid body motions.  The user can control whether this approach is used and how much 
stiffness is added via the *CONTROL_IMPLICIT_SOLUTION keyword card.  DRLMTH 
and DRLPARM are set in fields 5 and 6.  If DRLMTH = 1 then this approach is used.  
The amount of stiffness added is controlled via DRLPARM.  The default for DRLPARM 
is 1.0 for linear problems and 100.0 for nonlinear problems.  DRLPARM ∗ .0001 is added 
in the normal direction at each node to the diagonal terms associated with the rotational 
degrees of freedom for certain types of elemental matrices.  For eigenvalue problems 
the amount of stiffness added is 1.E-12. 
 
 Adding stiffness to handle the drilling rotation problem has been used 
extensively.  While a robust and reliable approach, its drawback is that the added 
stiffness may affect the quality of the computed results.  The user can also select not to 
use this approach and depend solely on AUTOSPC, the other method for preventing 
matrix singularities. 
 
 AUTOSPC stands for AUTOmatic Single Point Constraints.   AUTOSPC 
examines K after all of the elemental matrices have been assembled and all of the 
constraints have been applied for columns that are singular.  The user controls AU-
TOSPC using ASPCMTH and ASPCTOL, fields 7 and 8 of the CONTROL_IMPLICIT_-
SOLUTION keyword card.  If ASPCMTH = 1, AUTOSPC is used.  For every set of 
columns of K that correspond to the translational or rotational degrees of freedom for a 
node or rigid body those columns are examined.  The singular values of the diagonal 
block of the columns are computed.  If the ratio of the smallest and largest singular 
values is less than ASPCTOL then the set of the columns is declared singular and a 
constraint is imposed to remove the singularity.  The defaults for ASPCTOL is 1.E-6 
when the matrix is assembled in REAL*4 precision and 1.E-8 when REAL*8 is used.  
The imposed constraint sets the degree of freedom to zero that is associated with the 
column that has the largest component in the null space of the columns.  If all of the 
singular values are less than ASPCTOL all of the degrees of freedom in the block are 
constrained to zero. 
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40    
Sparse Eigensolver 

 LS-DYNA now includes the Block Shift and Invert Lanczos eigensolver from 
BCSLIB-EXT.  This eigensolver is used in LS-DYNA to compute the normal modes and 
mode shapes for the vibration analysis problem 

𝐊𝚽 = 𝐌𝚽𝚲, (40.1)
where 𝐊 and 𝐌are the assembled stiffness and mass matrices, 𝚽 are the eigenvectors 
(normal mode shapes) and 𝚲 are the eigenvalues (normal modes).   
 
 The Lanczos algorithm iteratively computes a better and better approximation to 
the extreme eigenvalues and the corresponding eigenvectors of the ordinary eigenvalue 
problem 𝐀𝚽 = 𝚽𝚲where 𝐀 is a real symmetric matrix using only matrix-vector 
multiplies.  To use Lanczos on the vibration analysis problem it must be changed to 

(𝐊 − 𝛔𝐌)−1𝐌𝚽 = 𝚽𝚯, (40.2)

where each shifted and inverted eigenvalue 𝜃𝑖 = 1/(𝜆𝑖 − 𝜎).  This change to an ordinary 
eigenvalue problem makes the eigenvalues of the original problem near  become the 
extreme eigenvalues of the ordinary eigenvalue problem.  This helps the Lanczos 
algorithm compute those eigenvalues quickly.   
 
 BCSLIB-EXT uses a sophisticated logic to choose a sequence of shifts, 𝜎𝑖, to 
enable the computation of a large number of eigenvalues and eigenvectors.  At each 
shift the factorization of 𝐊 − 𝛔𝐌 is computed.  The factorization provides the matrix 
inertia that tells the algorithm how many eigenvalues are to the left of any given 𝜎𝑖.  
Given the inertia information, BCSLIB-EXT can tell how many eigenvalues are in a 
given interval and determine if all of the eigenvalues in that interval have been 
computed.  As a result, BCSLIB-EXT is a very robust eigensolver. 
 
 The implementation of BCSLIB-EXT in LS-DYNA includes a shared memory 
implementation.   However only limited parallel speed-up is available for most 
problems.  This is because the eigensolution requires a vast amount of data that for 
most problems this data has to be stored on I/O files.  The wall clock time for the 
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eigensolver is as much a function of the speed of the I/O subsystem on the computer as 
the CPU time.  Parallelism can only speed up the CPU time and does nothing to speed-
up the I/O time.   
 
 The user can request how many and which eigenvalues to compute using the 
keyword *CONTROL_IMPLICIT_EIGENVALUE.  Via the parameters on this keyword, 
the user can request any of the following problems: 

• Compute the lowest 50 modes (that is nearest to zero) 

• Compute the 20 modes nearest to 30 Hz. 

• Compute the lowest 20 modes between 10 Hz and 50 Hz. 

• Compute all of the modes between 10 Hz and 50 Hz. 

• Compute all of the modes below 50 Hz. 

• Compute the 30 modes nearest to 30 Hz between 10 Hz and 50 Hz. 

 
 

40.1  The Eigenvalue Problem for Rotating Systems 

 Rotating systems, such as the compressor and turbine assembly of a jet engine, 
have large inertial forces that are functions of the distance from the axis of rotation.  
These forces are naturally generated in LS-DYNA if the system is modeled as rotating at 
the proper angular velocity.  However, this is often inconvenient for postprocessing 
because the solution has an oscillatory character imposed it due to the rotation.  A 
commonly used approach to bypass this difficulty is to impose body forces that are 
equivalent to the inertial forces due to rotation.  In LS-DYNA, these forces are imposed 
through *LOAD_BODY_GENERALIZED and related keywords. 
 
 For a system with a constant angular velocity 𝛚 = {𝜔𝑥,𝜔𝑦,𝜔𝑧}T, the body force 
added to the applied load is  

𝐅B = −𝐌{2𝛚 × 𝐮̇ + 𝛚 × (𝛚 × (𝐫 + 𝐮))}. (40.3)
 
 In this equation, 𝐫 is the initial coordinate at a point and 𝐮 is the displacement.  
Because the body force is a function of both the velocity and displacement, it 
contributes both damping and stiffness matrices to the eigenvalue problem.  
Furthermore, since the term involving the initial coordinate creates an initial stress in 
the structure, the initial stress matrix 𝐊𝜎  (also called the nonlinear stiffness) is also 
added to the eigenvalue problem. 
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 The damping and stiffness terms are easily derived in matrix form once the cross 
product is expressed in matrix form.  

𝛚 × 𝐫 = 𝛀𝐫 =
⎣
⎢⎢
⎡

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0 ⎦
⎥⎥
⎤{

𝑥
𝑦
𝑧
}. (40.4)

The linearized equation for vibration is 

𝐌𝐮̈ + 𝐂𝐮̇ + [𝐊 + 𝐊σ]𝐮 = −𝐌{𝛀𝐮̇ +𝛀2𝐮}. (40.5)

 
 Rewriting this equation into the traditional form for eigenvalue analysis 
produces: 

𝐌𝐮̈ + 𝐂R𝐮̇ + 𝐊R𝐮 = 0
𝐂R = 𝐂 +𝐌𝛀 
𝐌𝐮̈ + 𝐂R𝐮̇ + 𝐊R𝐮 = 0.

(40.6)

 
 The inertial contribution to the damping matrix is not symmetric, nor does it 
fulfill the requirements for Rayleigh damping, and therefore the resulting eigenvectors 
and eigenvalues are complex.  The inertial term to the stiffness matrix is, however, 
symmetric and it softens the structure, thereby reducing its natural frequencies.  
 
 If the damping term is omitted, the matrices are real and symmetric, and the 
resulting eigenvalue problem may be solved with the standard eigenvalue methods.  
The natural frequencies won’t be correct, but they are typically close enough to the 
complex solution that they can be used for initial design calculations.
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41    
Boundary Element Method 

 LS-DYNA can be used to solve for the steady state or transient fluid flow about a 
body using a boundary element method.  The method is based on the work of Maskew 
[1987], with the extension to unsteady flow with arbitrary body motion following the 
work of Katz and Maskew [1988].  The theory which underlies the method is restricted 
to inviscid, incompressible, attached fluid flow.  The method should not be used to 
analyze flows where shocks or cavitation are present.   
 
 In practice the method can be successfully applied to a wider class of fluid flow 
problems than the assumption of inviscid, incompressible, attached flow would imply.  
Many flows of practical engineering significance have large Reynolds numbers (above 1 
million).  For these flows the effects of fluid viscosity are small if the flow remains 
attached, and the assumption of zero viscosity may not be a significant limitation.  Flow 
separation does not necessarily invalidate the analysis.  If well-defined separation lines 
exist on the body, then wakes can be attached to these separation lines and reasonable 
results can be obtained.  The Prandtl-Glauert rule can be used to correct for non-zero 
Mach numbers in air, so the effects of aerodynamic compressibility can be correctly 
modeled (as long as no shocks are present). 
 

41.1  Governing Equations 

 The partial differential equation governing inviscid, incompressible fluid flow is 
given by LaPlace’s equation 

∇2𝛷 = 0, (41.1)

where 𝛷 is the velocity potential (a scalar function).  The fluid velocity anywhere in the 
flow field is equal to the gradient of 𝛷.  The boundary condition on this partial 
differntial equation is provided by the condition that there must be no flow in the 
direction normal to the surface of the body.  Note that time does not appear in Equation 
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(41.1).  This is because the assumption of incompressibility implies an infinite sound 
speed; any disturbance is felt everywhere in the fluid instantaneously.  Although this is 
not true for real fluids, it is a valid approximation for a wide class of low-speed flow 
problems. 
 
 Equation (41.1) is solved by discretizing the surface of the body with a set of 
quadrilateral or triangular surface segments (boundary elements).  Each segment has an 
associated source and doublet strength.  The source strengths are computed from the 
free-stream velocity, and the doublet strengths are determined from the boundary 
condition.  By requiring that the normal component of the fluid velocity be zero at the 
center of each surface segment, a linear system of equations is formed with the number 
of equations equal to the number of unknown doublet strengths.  When this system is 
solved, the doublet strengths are known.  The source and doublet distributions on the 
surface of the body then completely determine the flow everywhere in the fluid. 
 
 The linear system for the unknown doublet strengths is shown in Equation (1.2). 

[mic]{𝜇} = {rhs}. (41.2)
 
 In this equation  are the doublet strengths, [mic is the matrix of influence 
coefficients which relate the doublet strength of a given segment to the normal velocity 
at another segment’s mid-point, and rhs is a right-hand-side vector computed from the 
known source strengths.  Note that mic is a fully-populated matrix.  Thus, the cost to 
compute and store the matrix increases with the square of the number of segments used 
to discretize the surface of the body, while the cost to factor this matrix increases with 
the cube of the number of segments.  Users should keep these relations in mind when 
defining the surface segments.  A surface of 1000 segments can be easily handled on 
most any computer, but a 10,000 segment representation would not be feasible on any 
but the most powerful supercomputers. 
 

41.2  Surface Representation 

 The surface of the body is discretized by a set of triagular or quadrilateral surface 
segments.  The best fluid-structure interaction results will be obtained if the boundary 
element segments coincide with, and use identical nodes as, the structural segments 
used to define the body.  An input format has been implemented to make this easy if 
thin shell elements are used to define the structure (see the User’s Manual).  Using the 
same nodes to define the boundary elements and the structure guarantees that the 
boundary elements follow the structure as it deforms, and provides a means for the 
fluid pressure to load the structure. 
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 The nodes used to define the corners of the boundary element segments must be 
ordered to provide a normal vector which points into the fluid (Figure 41.1). 
 
 Triangular segments are specified by using the same node for the 3rd and 4th 
corner of the segment (the same convention used for shell elements in LS-DYNA).  Very 
large segments can be used with no loss of accuracy in regions of the flow where the 
velocity gradients are small.  The size of the elements should be reduced in areas where 
large velocity gradients are present.  Finite-precision arithmetic on the computer will 
cause problems if the segment aspect ratios are extremely large (greater than 1000).  The 
most accurate results will be obtained if the segments are rectangular, and triangular 
segments should be avoided except for cases where they are absolutely required. 
 

41.3  The Neighbor Array  The fluid velocities (and, therefore, the fluid 
pressures) are determined by the gradient of the velocity potential.  On the surface of 
the body, this can be most easily computed by taking derivatives of the doublet 
distribution on the surface.  These derivatives are computed using the doublet strengths 
on the boundary element segments.  The “Neighbor Array” is used to specify how the 
gradient is computed for each boundary element segment.  Thus, accurate results will 
not be obtained unless the neighbor array is correctly specified by the user. 
 
 Each boundary element segment has 4 sides (see Figure 41.2).  Side 1 connects 
the 1st and 2nd nodes, side 2 connects the 2nd and 3rd nodes, etc.  The 4th side is null 
for triangular segments. 
 

normal

node 3node 4

node 2node 1

Figure 41.1.  Counter-clockwise ordering of nodes when viewed from fluid
looking towards solid provides unit normal vector pointing into the fluid. 
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 For most segments the specification of neighbors is straightforward.  For the 
typical case a rectangular segment is surrounded by 4 other segments, and the neighbor 
array is as shown in Figure 41.3.  A biquadratic curve fit is computed, and the gradient 
is computed as the analytical derivative of this biquadratic curve fit evaluated at the 
center of segment j. 
 
 There are several situations which call for a different specification of the 
neighbor array.  For example, boundary element wakes result in discontinuous doublet 
distributions, and the biquadratic curve fit should not be computed across a wake.  
Figure 41.4 illustrates a situation where a wake is attached to side 2 of segment 𝑗.  For 
this situation two options exist.  If neighbor (2, 𝑗) is set to zero, then a linear 
computation of the gradient in the side 2 to side 4 direction will be made using the 
difference between the doublet strengths on segment 𝑗 and segment neighbor (4, 𝑗).  By 
specifying neighbor (2, 𝑗) as a negative number the biquadratic curve fit will be 
retained.  The curve fit will use segment 𝑗, segment neighbor (4, 𝑗), and segment –
neighbor (2, 𝑗); which is located on the opposite side of segment neighbor (4, 𝑗) as 
segment 𝑗.  The derivative in the side 2 to side 4 direction is then analytically evaluated 

node 1 node 2

side 1

side 4

side 3

node 4 node 3

side 2

 Figure 41.2.  Each segment has 4 sides. 

neighbor(4, j)

side 4
segment j

side 3

side 1
side 2

neighbor (2, j)

neighbor (1, j)

neighbor (3, j)

 Figure 41.3.  Typical neighbor specification. 
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at the center of segement j using the quadratic curve fit of the doublet strengths on the 
three segments shown. 
 
 A final possibility is that no neighbors at all are available in the side 2 to side 4 
direction.  In this case both neighbor (2, 𝑗) and neighbor (4, 𝑗) can be set to zero, and the 
gradient in that direction will be assumed to be zero.  This option should be used with 
caution, as the resulting fluid pressures will not be accurate for three-dimensional 
flows.  However, this option is occaisionally useful where quasi-two dimensional 
results are desired.  All of the above options apply to the side 1 to side 3 direction in the 
obvious ways. 
 
 For triangular boundary element segments side 4 is null.  Gradients in the side 2 
to side 4 direction can be computed as described above by setting neighbor (4, 𝑗) to zero 
(for a linear derivative computation) or to a negative number (to use the segment on the 
other side of neighbor (2, 𝑗) and a quadratic curve fit).  There may also be another 
triangular segment which can be used as neighbor (4, 𝑗) (see Figure 41.5). 

neighbor (4, j) segment j

side 4 side 2

-neighbor (2, j)

Figure 41.4.  If neighbor (2, 𝑗) is a negative number it is assumed to lie on the
opposite side of neighbor (4, 𝑗) as segment 𝑗. 
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41.4  Wakes 

 Wakes should be attached to the boundary element segments at the trailing edge 
of a lifting surface (such as a wing, propeller blade, rudder, or diving plane).  Wakes 
should also be attached to known separation lines (such as the sharp leading edge of a 
delata wing at high angles of attack).  Wakes are required for the correct computation of 
surface pressures for these situations.  As described above, two segments on opposite 
sides of a wake should never be used as neighbors.  Correct specification of the wakes is 
required for accurate results. 
 
 Wakes convect with the free-stream velocity.  The number of segments in the 
wake is controlled by the user, and should be set to provide a total wake length equal to 
5-10 times the characteristic streamwise dimension of the surface to which the wake is 
attached.  For example, if the wake is attached to the trailing edge of a wing whose 
chord is 1, then the total length of the wake should at least 5, and there is little point in 
making it longer than 10.  Note that each wake segment has a streamwise length equal 
to the magnitude of the free stream velocity times the time increment between calls to 
the Boundary Element Method routine.  This time increment is the maximum of the LS-
DYNA time step and DTBEM specified on Card 1 of the BEM input.  The influence 
coefficients for the wake segments must be recomputed for each call to the Boundary 
Element Method, but these influence coefficients do not enter into the matrix of 
influence coefficients which must be factored. 
 

41.5  Execution Time Control 

 The Boundary Element Method will dominate the total execution time of a LS-
DYNA calculation unless the parameters provided on Card 1 of the BEM input are used 
to reduce the number of calls to the BEM.  This can usually be done with no loss in 

accuracy since the characteristic time of the structural dynamics and the fluid flow are 

neighbor(4, j)
segment j

side 2

Figure 41.5.  Sometimes another triangular boundary element segment can be
used as neighbor(4,j). 
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so different.  For example, the characteristic time in LS-DYNA is given by the 
characteristic length of the smallest structural element divided by the speed of sound of 
the material.  For typical problems this characteristic time might be on the order of 
microseconds.  Since the fluid is assumed to be incompressible (infinite speed of sound), 
the characteristic time of the fluid flow is given by the streamwise length of the smallest 
surface (e.g. a rudder) divided by the fluid velocity.  For typical problems this 
characteristic time might be on the order of milliseconds.  Thus, for this example, the 
boundary element method could be called only once for every 1000 LS-DYNA 
iterations, saving an enormous amount of computer time. 
 
 The parameter DTBEM on Card 1 of the BEM input is used to control the time 
increment between calls to the boundary element method.  The fluid pressures 
computed during the last call to the BEM will continue to be used for subsequent LS-
DYNA iterations until DTBEM has elapsed. 
 
 A further reduction in execution time may be obtained for some applications 
using the input parameter IUPBEM.  This parameter controls the number of calls to the 
BEM routine between computation (and factorization) of the matrix of influence 
coefficients (these are time-consuming procedures).  If the motion of the body is entirely 
rigid body motion there is no need to recompute and factor the matrix of influence 
coefficients, and the execution time of the BEM can be significantly reduced by setting 
IUPBEM to a very large number.  For situations where the motion of the body is largely 
rigid body motion with some structural deformation an intermediate value (e.g. 10) for 
IUPBEM can be used.  It is the user’s responsibility to verify the accuracy of calculations 
obtained with IUPBEM greater than 1. 
 
 The final parameter for controlling the execution time of the boundary element 
method is FARBEM.  The routine which calculates the influence coefficients switches 
between an expensive near-field and an inexpensive far-field calculation depending on 
the distance from the boundary element segment to the point of interest.  FARBEM is a 
nondimensional parameter which determines where the far-field boundary lies.  Values 
of FARBEM of 5 and greater will provide the most accurate results, while values as low 
as 2 will provide slightly reduced accuracy with a 50% reduction in the time required to 
compute the matrix of influence coefficients. 
 

41.6  Free-Stream Flow 

 The free-stream flow is specified in the second card of input.  The free-stream 
velocity is assumed to be uniform.  The free-stream static pressure is assumed to be 
uniform, and can be used to load the structure for hydrostatic pressure.  If the structure 
has an internal pressure, the free-stream static pressure should be set to the difference 
between the external and internal static pressures.  The Mach number can be used to 
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correct for the effect of compressibility in air (as long as no shocks are present).  
Following the Prandtl-Glauert correction, the pressures due to fluid flow are increased 
as follows 

𝑑𝑝corrected =
𝑑𝑝uncorrected

√1 −𝑀2
(41.3)

where M is the free-stream Mach number.  Note that this correction is only valid for 
flows in a gas (it is not valid for flows in water).
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42    
SPH 

 Smoothed Particle Hydrodynamics (SPH) is an N-body integration scheme 
developed by Lucy, Gingold and Monaghan [1977].  The method was developed to 
avoid the limitations of mesh tangling encountered in extreme deformation problems 
with the finite element method.  The main difference between classical methods and 
SPH is the absence of a grid.  Therefore, the particles are the computational framework 
on which the governing equations are resolved.  This new model requires a new 
calculation method, which is briefly explained in the following. 
 

42.1  SPH Formulation  

42.1.1  Definitions  

 The particle approximation of a function is: 

Πℎ𝑓 (𝑥) = ∫ 𝑓 (𝑦)𝑊(𝑥 − 𝑦, ℎ)𝑑𝑦, (42.1)

where 𝑊 is the kernel function. 
 
 The Kernel function 𝑊 is defined using the function 𝜃 by the relation: 

𝑊(𝐱, ℎ) =
1

ℎ(𝐱)𝑑
𝜃(𝐱). (42.2)

where 𝑑 is the number of space dimensions and ℎ is the so-called smoothing length 
which varies in time and in space. 
 
 𝑊(𝐱, ℎ) should be a centrally peaked function.  The most common smoothing 
kernel used by the SPH community is the cubic B-spline which is defined by choosing 𝜃 
as: 
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𝜃(𝑢) = 𝐶 ×

⎩{
{{
⎨
{{
{⎧1 −

3
2 𝑢

2 +
3
4 𝑢

3 for |𝑢| ≤ 1
1
4 (2 − 𝑢)3            for  1 ≤ |𝑢| ≤ 2
0 for 2 < |𝑢|

 (42.3)

where C is a constant of normalization that depends on the number of space 
dimensions.   
 
 The SPH method is based on a quadrature formula for moving particles ((𝐱𝑖(𝑡)) 
𝑖 ∈ {1. . 𝑁}, where 𝐱𝑖(𝑡) is the location of particle 𝑖, which moves along the velocity field 
v. 
 
 The particle approximation of a function can now be defined by: 

Πℎ𝑓 (𝐱𝑖) = ∑ 𝑤𝑗𝑓 (𝐱𝑖)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)
𝑁

𝑗=1
, (42.4)

where 𝑤𝑗 =
𝑚𝑗
𝜌𝑗  is the “weight” of the particle.  The weight of a particle varies 

proportionally to the divergence of the flow. 
 
 The SPH formalism implies a derivative operator.  A particle approximation for 
the derivative operator must be defined.   Before giving the definition of this 
approximation, we define the gradient of a function as: 

∇𝑓 (𝑥) = ∇𝑓 (𝑥) − 𝑓 (𝑥)∇1(𝑥), (42.5)
where 1 is the unit function. 
 
 Starting from this relation, we can define the particle approximation to the 
gradient of a function: 

Πℎ∇𝑓 (𝐱𝑖) = ∑
𝑚𝑗

𝜌𝑗
[𝑓 (𝐱𝑗)𝐴𝑖𝑗 − 𝑓 (𝐱𝑖)𝐴𝑖𝑗]

𝑁

𝑗=1
, (42.6)

where 𝐴𝑖𝑗 = 1
ℎ𝑑+1 𝜃′(

||𝐱𝑖−𝐱𝑗||
ℎ ). 

 
 We can also define the particle approximation of the partial derivative ∂

∂𝑥𝛼: 

Πℎ(
∂𝑓

∂𝑥𝛼)(𝐱𝑖) = ∑ 𝑤𝑗

𝑁

𝑗=1
𝑓 (𝐱𝑗𝐴𝛼(𝐱𝑖, 𝐱𝑗), (42.7)

where 𝐀 is the operator defined by: 𝐀(𝐱𝑖, 𝐱𝑗) = 1
ℎ𝑑+1(𝐱𝑖,𝐱𝑗)

(𝐱𝑖−𝐱𝑗)
|∣𝐱𝑖−𝐱𝑗∣|

𝜃′ (
|∣𝐱𝑖−𝐱𝑗∣|
ℎ(𝐱𝑖,𝐱𝑗)

), 𝐴𝛼 is the 

component 𝛼 of the 𝐀 vector. 
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42.1.2  Discrete Form of Conservation Equations  

 We are looking for the solution of the equation: 
𝐿𝑣(𝜙) + div𝐅(𝐱, 𝑡, 𝜙) = 𝑆, (42.8)

where 𝜙 ∈ 𝑅𝑑 is the unknown, 𝐅𝛽 with 𝛽 ∈ {1. . 𝑑} represents the conservation law and 
𝐿𝑣 is the transport operator defined by: 

𝐿𝑣: 𝜙 → 𝐿𝑣(𝜙) =
∂𝜙
∂𝑡 + ∑

∂(𝐯𝑙𝜙)
∂𝑥𝑙

𝑑

𝑙=1
. (42.9)

 
The strong formulation approximation: 
 In the search of the strong solution, the equation is kept at its initial formulation.  
The discrete form of this problem implies the definition of the operator of derivation 𝐷 
defined by: 

𝐷: 𝜙 → 𝐷𝜙(𝑥) = ∇𝜙(𝑥) − 𝜙(𝑥)∇1(𝑥). (42.10)
The particle approximation of this operator is:   

𝐷ℎ𝜙(𝐱𝑖) = ∑ 𝑤𝑗(𝜙(𝐱𝑗) − 𝜙(𝐱𝑖))𝐴𝑖𝑗

𝑁

𝑗=1
, (42.11)

where 𝐴𝑖𝑗 is defined previously. 
 
 Finally, the discrete form of the strong formulation is written: 

𝑑
𝑑𝑡 (𝑤𝑖𝜙(𝐱𝑖)) + 𝑤𝑖𝐷ℎ𝐹(𝐱𝑖) = 𝑤𝑖𝑆(𝐱𝑖), (42.12)

But this form is not conservative; therefore the strong formulation is not numerically 
acceptable.  Thus, we are compelled to use the weak form. 
 
The weak formulation approximation: 
 In the weak formulation, the adjoint of the 𝐿𝑣 operator is used: 

𝐿𝑣
∗: 𝜙 → 𝐿𝑣

∗(𝜙) =
∂𝜙
∂𝑡 + ∑ 𝑣𝑙

𝑑

𝑙=1

∂𝜙
∂𝑥𝑙. (42.13)

The discrete form of this operator corresponds to the discrete formulation of the adjoint 
of 𝐷ℎ,𝑠: 

𝐷ℎ,𝑠
∗ 𝜙(𝐱𝑖) = ∑ 𝑤𝑗(𝜙(𝐱𝑖

𝑁

𝑗=1
)𝐴𝑖𝑗 − 𝜙(𝐱𝑗)𝐴𝑗𝑖). (42.14)

 
 A discrete adjoint operator for the partial derivative is also necessary, and is 
taken to be the 𝛼 − 𝑡ℎ component of the operator: 
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𝐷𝛼
∗𝜙(𝐱𝑖) = ∑ 𝑤𝑗

𝑁

𝑗=1
𝜙(𝐱𝑗)𝐴𝛼(𝐱𝑖, 𝐱𝑗) − 𝑤𝑗𝜙(𝐱𝑖)𝐴𝛼(𝐱𝑗, 𝐱𝑖) (42.15)

These definitions are leading to a conservative method.  Hence, all the conservative 
equations encountered in the SPH method will be solved using the weak form. 
 

42.1.3  Applications to Conservation Equations  

 With the definitions explained above, the conservation equations can now be 
written in their discrete form. 
 
 Momentum conservation equation: 

𝑑𝐯𝛼

𝑑𝑡 (𝐱𝑖(𝑡)) =
1
𝜌𝑖

∂(𝜎𝛼𝛽)
∂𝑥𝑖

(𝐱𝑖(𝑡)), (42.16)

where 𝛼, 𝛽 are the space indices. 
 
 The particle approximation of the weak form of this equation is: 

𝑑𝐯𝛼

𝑑𝑡 (𝐱𝑖) = ∑ 𝑚𝑗

𝑁

𝑗=1 ⎝
⎜⎛𝜎𝛼,𝛽(𝐱𝑖)

𝜌𝑖
2 𝐴𝑖𝑗 −

𝜎𝛼,𝛽(𝐱𝑗)
𝜌𝑗

2 𝐴𝑗𝑖
⎠
⎟⎞. (42.17)

 
 Energy conservation equation: 

𝑑𝐸
𝑑𝑡 = −

𝑃
𝜌 ∇𝐯. (42.18)

 
 The particle approximation of the weak form of this equation is: 

𝑑𝐸
𝑑𝑡 (𝐱𝑖) = −

𝑃𝑖

𝜌𝑖
2 ∑ 𝑚𝑗

𝑁

𝑗=1
(𝑣(𝐱𝑗) − 𝑣(𝐱𝑖))𝐴𝑖𝑗. (42.19)

 

42.1.4  Formulation Available in LS-DYNA  

 It is easy from the general formulation displayed in Equation (42.14) to extend 
the SPH formalism to a set of equations of discretization for the momentum equation. 
 
 For example, if we choose the smoothing function to be symmetric, this can lead 
to the following equation: 

𝑑𝐯𝛼

𝑑𝑡 (𝐱𝑖) = ∑ 𝑚𝑗

𝑁

𝑗=1 ⎝
⎜⎛𝜎𝛼,𝛽(𝐱𝑖)

𝜌𝑖
2 +

𝜎𝛼,𝛽(𝐱𝑗)
𝜌𝑗

2 ⎠
⎟⎞𝐴𝑖𝑗. (42.20)
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This is what we call the “symmetric formulation”, which is chosen in the 
*CONTROL_SPH card (IFORM = 2).  
 
 Another possible choice is to define the momentum equation by: 

𝑑𝐯𝛼

𝑑𝑡 (𝐱𝑖) = ∑ 𝑚𝑗

𝑁

𝑗=1 ⎝
⎜⎛𝜎𝛼,𝛽(𝐱𝑖)

𝜌𝑖𝜌𝑗
𝐴𝑖𝑗 −

𝜎𝛼,𝛽(𝐱𝑗)
𝜌𝑖𝜌𝑗

𝐴𝑗𝑖
⎠
⎟⎞. (42.21)

 
 This is the “fluid formulation” invoked with IFORM = 5 which gives better 
results than other SPH formulations when fluid material are present, or when material 
with very different stiffness are used. 
 

42.2  Sorting  

 In the SPH method, the location of neighboring particles is important.  The 
sorting consists of finding which particles interact with which others at a given time.  A 
bucket sort is used that consists of partitioning the domain into boxes where the sort is 
performed.  With this partitioning the closest neighbors will reside in the same box or in 
the closest boxes.  This method reduces the number of distance calculations and 
therefore the CPU time. 
 

42.3  Artificial Viscosity 

 The artificial viscosity is introduced when a shock is present.  Shocks introduce 
discontinuities in functions.  The role of the artificial viscosity is to smooth the shock 
over several particles.  To take into account the artificial viscosity, an artificial viscous 
pressure term Π𝑖𝑗 [Monaghan & Gingold 1983] is added such that: 

𝑝𝑖 → 𝑝𝑖 + Π𝑖𝑗, (42.22)

where Π𝑖𝑗 = 1
𝜌𝑖̅𝑗

(−𝛼𝜇𝑖𝑗𝑐𝑖̅𝑗 + 𝛽𝜇𝑖𝑗
2 ). 

 
 The notation 𝑋̅̅̅̅̅𝑖𝑗 = 1

2 (𝑋𝑖 + 𝑋𝑗) has been used for median between 𝑋𝑖 and 𝑋𝑗, 𝑐 is 
the adiabatic sound speed, and 

𝜇𝑖𝑗 =
⎩{
⎨
{⎧ℎ̅𝑖𝑗

𝑣𝑖𝑗𝑟𝑖𝑗
𝑟𝑖𝑗2 + 𝜂2 if 𝑣𝑖𝑗𝑟𝑖𝑗 < 0

 0 otherwise
 (42.23)

Here, 𝑣𝑖𝑗 = (𝑣𝑖 − 𝑣𝑗), and 𝜂2 = 0.01ℎ̅𝑖𝑗
2  which prevents the denominator from vanishing. 
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42.4  Time Integration  

 We use a simple and classical first-order scheme for integration.  The time step is 
determined by the expression: 

𝛿𝑡 = 𝐶CFL𝑀𝑖𝑛𝑖 (
ℎ𝑖

𝑐𝑖 + 𝑣𝑖
), (42.24)

where the factor 𝐶CFL is a numerical constant. 
 
 The calculation cycle is: 

 
 
 

42.5  Initial Setup 

 Initially, we have a set of particles with two kinds of properties: physical and 
geometrical properties. 
 
Physical Properties: 

Velocity/positions

LS-DYNA

Accelerations

LS-DYNA

contact, boundary conditions

LS-DYNA

Particles forces

SPH

Pressure, thermal energy, stresses

LS-DYNA

Smoothing length

SPH

Sorting

SPH

Density, strain rates

SPH

Start
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 The mass, density, constitutive laws are defined in the ELEMENT_SPH and the 
PART cards. 
 
Geometrical Properties: 
 The geometrical properties of the model concern the way particles are initially 
placed.  Two different parameters are to be fixed: Δ𝑥𝑖 lengths and the CSLH coefficient. 
These parameters are defined in the SECTION_SPH card. 
 
 A proper SPH mesh must satisfy the following conditions: it must be as regular 
as possible and must not contain too large variations.  
 
 For instance, if we consider a cylinder SPH mesh, we have at least two 
possibilities: 
 
 

 
 
 The mesh number 2 includes too many inter-particle distance discrepancies.    
Therefore, the first mesh, more uniform, is better. 
 
Finite element coupling 
 Coupling finite elements and SPH elements is realized by using contact 
algorithms.  Users can choose any “nodes_to_surface” contact type where the slave part 
is defined with SPH elements and the master part is defined with finite elements.
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43    
Element-Free Galerkin 

 Mesh-free methods, which construct the approximation entirely in terms of 
nodes, permit reduced restriction in the discretization of the problem domain and are 
less susceptible to distortion difficulties than finite elements.  For a variety of 
engineering problems with extremely large deformation, moving boundaries or 
discontinuities, mesh-free methods are very attractive.  The two most commonly used 
approximation theories in mesh-free methods are the moving least-squares (MLS) 
approximation in the Element-free Galerkin (EFG) method [Belytschko et al.  1994], and 
the reproducing kernel (RK) approximation in the reproducing kernel particle method 
(RKPM) [Liu et al.  1995].  Since these two methods lead to an identical approximation 
when monomial basis functions are used, the MLS approximation is used as a basis to 
formulate the mesh-free discrete equations in this section.  

43.1  Moving least-squares 

 The Element-free Galerkin method uses the moving least-squares approximation 
to construct the numerical discretization.  The discrete MLS approximation of a function 
𝑢(𝐱), denoted by 𝑢ℎ(𝐱), is constructed by a combination of the monomials as 

𝑢ℎ(𝐱) = ∑ 𝐻𝑖(𝐱)𝑏𝑖(𝐱) ≡ 𝐇T(𝐱)𝐛(𝐱)
𝑛

𝑖=1
, (43.1)

where 𝑛 is the order of completeness in this approximation, the monomial 𝐻𝑖(𝐱) are 
basis functions, and 𝑏𝑖(𝐱) are the coefficients of the approximation. 
 
 The coefficients 𝑏𝑖(𝐱) at any point 𝐱 are depending on the sampling points 𝐱𝐼 that 
are collected by a weighting function 𝑤𝑎(𝐱 − 𝐱𝐼). This weighting function is defined to 
have a compact support measured by ‘a’, i.e., the sub-domain over which it is nonzero is 
small relative to the rest of the domain.  Each sub-domain ΔΩ𝐼 is associated with a node 
𝐼. The most commonly used sub-domains are disks or balls.  A typical numerical model 
is shown in Figure 43.1.  
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 In this development, we employ the cubic B-spline kernel function as the 
weighting function: 

𝑤𝑎(𝐱 − 𝐱𝐼) =

⎩{
{{
{{
⎨
{{
{{
{⎧2

3 − 4 (
‖𝐱 − 𝐱𝐼‖

𝑎 )
2

+ 4 (
‖𝐱 − 𝐱𝐼‖

𝑎 )
3

for 0 ≤
‖𝐱 − 𝐱𝐼‖

𝑎 ≤
1
2

4
3 − 4 (

‖𝐱 − 𝐱𝐼‖
𝑎 ) + 4 (

‖𝐱 − 𝐱𝐼‖
𝑎 )

2
−

4
3 (
‖𝐱 − 𝐱𝐼‖

𝑎 )
2

for 
1
2 <

‖𝐱 − 𝐱𝐼‖
𝑎 ≤ 1

0 otherwise
⎭}
}}
}}
⎬
}}
}}
}⎫

(43.2)

 
 The moving least-squares technique consists in minimizing the weighted L2-
Norm   

𝐽 = ∑Wa(𝐱)
NP

𝐼=1
(𝐱 − 𝐱𝐼) [∑ 𝐻𝑖(𝐱)𝑏𝑖(𝐱) − 𝑢(𝐱𝐼)

𝑛

𝑖=1
]

2

, (43.3)

where NP is the number of nodes within the support of 𝐱 for which the weighting 
function 𝑤𝑎(𝐱 − 𝐱𝐼) ≠ 0. 
 
 Equation (39.3) can be written in the form 

𝐽 = (𝐇𝐛 − 𝐮)TWa(𝐱)(𝐇𝐛 − 𝐮), (43.4)

where 

𝐮T = (𝑢1, 𝑢2, ⋯𝑢NP), (43.5)

ΩI

Ω

 Figure 43.1.  Graphical representation of mesh-free discretization 
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𝐇 =
⎣
⎢⎡
{𝐇(𝐱1)}T
⋯
{𝐇(𝐱NP)}T⎦

⎥⎤, (43.6)

{𝐇(x𝑖)}T = {𝐻1(𝐱𝑖),…𝐻𝑛(𝐱𝑖)}, (43.7)

𝐖a = diag[𝑤𝑎(𝐱 − 𝐱1), ⋯ , 𝑤𝑎(𝐱 − 𝐱NP)]. (43.8)
 
 To find the coefficients 𝐛 we obtain the extremum of 𝐽 by 

∂𝐽
∂b = 𝐌[n](𝐱)𝐛(𝐱) − 𝐁(𝐱)𝐮 = 0, (43.9)

where 𝐌[𝑛](𝐱) is called the moment matrix of 𝑤𝑎(𝐱 − 𝐱𝐼) and is given by 

𝐌[n](𝐱) = 𝐇T𝐖a(𝐱)𝐇, (43.10)

𝐁(𝐱) = 𝐇T𝐖a(𝐱). (43.11)

So we have 

𝐛(𝐱) = 𝐌[n]−1(𝐱)𝐁(𝐱)𝐮. (43.12)

 
 For 𝐌[𝑛](𝐱) to be invertible, the support of 𝑤𝑎(𝐱 − 𝐱) needs to be greater than a 
minimum size that is related to the order of basis functions.  Using the solution of 
Equations (43.1), (43.10), (43.11) and (43.12), the EFG approximation is obtained by 

𝑢ℎ(𝐱) = ∑Ψ𝐼(𝐱)𝑢𝐼

NP

𝐼=1
, (43.13)

where the EFG shape functions Ψ𝐼(𝐱) are given by 

Ψ𝐼(𝐱) = 𝐇T(𝐱)𝐌[n]−1(𝐱)𝐁(𝐱), (43.14)

and 𝚿𝐼(𝐱) are nth-order complete, i.e. 

∑Ψ𝐼(𝐱)𝑥1𝐼
𝑝

𝑁𝑃

𝐼=1
𝑥2𝐼

𝑞 = 𝑥1
𝑝𝑥2

𝑞  for  𝑝 + 𝑞 = 0, ⋯ 𝑛. (43.15)

 

43.2  Integration constraint and strain smoothing  

 The convergence of the Galerkin method for a partial differential equation is 
determined by approximation for the unknowns and the numerical integration of the 
weak form.  EFG shape functions with linear consistency can be obtained from MLS 
approximation with linear basis functions.  The employment of linearly consistent 
mesh-free shape functions in the Galerkin approximation, however, does not guarantee 
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a linear exactness in the solution of the Galerkin method.  It has been shown by Chen et 
al.  [2001] that two integration constraints are required for the linear exactness solution 
in the Galerkin approximation. 

∑∇ΨI(xL̂)AL
NIT

𝐿=1
= 0 for  {𝐼: supp(Ψ𝐼) ∩ Γ = 0}, (43.16)

∑∇ΨI(xL̂)AL
NIT

𝐿=1
= ∑ nΨ𝐼(x𝐿̃)𝑠𝐿

NITh

𝐿=1
 for  {𝐼: supp(Ψ𝐼) ∩ Γℎ ≠ 0}. (43.17)

where Γℎ is the natural boundary, Γ is the total boundary, 𝐧 is the surface normal on Γℎ, 
x𝐿̂ and 𝐴𝐿 are the spatial co-ordinate and weight of the domain integration point, 
respectively, x𝐿̃ and 𝑠𝐿 are the spatial co-ordinate and weight of the domain of natural 
boundary integration point, respectively, NIT is the number of integration points for 
domain integration and NITh is the number of integration points for natural boundary 
integration. 
 
 A strain smoothing method proposed by Chen and Wu [1998] as a regularization 
for material instabilities in strain localization was extended in their nodal integration 
method [Chen et al, 2001] to meet the integration constraints.  Here, we adopt the 
similar concept for the domain integration.  If starts with a strain smoothing at the 
representative domain of a Gauss point by 

∇̃𝑢𝑖
ℎ(x𝐿) =

1
𝐴𝐿

∫ ∇𝑢𝑖
ℎ(x𝐿)

Ω𝐿
𝑑Ω,𝐴𝐿 = ∫ 𝑑Ω

Ω𝐿
, (43.18)

where Ω𝐿 is a representative domain at each Guass point and ∇̃ is the smoothed 
gradient operator.  By applying divergence theorem to Equation (43.18) to yield 

∇̃𝑢𝑖
ℎ(x𝐿) =

1
𝐴𝐿

∫ n𝑢𝑖
ℎ(x𝐿)

Γ𝐿
𝑑Γ, (43.19)

where Γ𝐿 is the boundary of the representative domain of Guass point L. Introducing 
EFG shape functions into Equation (25.22) yields 

∇̃𝑢𝑖
ℎ(x𝐿) = ∑

𝐼

1
𝐴𝐿

∫ Ψ𝐼(x)n
Γ𝐿

𝑑Γ ⋅ 𝑑𝑖𝐼 ≡ ∑∇̃Ψ𝐼(x𝐿) ⋅ 𝑑𝑖𝐼
𝐼

. (43.20)

It can be shown that the smoothed EFG shape function gradient ∇̃Ψ𝐼(xL) meets the 
integration constraints in Equations (43.16) and (43.17) regardless of the numerical 
integration employed. 
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43.3  Lagrangian strain smoothing for path-dependent 
problems 

 To avoid the tensile instability caused by the Eulerian kernel functions, the 
Lagrangian kernel functions are implemented in the current LS-DYNA.  
 
 To introduce the Lagrangian EFG shape function into the approximation of a 
path-dependent problem, the strain increment Δ𝑢𝑖,𝑗 is computed by 

Δ𝑢𝑖,𝑗 =
∂Δ𝑢𝑖
∂𝑥𝑗

=
∂Δ𝑢𝑖
∂𝑋𝑘

𝐹𝑘𝑗
−1 = Δ𝐹𝑖𝑘𝐹𝑘𝑗

−1. (43.21)

 
 The strain smoothing of Δ𝑢𝑖,𝑗 at a material pointx𝐿is computed by 

Δ𝑢𝑖̃,𝑗(x𝐿) = Δ𝐹𝑖̃𝑘(x𝐿)𝐹𝑘̃𝑗
−1(x𝐿), (43.22)

where 𝐹𝑖̃𝑗(x𝐿) is the Langrangian strain smoothing of deformation gradient and is given 
by 

𝐹𝑖̃𝑗(x𝐿) =
1
𝐴𝐿

∫ 𝑢𝑖
ℎ𝑁𝑗Γ𝐿

𝑑Γ + δ𝑖𝑗. (43.23)

 

43.4  Galerkin approximation for explicit dynamic 
computation 

 The strong form of the initial/boundary value problem for elasto-dynamics is as 
follows: 

ρ𝐮̈ = ∇ ⋅ 𝛔 + 𝐟b in Ω, (43.24)
with the divergence operator ∇, the body force 𝐟𝑏, mass density ρ ,and with the 
boundary conditions: 

𝐮 = 𝐮0 on Γ𝑢
𝛔 ⋅ 𝐧 = 𝐡 on Γℎ, (43.25)

and initial conditions 

𝐮(𝐗, 0) = 𝐮0(𝐗)
𝐮̇(X, 0) = 𝐮̇0(𝐗).

(43.26)

 
 To introduce the Lagrangian strain smoothing formulation into the Galerkin 
approximation, an assumed strain method is employed.  The corresponding weak form 
becomes: 
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∫ ρδ𝐮 ⋅
Ω𝑥

𝐮̈dΩ + ∫ δ𝛆̃
Ω𝑥

: 𝛔dΩ = ∫ δ𝐮 ⋅
Ω𝑥

𝐟bdΩ + ∫ δ𝐮 ⋅
Γℎ

𝐡dΓ. (43.27)

 
 Following the derivation for explicit time integration, the equations to be solved 
have the form 

δ𝐮T𝐌𝐮̈ = δ𝐮T𝐑, (43.28)

where 

𝐮̈𝐼 = [𝑑1̈𝐼,𝑑2̈𝐼, 𝑑3̈𝐼]𝑇 
𝑀𝐼𝐽 = ∫ ρΨ𝐼(𝐱)Ψ𝐽(𝐱)𝑑Ω =

Ω𝑥
∫ ρ0Ψ𝐼(𝐗)Ψ𝐽(𝐗)𝑑Ω
Ω𝑋

 

R𝐼 = ∫ 𝐁̃𝐼
𝑇(𝐱) ⋅ 𝛔(𝐅̃)𝑑Ω

Ω𝑥
− [Ψ𝐼(x)𝐡]∣ Γℎ − ∫ Ψ𝐼(x)𝐟b𝑑Ω

Ω𝑥
, 

(43.29)

where B̃𝐼
𝑇(x) is the smoothed gradient matrix obtained from Equation (43.22), 𝑑𝑖𝐼 is the 

coefficient of the approximation or the “generalized” displacement. 
 

43.5  Imposition of essential boundary condition 

 In general, mesh-free shape functions Ψ𝐼 do not possess Kronecker delta 
properties of the standard FEM shape functions, i.e. 

Ψ𝐼(xJ) ≠ δ𝐼𝐽. (43.30)

 
 This is because, in general, the mesh-free shape functions are not interpolation 
functions.  As a result, a special treatment is required to enforce essential boundary 
conditions.  There are many techniques for mesh-free methods to impose the essential 
boundary condition.  Here, we adopt the transformation method as originally proposed 
for the RKPM method by Chen et al.  [1996]. 
 
 Therefore, to impose the essential boundary conditions using kinematically 
admissible mesh-free shape functions by the transformation method, Equation (43.28) 
can be written as  

δ𝐮̂T𝐌̂𝐮̈ = δ𝐮̂T𝐅̂int, (43.31)

where 
𝐮̂ = 𝐀𝐮;𝐴𝐼𝐽 = Ψ𝐽(𝑋𝐼). (43.32)

or 

𝐮 = 𝐀−1𝐮̂, (43.33)

and 
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𝐌̂ = 𝐀−T𝐌𝐀−1; 𝐅̂int = 𝐀−T𝐅int. (43.34)

 
 A mixed transformation method [Chen et al.  2000] is also considered as an 
alternative to impose the essential boundary conditions.  The mixed transformation 
method is an improved transformation method that the coordinate transformation is 
only applied for the degrees of freedom associated with the essential and contact 
boundaries. 
 
 The nodes are partitioned into three groups: a boundary group 𝐺𝐵1 which 
contains all the nodes subjected to kinematic constraints; group 𝐺𝐵2 which contains all 
the nodes whose kernel supports cover nodes in group 𝐺𝐵1; and internal group 𝐺𝐼 
which contains the rest of nodes.  Nodes numbers are re-arranged in the following 
order in the generalized displacement vector: 

𝐮 =
⎣
⎢⎡

u𝐵1

u𝐵2
u𝐼 ⎦

⎥⎤ (43.35)

where 𝐮𝐵1, 𝐮𝐵2 and 𝐮𝐼 are the generalized displacement vectors associated with groups 
𝐺𝐵1, 𝐺𝐵2 and 𝐺𝐼 respectively.  The transformation in Equation (43.32) is also re-arranged 
as 

𝐮̂ = [𝐮̂𝐵
𝐮̂𝐼 ] [ΛBB ΛBI

ΛIB ΛII
] [𝐮𝐵

𝐮𝐼 ] ≡ 𝚲̂𝐮, (43.36)

where 

𝐮̂B = [û𝐵1

û𝐵2
] ; 𝐮B = [u𝐵1

u𝐵2
] ; 𝚲BB = [ΛB1B1 ΛB1B2

ΛB2𝐵1 ΛB2B2
] ; 𝚲BI = [0

Λ𝐵2𝐼] ; 𝚲IB

= [Λ𝐼𝐵1 Λ𝐼𝐵2].
(43.37)

 
 Here, we introduce a mixed displacement vector 𝐮∗, 

𝐮∗ = [𝐮̂𝐵
𝐮𝐼 ] [ΛBB ΛBI

0 I
] [𝐮𝐵

𝐮𝐼 ] ≡ 𝚲∗𝐮, (43.38)

and Λ∗ and its inverse are: 

𝚲∗ = [ΛBB ΛBI
0 I

] ; 𝚲∗−1
= [ΛBB

−1
−ΛBB

−1
ΛBI

0 I
]. (43.39)

Only the inversion of Λ𝐵𝐵is required in Equation (22.68.15). 
 
 Using the mixed coordinates in Equation (43.38), the transformed discrete 
Equation (43.31) becomes   

δ𝐮∗T𝐌∗𝐮̈∗ = δ𝐮∗T𝐑∗, (43.40)

where 
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𝐌∗ = 𝐀∗−T𝐌𝐀∗−1; 𝐑∗ = 𝐀∗−T𝐑. (43.41)

 
 The computation in Equations (43.41) is much less intensive than that in 
Equation (43.31), especially when the number of boundary and contact nodes is much 
smaller than the number of interior nodes. 
 

43.6  Mesh-free Shell 

 The extension of explicit mesh-free solid analysis to shell analysis is described in 
this section. Two projection methods are developed to generate the shell mid-surface 
using the moving-least-squares approximations.  A co-rotational, updated Lagrangian 
procedure is adopted to handle arbitrarily large rotations with moderate strain 
responses of the shell structures.  A local boundary integration method in conjunction 
with the selective reduced integration method is introduced to enforce the linear 
exactness and relieve shear locking. 
 

43.6.1  Mesh-free Shell Surface Representation 

 Surface reconstruction from disorganized nodes is very challenging in three 
dimensions.  The problem is ill posed, i.e., there is no unique solution.  Lancaster et al.  
[1981] first proposed a fast surface reconstruction using moving least squares method.  
Their approach was then applied to the computational mechanics under the name 
‘mesh-free method’.  Implicitly, the mesh-free method uses a combination of smooth 
basis functions (primitives) to find a scalar function such that all data nodes are close to 
an iso-contour of that scalar function in a global sense.  In reality, the shell surface 
construction using the 3D mesh-free method is inadequate.  This is because the 
topology of the real surface can be very complicated in three dimensions.  Without the 
information on the ordering or connectivity of nodes, the reconstructed surface will not 
be able to represent shell intersections, exterior boundaries and shape corners. 
 
 In our development of mesh-free shells, we assume that a shell surface is 
described by a finite element mesh.  This can be easily accomplished by converting a 
part of shell finite elements into mesh-free zone.  With the connectivity of nodes 
provided by the finite element mesh, a shell surface can be reconstructed with mesh-
free interpolation from the nodal positions 

𝐱̅ = Ψ̃𝐼(𝐗)𝐱𝐼, (43.42)

where 𝐱𝐼 is the position vector of the finite element node on the shell surface and Ψ̃𝐼(𝐗) 
is the mesh-free shape function.  In the above surface representation, a 3D arbitrary 
shell surface needs to be projected to a 2D plane.  Two approaches for the projection of 
mesh-free shell surface are used: 
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• Global parametric representation: The whole shell surface is projected to a 
parametric plane and the global parametric coordinates are obtained with a 
parameterization algorithm from the patch of finite elements. 

• Local projection representation: A local area of the shell is projected to a plane 
based on the existing element where the evaluated point is located. 

 
Global parametric approach 
 In the global approach, a mesh-free zone with a patch of finite elements is 
mapped onto a parametric plane with an angle-based triangular flattening algorithm 
[Sheffer and de Sturler 2001], (see Figure 43.2). The idea of this algorithm is to compute 
a projection that minimizes the distortion of the FE mesh angles.  The mesh-free shape 
functions are defined in this parametric domain and given by 

Ψ̃𝐼(𝐗) = Ψ̃𝐼(𝜉 , 𝜂), (43.43)

where (𝜉 , 𝜂) is the parametric coordinates corresponding to a point X. 
 
 
Local projection approach 
 Different from the parameterization algorithm that constructs the surface 
globally, we reconstruct the surface locally by projecting the surrounding nodes onto 
one element.  In the local projection method, nodes in elements neighboring the element 
where the evaluated point is located (for example, the element i in Figure 43.3) are 
projected onto the plane which the element defines (the “M-plane” in Figure 43.3). In 
this figure, (𝑥,̂ 𝑦,̂ 𝑧)̂𝑖 is a local system defined for each projected plane and (𝑥,̅ 𝑦,̅ 𝑧)̅𝐼 is a 
nodal coordinate system defined for each node where 𝑧 ̅ is the initial averaged normal 
direction.  
 
 The mesh-free shape functions are then defined with those locally projected 
coordinates of the nodes 

Ψ𝐼(𝐗) = Ψ𝐼(𝑥,̂ 𝑦)̂. (43.44)

ξ

η

Projection

 Figure 43.2.  Mesh-free shell global approach 
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However, the shape functions obtained directly above are non-conforming, i.e. 

Ψ𝐼(𝐗𝐽)∣M−plane ≠ Ψ𝐼(𝐗𝐽)∣N−plane. (43.45)

 
 When the shell structure degenerates to a plate, the constant stress condition 
cannot be recovered.  To remedy this problem, an area-weighed smoothing across 
different projected planes is used to obtain the conforming shape functions that are 
given by 

Ψ̃𝐼(𝐗) = Ψ̃𝐼(𝑥,̂ 𝑦)̂ =
∑ Ψ𝐼(𝑥𝑖̂, 𝑦𝑖̂)𝐴𝑖

NIE
𝑖=1

∑ 𝐴𝑖
𝑁𝐼𝐸
𝑖=1

. (43.46)

where NIE is the number of surrounding projected planes that can be evaluated at point 
X, 𝑨𝒊 is the area of the element 𝑖, and (𝑥𝑖̂, 𝑦𝑖̂) is the local coordinates of point X in the 
projected plane 𝑖.  
With this smoothing technique, we can prove that the modified shape functions satisfy 
at least the partition of unity property in the general shell problems.  This property is 
important for the shell formulation to preserve the rigid-body translation. 
 
 When the shell degenerates to a plate, we can also prove that the shape functions 
obtained from this smoothing technique will meet the n-th order completeness 
condition as 

∑Ψ̃𝐼(𝐗)𝑋1𝐼
𝑖 𝑋2𝐼

𝑗 𝑋3𝐼
𝑘

NP

𝐼=1
= 𝑋1

𝑖 𝑋2
𝑗 𝑋3

𝑘, 𝑖 + 𝑗 + 𝑘 = 𝑛. (43.47)

This is a necessary condition for the plate to pass the constant bending patch test. 
 

43.6.2  Updated Lagrangian Formulation and Co-rotational Procedure 

 The mesh-free shell formulation is based on the Mindlin-Reissner plate theory, 
thus the geometry and kinematical fields of the shell can be described with the reference 

yI¯

xI¯

zI¯
zi
^

yi
^

xi
^

M-plane
i

KJ

I
J

M-plane

 Figure 43.3.  Mesh-free shell local projection 
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surface and fiber direction.  The modified Mindlin-Reissner assumption requires that 
the motion and displacement of the shell are linear in the fiber direction.  Assume that 
the reference surface is the mid-surface of the shell, the global coordinates and 
displacements at an arbitrary point within the shell body are given by 

𝐱 = 𝐱̅ + ζ
ℎ
2 𝐕3, (43.48)

𝐮 = 𝐮̅̅̅̅ + ζ
ℎ
2𝐔. (43.49)

where 𝐱 ̅ and 𝐮̅̅̅̅ are the position vector and displacement of the reference surface, 
respectively. 𝐕3 is the fiber director and 𝐔 is the displacement resulting from the fiber 
rotation (see Figures 43.4 and 43.5). ℎ is the length of the fiber. 
 
 With the mesh-free approximation, the motion and displacements are given by 

𝐱(𝜉 , 𝜂, 𝜁) = 𝐱(̅𝜉 , 𝜂) + 𝐕(𝜉 , 𝜂, 𝜁) ≈ ∑Ψ̃𝐼(𝜉 , 𝜂)𝐱𝐼

𝑁𝑃

𝐼=1
+ ∑Ψ̃𝐼(𝜉 , 𝜂)

𝜁ℎ𝐼
2 𝐕3𝐼,

𝑁𝑃

𝐼=1
 (43.50)
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 Figure 43.4.  Geometry of a shell. 
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 Figure 43.5.  Deformation of a shell. 
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𝐮(𝜉 , 𝜂, 𝜁) = 𝐮̅̅̅̅(𝜉 , 𝜂) + 𝐔(𝜉, 𝜂, 𝜁) ≈ ∑Ψ̃𝐼(𝜉 , 𝜂)𝐮𝐼

𝑁𝑃

𝐼=1
+ ∑Ψ̃𝐼(𝜉 , 𝜂)

𝜁ℎ𝐼
2 [−𝐕2𝐼 𝐕1𝐼] {

𝛼𝐼
𝛽𝐼
}

𝑁𝑃

𝐼=1
,(43.51)

where 𝐱𝐼 and 𝐮𝐼 are the global coordinates and displacements at mesh-free node 𝐼, 
respectively. 𝐕3𝐼 is the unit vector of the fiber director and 𝐕1𝐼, 𝐕2𝐼 are the base vectors 
of the nodal coordinate system at node 𝐼. 𝛼𝐼 and 𝛽𝐼 are the rotations of the director 
vector 𝐕3𝐼 about the 𝐕1𝐼 and 𝐕2𝐼 axes. ℎ𝐼 is the thickness.  The variables with a 
superscripted bar refer to the shell mid-surface. Ψ̃𝐼 is the 2D mesh-free shape functions 
constructed based on one of the two mesh-free surface representations described in the 
previous section, with (𝜉 , 𝜂) either the parametric coordinates or local coordinates of 
the evaluated point. 
 
 The local co-rotational coordinate system (𝑥,̂ 𝑦,̂ 𝑧)̂ is defined at each integration 
point on the shell reference surface, with 𝑥 ̂and 𝑦 ̂tangent to the reference surface and 𝑧 ̂
in the thickness direction (see Figure 43.6). The base vectors are given as 

𝐞1̂ =
𝐱,ξ

∥𝐱,ξ∥
, 𝐞3̂ =

𝐱,ξ × 𝐱,η

∥𝐱,ξ × 𝐱,η∥
, 𝐞2̂ = 𝐞3̂ × 𝐞1̂. (43.52)

 
 In order to describe the fiber rotations of a mesh-free node in a shell, we 
introduce a nodal coordinate system whose three base vectors are 𝐕1, 𝐕2 and 𝐕3, see 
Figure 43.6, where 𝐕3 is the fiber director at the node and 𝐕1, 𝐕2 are defined as follows 

𝐕1 =
𝐱̂ × 𝐕3
∣𝐱̂ × 𝐕3∣

, 𝐕2 = 𝐕3 × 𝐕1. (43.53)

 
 The rotation of the fiber director is then obtained from the global rotations:  

{
𝛼
𝛽} = [𝐕1

T

𝐕2
T]Δθ, Δθ = [Δ𝜃1 Δ𝜃2 Δ𝜃3]T. (43.54)
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 In the local co-rotational coordinate system, the motion and displacements are 
approximated by the mesh-free shape functions 

xî = ∑Ψ̃IxîI

NP

I=1
+ ζ∑Ψ̃I

hI
2 𝑉̂3𝑖𝐼

NP

I=1
, (43.55)

ûi = ∑Ψ̃IûiI

NP

I=1
+ ζ∑Ψ̃I

hI
2 [−V̂2iI V̂1iI] {

αI
βI}

NP

I=1
. (43.56)

 
 The Lagrangian smoothed strains [Chen et al.  2001b] are given by 

εm̃ = ∑ 𝐁̃Im𝐝̂I
I

, εb̃ = ζ∑ 𝐁̃Ib𝐝̂I
I

, εs̃ = ∑ 𝐁̃Is𝐝̂I
I

, (43.57)

where the smoothed strain operators are calculated by averaging the consistent strain 
operators over an area around the evaluated point 

𝐁̃𝐼
m(𝐱𝑙) =

1
𝐴𝑙

∫ 𝐁̂𝐼
m𝑑𝐴

Ω𝑙
, 𝐁̃𝐼
b(𝐱𝑙) =

1
𝐴𝑙

∫ 𝐁̂𝐼
b𝑑𝐴

Ω𝑙
, 𝐁̃𝐼
s(𝐱𝐿) =

1
𝐴𝐿

∫ 𝐁̂𝐼
s𝑑𝐴

Ω𝐿
, (43.58)

with 

𝐁̂𝐼
m

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎡Ψ̃𝐼,𝑥 0 0 −𝐽13

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂2𝑥𝐼 𝐽13

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑥𝐼

0 Ψ̃𝐼,𝑦 0 −𝐽23
−1Ψ̃𝐼

ℎ𝐼
2 𝑉̂2𝑦𝐼 𝐽23

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑦𝐼

Ψ̃𝐼,𝑦 Ψ̃𝐼,𝑥 0 −𝐽23
−1Ψ̃𝐼

ℎ𝐼
2 𝑉̂2𝑥𝐼 − 𝐽13

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂2𝑦𝐼 𝐽23

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑥𝐼 + 𝐽13

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑦𝐼⎦

⎥⎥
⎥⎥
⎥⎥
⎤

, (43.59)
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z
s^

y
s^

x
s^

z
^

y
^

x
^

V3 V2

V1

 Figure 43.6.  Local co-rotational and nodal coordinate systems. 
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𝐁̂𝐼
b =

⎣
⎢⎢
⎢⎢
⎢⎢
⎡0 0 0 −Ψ̃𝐼,𝑥

ℎ𝐼
2 𝑉̂2𝑥𝐼 Ψ̃𝐼,𝑥

ℎ𝐼
2 𝑉̂1𝑥𝐼

0 0 0 −Ψ̃𝐼,𝑦
ℎ𝐼
2 𝑉̂2𝑦𝐼 Ψ̃𝐼,𝑦

ℎ𝐼
2 𝑉̂1𝑦𝐼

0 0 0 −Ψ̃𝐼,𝑦
ℎ𝐼
2 𝑉̂2𝑥𝐼 − Ψ̃𝐼,𝑥

ℎ𝐼
2 𝑉̂2𝑦𝐼 Ψ̃𝐼,𝑦

ℎ𝐼
2 𝑉̂1𝑥𝐼 + Ψ̃𝐼,𝑥

ℎ𝐼
2 𝑉̂1𝑦𝐼⎦

⎥⎥
⎥⎥
⎥⎥
⎤

, (43.60)

𝐁̂𝐼
s =

⎣
⎢⎢
⎢
⎡0 0 Ψ̃𝐼,𝑦 −𝐽33

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂2𝑦𝐼 − 𝐽23

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂2𝑧𝐼 𝐽33

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑦𝐼 + 𝐽23

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑧𝐼

0 0 Ψ̃𝐼,𝑥 −𝐽33
−1Ψ̃𝐼

ℎ𝐼
2 𝑉̂2𝑥𝐼 − 𝐽13

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂2𝑧𝐼 𝐽33

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑥𝐼 + 𝐽13

−1Ψ̃𝐼
ℎ𝐼
2 𝑉̂1𝑧𝐼⎦

⎥⎥
⎥
⎤

, (43.61)

and 𝐉−1 is the inverse of the Jacobian matrix at the integration point.  The local degrees-
of-freedom are 

𝐝̂𝐼 = [𝑢𝑥̂𝐼 𝑢𝑦̂𝐼 𝑢𝑧̂𝐼 𝛼𝐼 𝛽𝐼]T. (43.62)

The internal nodal force vector is 

𝐅̂Iint = ∫ 𝐁̃Im
Tσ̂

Ω
dΩ + ∫ ζ𝐁̃Ib

T
σ̂

Ω
dΩ + ∫ 𝐁̃Is

Tσ̂
Ω

dΩ. (43.63)

 
 The above integrals are calculated with the local boundary integration method.  
Each background finite element is divided into four integration zones, shown as Ω𝑙 in 
Figure 43.7. In order to avoid shear locking in the analysis of thin shells, the shear term 
(third term in Eq. (43.63)), should be under-integrated by using one integration zone in 
each background element (Ω𝐿 in Figure 43.7). Accordingly, the co-rotational coordinate 
systems are defined separately at the center of each integration zone, as shown in 
Figure 43.6. 
 
 The use of the updated Lagrangian formulation implies that the reference 
coordinate system is defined by the co-rotational system in the configuration at time t. 

ζ
ξ

η
ΓL

Γl

Ωl

xl

xL

 Figure 43.7.  Integration scheme for mesh-free shells. 
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Therefore, the local nodal force and displacement vectors referred to this coordinate 
system must be transformed to the global coordinate system prior to assemblage.
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44    
Linear shells 

44.1  Shells for Linear Analysis 

 It is common to construct elements for linear analysis by the superimposition of a 
plate and a membrane element.  If the base plates and membrane elements involve only 
three translational degrees-of-freedom and two in-plane rotational degrees-of-freedom, 
the resulting element then contains 5 degrees-of-freedom per node since there is an 
unconstrained rotational degree-of-freedom normal to the mid surface of the shell.  This 
unconstrained mode can cause problems when linking the shell to other elements such 
as beam elements in three-dimensional space.  For this reason, the linear elements in LS-
DYNA are based on published formulations that include a drilling degree-of-freedom, 
which is added to the membrane part of the element to form a 24 degree-of-freedom 
shell element.  These elements pass all patch tests, have 6 rigid body modes, and have 
no spurious mechanisms. 
 

44.2  Wilson’s Shell (element #20) 

 This quadrilateral element is constructed as described above and is discussed in 
more detail by Wilson [2000].  The triangular element, which is an 18 degree-of-freedom 
complement to the quadrilateral elements, follows the same procedure.  In a linear 
analysis in LS-DYNA, automatic sorting is invoked if a mesh has both quadrilateral and 
triangular elements within a single part ID.  This sorting ensures the proper treatment 
of triangles.   
 

44.2.1  Plate Element 

 The 4 node quadrilateral plate element is based on the 8 node, quadratic 
quadrilateral plate element, which has 16 rotational degrees-of-freedom, i.e., two per 
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nodal point.  The implementation in LS-DYNA directly follows the textbook by Wilson 
[2000] where the complete details of the element are provided.  A condensed overview 
is given here.  The shell theory makes the following assumptions: 

The fiber remains straight and inextensible 

The normal stress in the thickness direction is zero 

 
 The local x and y rotations of the shell are interpolated from the equations: 

𝜃𝑥(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝜃𝑥𝑖 + ∑ 𝑁𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝜃𝑥𝑖

𝜃𝑦(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝜃𝑦𝑖 + ∑ 𝑁𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝜃𝑦𝑖,

(44.1)

where nodes 5-8 are at the mid side of the element.  The interpolation functions are 
given by 

𝑁1 =
1
4 (1 − 𝑟)(1 − 𝑠) 𝑁5 =

1
2 (1 − 𝑟2)(1 − 𝑠)

𝑁2 =
1
4 (1 + 𝑟)(1 − 𝑠)   𝑁6 =

1
2 (1 + 𝑟)(1 − 𝑠2) 

𝑁3 =
1
4 (1 + 𝑟)(1 + 𝑠)   𝑁7 =

1
2 (1 − 𝑟2)(1 + 𝑠) 

𝑁4 =
1
4 (1 − 𝑟)(1 + 𝑠) 𝑁8 =

1
2 (1 − 𝑟)(1 − 𝑠2).

(44.2)

In his formulation, Wilson resolves the rotation of the mid side node into tangential and 
normal components relative to the shell edges.  The tangential component is set to zero 
leaving the normal component as the unknown, which reduces the rotational degrees-
of-freedom from 16 to 12, see Figure 44.2. 

Δ𝜃𝑥 = sin𝛼𝑖𝑗Δ𝜃𝑖𝑗
Δ𝜃𝑦 = −cos𝛼𝑖𝑗Δ𝜃𝑖𝑗

(44.3)

Plate

Membrane

 Figure 44.1.  Shell as assembly of plate and membrane elements 
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𝜃𝑥(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝜃𝑥𝑖 + ∑𝑀𝑥𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝜃𝑖

𝜃𝑦(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝜃𝑦𝑖 + ∑𝑀𝑦𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝜃𝑖.

(44.4)

Ultimately, the 4 mid side rotations are eliminated by using static condensation, a 
procedure that makes this shell very costly if used in explicit calculations. 
 
 The local 𝑥 and 𝑦 displacements relative to the mid surface are functions of the 𝑧-
coordinate and rotations: 

𝑢𝑥(𝑟, 𝑠) = 𝑧𝜃𝑦(𝑟, 𝑠)
𝑢𝑦(𝑟, 𝑠) = −𝑧𝜃𝑥(𝑟, 𝑠). (44.5)

 
 Wilson shows, where it is assumed that the normal displacement along each side 
is cubic, that the transverse shear strain along each side is given by, 

𝛾𝑖𝑗 =
1
𝐿 (𝑢𝑧𝑗 − 𝑢𝑧𝑖) −

1
2 (𝜃𝑖 + 𝜃𝑗) −

2
3 Δ𝜃𝑖𝑗, (44.6)

which can be rewritten, referring to Figure 44.3 as: 

𝛾𝑖𝑗 =
1
𝐿 (𝑢𝑧𝑗 − 𝑢𝑧𝑖) −

sin𝛼𝑖𝑗

2 (𝜃𝑥𝑖 + 𝜃𝑥𝑗) +
cos𝛼𝑖𝑗

2 (𝜃𝑦𝑖 + 𝜃𝑦𝑗) −
2
3 Δ𝜃𝑖𝑗, (44.7)

 
 The nodal shears are then written in terms of the side shears as 

[
𝛾𝑖𝑗
𝛾𝑘𝑖

] = [
cos𝛼𝑖𝑗 sin𝛼𝑖𝑗
cos𝛼𝑘𝑖 sin𝛼𝑘𝑖

] [
𝛾𝑥𝑧
𝛾𝑦𝑧

], (44.8)

which can be inverted to obtain the nodal shears: 

ΔΘij

ΔΘx

ΔΘy

Θj

Θi

αij

i = 1, 2, 3, 4

j = 2, 3, 4, 1

m =5, 6, 7, 8

 Figure 44.2.  Element edge [Wilson, 2000] 
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[
𝛾𝑥𝑧
𝛾𝑦𝑧

] =
1

cos𝛼𝑖𝑗sin𝛼𝑘𝑖 − cos𝛼𝑘𝑖sin𝛼𝑖𝑗
[
sin𝛼𝑘𝑖 −cos𝛼𝑘𝑖
−sin𝛼𝑖𝑗 cos𝛼𝑖𝑗

] [
𝛾𝑖𝑗
𝛾𝑘𝑖

]. (44.9)

The standard bilinear basis functions are used to interpolate the nodal shears to the 
integration points. 
 

44.2.2  Membrane Element 

 The membrane element, which is also coded from Wilson’s textbook [2000], is 
based on the eight node isoparametric element, see Figure 44.4.  
 
 The inplane displacement field for the 8 node membrane is interpolated, using 
the serendipity shape functions with the mid-side relative displacements, from: 

𝑢𝑥(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝑢𝑥𝑖 + ∑ 𝑁𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝑢𝑥𝑖

𝑢𝑦(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝑢𝑦𝑖 + ∑ 𝑁𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝑢𝑦𝑖.

(44.10)

 
 It is desired to replace the mid side relative displacment by drilling rotations at 
the corner nodes.  Consider Figure 44.5: the mid-side normal displacements along the 
edge are parabolic, i.e.,  

Δ𝑢𝑖𝑗 =
𝐿𝑖𝑗

8 (Δ𝜃𝑗 − Δ𝜃𝑖), (44.11)

ΔΘij

Θx

αij

i = 1, 2, 3, 4

j = 2, 3, 4, 1

m =5, 6, 7, 8

αki

ΔΘki

y

γki γij

k

Θy

i

j

γyz

γxz

x

 Figure 44.3.  Nodal and edge shear strains [Wilson 2000]. 
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while the mid-side tangential displacements are interpolated linearly from the end node 
displacements, thus, 

Δ𝑢𝑥(𝑟, 𝑠) = cos𝛼𝑖𝑗Δ𝑢𝑖𝑗 = cos𝛼𝑖𝑗
𝐿𝑖𝑗

8 (Δ𝜃𝑗 − Δ𝜃𝑖)

Δ𝑢𝑦(𝑟, 𝑠) = −sin𝛼𝑖𝑗Δ𝑢𝑖𝑗 = −sin𝛼𝑖𝑗
𝐿𝑖𝑗

8 (Δ𝜃𝑗 − Δ𝜃𝑖),
(44.12)

𝑢𝑥(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝑢𝑥𝑖 + ∑𝑀𝑥𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝜃𝑖

𝑢𝑦(𝑟, 𝑠) = ∑ 𝑁𝑖

4

𝑖=1
(𝑟, 𝑠)𝑢𝑦𝑖 + ∑𝑀𝑦𝑖

8

𝑖=5
(𝑟, 𝑠)Δ𝜃𝑖.

(44.13)

 
 This element has one singularity in the drilling mode of equal corner rotations, see 
Figure 44.6. 
 
 Ibrahimbegovic and Wilson [1991] added a penalty formulation to the potential 
energy of the element to eliminate the singularity.  The following penalty term connects 
the averaged nodal rotation to the continuum mechanics rotation 

1
2 (

∂𝑢𝑥
∂𝑦 −

∂𝑢𝑦

∂𝑥 ) − 𝜔 (44.14)

1 8 2

5

3
4 6

7
r

s

4 3

21

s

r

 Figure 44.4.  Eight node membrane element. 
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at the center of the element.  The element performance is highly insensitive to the 
chosen value of the penalty factor and some fraction of the elastic modulii, G or E, is 
frequently used.  

• 5, 8 or 9 point quadrature can be applied.  The 5 and 8 point schemes induce a 
‘soft’ first deformational mode, whereas the 9 point Gaussian quadrature results 
in a stiffer mode. 

• A membrane locking correction (Taylor) is applied to (i) alleviate a membrane-
bending interaction associated with the drilling degrees of freedom and (ii) allow 

Δux

Δuy

Δuij

αij

ΔΘi

ΔΘj

j

Lij

x

i = 1, 2, 3, 4

j = 2, 3, 4, 1

m = 5, 6, 7, 8

Figure 44.5.  Corner node drilling rotations and mid side edge normal
displacement [Wilson, 2000]. 

 Figure 44.6.  Zero energy mode 
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the standard application of the consistent nodal load at the edge.  The correction 
has a slight stiffening effect (see e.g. Cook Cantilever). 

• A warping correction is applied using the rigid link correction (see Figure 44.7). 

 
 

44.3  Assumed Strain/Membrane with Drilling Degree-of-
freedom (element #18) 

44.3.1  Membrane Element 

 Formulation is the same as above for element type 20. 
 

44.3.2  Plate Element 

 The Discrete Kirchhoff Quadrilateral element is an excellent thin shell element 
based on 

• Rotational field is interpolated using the 8-node isoparametric parent element. 

• Transverse displacement w assumed as cubic along the sides and collocated 
along the sides and at the nodes using the Kirchhoff condition that equates the 
fiber rotation to the slope.  The Kirchhoff assumptions are satisfied along the 
entire boundary of the element. 

• The rotational field about an axis parallel to the side is constrained linearly along 
the sides. 

 
 The warping correction is applied as above. 

Flat Element

 Figure 44.7.  Flat element 
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44.4  Differences between Element Types 18 and 20. 

The DKQ does not account for transverse shear because it locally enforces the 
Kirchhoff condition.  Hence, element type 20 is better for layered composites and 
thick plates.
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45    
Random Geometrical Imperfections 

45.1  Introduction to Random Geometrical Imperfections 
Using Karhunen-Loève Expansions 

There are different methods of incorporating imperfections, depending on the 
availability of accurate imperfection data.  The method implemented into LS-DYNA 
v971 uses a spectral decomposition of geometrical or thickness uncertainty, more 
specifically through using Karhunen-Loève expansions (see *PERTURBATION 
keyword).  To specify the covariance of the random field of the geometrical 
imperfections or thickness variation, two methods are available.  The first is to use 
available experimentally-measured imperfection fields as input for a principal 
component analysis based on pattern (face) recognition literature.  This method reduces 
the cost of the resulting eigen-analysis.  The second is to specify the covariance function 
analytically and to solve the resulting Friedholm integral equation of the second kind 
using a wavelet-Galerkin approach, also obtained from literature.  Six different 
analytical covariance kernels (e.g., exponential and triangular) are available for 
selection.  

45.2  Methodology 

45.2.1  Generation of random fields using Karhunen-Loève expansion  

 The Karhunen-Loève expansion (e.g., Ghanem and Spanos [2003]) provides an 
attractive way of representing a random (stochastic) field (process) through a spectral 
decomposition, , as a function of x (e.g., two spatial variables): 

𝜛(x, 𝜃) = 𝜛(̅x) + ∑√𝜆i𝜉𝑖(𝜃)𝑓𝑖(x)
∞

𝑖=1
, (45.1)

where the 𝜉𝑖 are uncorrelated zero-mean random variables with unit variance, and 
𝜛(̅x)is the average random field or mean of the process.  The functions 𝑓𝑖 are the 
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eigenfunctions of the covariance kernel, C, with 𝜆𝑖 the associated eigenvalues, obtained 
from the spectral decomposition of the covariance function via the solution on a domain 
𝐷 of the Fredholm integral equation of the second kind, 

∫𝐶(x1, x2)𝑓𝑖(x1)𝑑x1
𝐷

= 𝜆𝑖𝑓𝑖(x2). (45.2)

The eigenfunctions form an orthogonal set 

∫ 𝑓𝑖(x)𝑓𝑗(x)𝑑x
𝐷

= 𝛿𝑖𝑗. (45.3)

Normally, a finite 𝑀 number of terms are kept in the series expansion: 

𝜛(x, 𝜃) = 𝜛(̅x) + ∑√𝜆i𝜉𝑖(𝜃)𝑓𝑖(x)
𝑀

𝑖=1
. (45.4)

If 𝜛 is Gaussian, then 𝜉𝑖 are also Gaussian.  For non-Gaussian processes (with arbitrary 
but specified marginal distributions), 𝜉𝑖 are unknown.  Phoon et al ([2002a], [2005]) give 
an iterative procedure for obtaining 𝜉𝑖 given a target marginal distribution. 
 

45.2.2  Solution of Fredholm integral of the second kind for analytical covariance 
functions  

 
 The Wavelet-Galerkin method (Phoon et al [2002]) is used to perform the 
solution, and can be described as follows. 
 
 By defining a set of basis functions: 𝜑1(𝑥), 𝜑2(𝑥),…,𝜑𝑁(𝑥), each eigenfunction 
𝑓𝑖(𝑥) can be approximated by the linear combination: 

𝑓𝑖(𝑥) = ∑ 𝑑𝑖𝑘

𝑁

𝑘=1
𝜑𝑘(𝑥), (45.5)

where the 𝑑𝑖𝑘 are constant coefficients.  By substituting (45.5) into Fredholm equation 
(45.2) (using a scalar 𝑥 (one-dimensional random process) as an example) and writing as 
an error: 

∫𝐶(x1, x2) ∑ 𝑑𝑖𝑘𝜑𝑘(𝑥1)𝑑x1

𝑁

𝑘=1𝐷
− 𝜆𝑖 ∑ 𝑑𝑖𝑘𝜑𝑘(𝑥1)

𝑁

𝑘=1
= 0. (45.6)

By making the error orthogonal to the basis functions: 

∫
⎣
⎢⎡∫𝐶(x1, x2) ∑ 𝑑𝑖𝑘𝜑𝑘(𝑥1)𝑑x1

𝑁

𝑘=1𝐷
− 𝜆𝑖 ∑ 𝑑𝑖𝑘𝜑𝑘(𝑥1)

𝑁

𝑘=1 ⎦
⎥⎤

𝐷
𝜑𝑗(𝑥2)𝑑𝑥2 = 0, (45.7)

we get 

∑ 𝑑𝑖𝑘

𝑁

𝑘=1 ⎣
⎢⎡∬𝐶(x1, x2)
𝐷

𝜑𝑘(𝑥1)𝜑𝑗(𝑥2)𝑑x1𝑑x2
⎦
⎥⎤ − 𝜆𝑖 ∑ 𝑑𝑖𝑘

⎣
⎢⎡∫𝜑𝑘(𝑥2)𝜑𝑗(𝑥2)𝑑x2
𝐷 ⎦

⎥⎤
𝑁

𝑘=1
= 0, (45.8)
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or the eigensystem 
𝐀𝐃 = 𝚲𝐁𝐃 (45.9)

with Λ𝑖𝑗 = 𝛿𝑖𝑗𝜆𝑗.  Orthogonal wavelets 𝜓(𝑥) are used (∫ 𝜓𝑗(x)𝜓𝑘(x)𝑑x1
0 = ℎ𝑗𝛿𝑗𝑘) as basis 

functions, 

𝐟𝑖(𝑥) = ∑ 𝑑𝑖𝑘

𝑁

𝑘=1
𝜓𝑘(𝑥) = 𝛙T(𝑥)𝐃(𝑖), (45.10)

so that the covariance function can be expressed as: 

𝐶(𝐱1, 𝐱2) = ∑ ∑𝐴𝑗̅𝑘𝜓𝑗(𝐱1)𝜓𝑘(𝐱2) = 𝛙T(𝐱1)𝐀̅̅̅̅̅̅
𝑁

𝑘=1

𝑁

𝑗=1
𝛙(𝐱2), (45.11)

where 𝐀̅̅̅̅̅̅ is the 2D wavelet transform of 𝐶(𝐱1, 𝐱2) given by 

𝐴𝑗̅𝑘 =
1

ℎ𝑗ℎ𝑘
∫ ∫ 𝐶(𝐱1, 𝐱2)𝜓𝑗(𝐱1)𝜓𝑘(𝑥2)𝑑x1𝑑x2

1

0

1

0
. (45.12)

Substituting (45.10) and (45.11) into (45.2), we again get an eigenvalue problem 

𝛙T(𝑥)𝐀̅̅̅̅̅̅𝐇𝐃(𝑖) = 𝜆𝑖𝛙T(𝑥)𝐃(𝑖). (45.13)

Or, equating coefficients of 𝛙T and using the transformation 𝐃̂(𝑖) = 𝐇
1

2⁄ 𝐃(𝑖) and 𝐀̂ =
𝐇

1
2⁄ 𝐀̅̅̅̅̅̅𝐇

1
2⁄ , the eigensystem 

𝐀̂𝐃̂(𝑖) = 𝜆𝑖𝐃̂(𝑖). (45.14)

The eigenvectors from (45.14) are transformed to the eigen functions (of (45.9)) by the 
equation: 

𝐟𝑖(𝑥) = 𝛙T(𝑥)𝐇−1
2⁄ 𝐃̂(𝑖). (45.15)

 
 The double integral in (45.12) is constructed using two successive 1D discrete 
wavelet transforms in the form of Mallat’s tree algorithm (Phoon et al [2002a]).  Haar 
wavelets are used because of their simplicity and ability to capture the field 
characteristics.  The eigenfunctions (45.15) and associated eigenvalues 𝜆𝑖 can be used to 
construct random fields (using (45.4)) with the same second-order statistics as the 
covariance model used.  
 
 The available covariance functions (Ghanem and Spanos [2003]), are: 

• Exponential covariance function (First-order Markov process (autoregressive)),  

𝐶(x1, x2) = exp (
−|𝑥1 − 𝑥2|

𝐿𝑐
) (45.16)

• Triangular covariance function 
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𝐶(x1, x2) = 1 −
|𝑥1 − 𝑥2|

𝐿𝑐
(45.17)

• Sine covariance function 

𝐶(x1, x2) =
sin𝐿𝑐(𝑥1 − 𝑥2)

𝐿𝑐(𝑥1 − 𝑥2) (45.18)

• Squared exponential covariance function 

𝐶(x1, x2) = exp (
−|𝑥1 − 𝑥2|2

𝐿𝑐
) (45.19)

• Wiener-Levy covariance function 

𝐶(x1, x2) = min(x1, x2) (45.20)

• Uniformly modulated nonstationary covariance function 

𝐶(x1, x2) = exp(−(𝑥1 − 𝑥2))exp
−|𝑥1 − 𝑥2|

𝐿𝑐
(45.21)

 with 𝐿𝑐 the correlation length in the respective direction. 
 

45.2.3  Generating eigenfunctions from experimentally measured fields  

 If experimentally measured random fields are available, then the eigenfunctions 
and eigenvalues in (45.1) or (45.4) can be determined from the second-order statistics of 
the measurements.  Following the pattern recognition method proposed by Turk and 
Pentland [1991], the procedure described next is used.  
 
 Given a set of 𝑀 field measurements, e.g., geometrical imperfections on an 𝑁1 ×
𝑁2 mesh, we can represent the measurements as 1-D vectors of length 𝑁1 × 𝑁2, i.e., Γ1, 
…, Γ𝑀.  The average vector is defined by 

𝚿 =
1
𝑀∑ 𝚪𝑛

𝑀

𝑛=1
, (45.22)

allowing us to define the deviation of each measured field from the average, also as a 
vector: 𝚽𝑖 = 𝚪𝑖 − 𝚿.  Combining the deviation vectors into a covariance matrix, 𝐂, we 
get 

𝐂 =
1
𝑀∑𝚽𝑛𝚽𝑛

T
𝑀

𝑛=1
= 𝐀𝐀T, (45.23)

where 𝐀 = [𝚽1  𝚽2 …𝚽𝑀].  The covariance matrix has a set of orthonormal 
eigenvectors, 𝐟𝑖, and associated eigenvalues, 𝜆𝑖 obtained through a principal component 
analysis, i.e., 
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𝐀𝐀T𝐟𝑖 = 𝜆𝑖𝐟𝑖. (45.24)

The eigenpairs are chosen such that 

𝜆𝑖 =
1
𝑀∑(𝐟𝑖

T𝚽𝑛)
2𝑀

𝑛=1
, (45.25)

is a maximum, subject to 

𝐟𝑖
T𝐟𝑘 = 𝛿𝑙𝑘, (45.26)

with 𝛿 the Kronecker delta.  As the size of the covariance matrix is (𝑁1 × 𝑁2)2, 
determining the eigenvectors and eigenvalues in (41.24) can be a time-consuming and 
memory-intensive task for large measurement meshes.  This computation can be 
simplified if the number of measurement samples is less than the mesh count (𝑀 <

𝑁1 × 𝑁2), as there are then only 𝑀–1, rather than 𝑁1 × 𝑁2, meaningful eigenvectors.  

This is done by considering the eigenvectors of another matrix 𝐋 = 𝐀T𝐀, as embodied 
in the eigensystem 

𝐀T𝐀v𝑖 = 𝜇𝑖𝐯𝑖. (45.27)

Premultiplying both sides in (20.1.6) by 𝐀, we get 

𝐀𝐀T𝐀𝐯𝑖 = 𝜇𝑖𝐀𝐯𝑖, (45.28)

which implies that the 𝑀 –  1 eigenvectors, 𝐀𝐯𝑖, are also eigenvectors of 𝐀𝐀Tor 𝐂.  The 

eigensystem in (20.1.6), however, is only size (𝑀 ×𝑀), as 𝐋 = 𝐀T𝐀, where 𝐿𝑛𝑚 = 𝚽𝑚
𝑇𝚽𝑛.  

Once the eigenvectors of 𝐋 are obtained, the required eigenfunctions, 𝐟𝑖, are recovered 
through the linear combination 

𝐟𝑖 = ∑v𝑖𝑘𝚽𝑘

𝑀

𝑘=1
, 𝑖 = 1,… ,𝑀 (45.29)

The 𝑀 –  1 eigenvalues of 𝐋 and 𝐂 are identical, i.e., 𝜆𝑖 = 𝜇𝑖.  Finally 𝐟𝑖and 𝜆𝑖 are used in 

(45.4) to construct the required Karhunen-Loève expansion of the random fields.
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46    
Frequency Domain 

46.1  Frequency Response Functions 

 Frequency response function (FRF) is a characteristic of a system that has a 
measured or computed response resulting from a known applied input.  Mathematical-
ly it is a transfer function and expresses the structural response to an applied force as a 
function of frequency.  The response can be given in terms of displacement, velocity, or 
acceleration.  Frequency response functions are complex functions, with real and 
imaginary components.  They can also be written in terms of magnitude and phase 
pairs. 

46.1.1  FRF Computations 

 FRF is computed using mode superposition method, in frequency domain.  
When damping is included, the dynamic response of a system is governed by 

𝐦𝐮̈ + 𝐜𝐮̇ + 𝐤𝐮 = 𝐩(𝑡), (46.1.30)
where 𝐦, 𝐜 and 𝐤 are the mass, damping and stiffness matrices, 𝐩(𝑡) is the external 
force. 
 Using the mode superposition method, the displacement response can be 
expressed by 

𝐮 = ∑ 𝜙𝑛𝑞𝑛(𝑡)
𝑁

𝑛=1
= Φq, (46.1.2)

where 𝜙𝑛 is the n-th mode shape and 𝑞𝑛(𝑡) is the n-th modal coordinates. 
 With the substitution of Equation (46.1.2) into Equation (46.1.30), the governing 
equation can be rewritten as 

𝐦𝚽𝐪̈ + 𝐜𝚽𝐪̇ + 𝐤𝚽𝐪 = 𝐩(𝑡). (46.1.3)

Pre-multiplying by ΦT gives 
𝐌𝐪̈ + 𝐂𝐪̇ + 𝐊𝐪 = 𝐩(𝑡), (46.1.4)
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The orthogonality of natural modes implies that the following square matrices are 
diagonal: 

𝐌 ≡ 𝚽𝐓𝐦𝚽, 𝐊 ≡ 𝚽𝐓𝐤𝚽, (46.1.5)

where the diagonal elements are  

𝐌𝒏 = 𝛟𝒏𝐓𝐦𝛟𝒏, 𝐊𝒏 = 𝛟𝒏𝐓𝐤𝛟𝒏 (46.1.6)

Since 𝐦 and 𝐤 are positive definite, the diagonal elements of 𝐌 and 𝐊 are positive.  
They are related by 

𝐊𝒏 = 𝛚𝒏𝟐𝐌𝒏. (46.1.7)

 The square matrix 𝐂 is obtained similarly as follows 

𝐂 = 𝚽𝐓𝐜𝚽. (46.1.8)

 𝐂 may or may not be diagonal, depending on the distribution of damping in the 
system.  If 𝐂 is diagonal (the diagonal elements are 𝐶𝑛 = 𝜙𝑛

𝑇𝑐𝜙𝑛), Equation (46.1.4) 
represents N uncoupled differential equations in modal coordinates 𝑞𝑛, and the system 
is said to have classical damping and the systems possess the same natural modes as 
those of the undamped system.  Only the classical damping is considered in this 
approach. 
 
 The right hand side vector (generalized force) 𝐏(𝑡) is 

𝐏(𝑡) = ΦT𝑝(𝑡) (46.1.9)

 For an N-DOF system with classical damping, each of the N differential 
equations in modal coordinates is 

𝑀𝑛𝑞𝑛̈ + 𝐶𝑛𝑞𝑛̇ + 𝐾𝑛𝑞𝑛 = 𝑃𝑛(𝑡) (46.1.10)
or,  

𝑞𝑛̈ + 2𝜁𝑛𝜔𝑛𝑞𝑛̇ + 𝜔𝑛
2𝑞𝑛 =

𝑃𝑛(𝑡)
𝑀𝑛

(46.1.11)

where the modal damping coefficient n  is defined as 

𝜁𝑛 =
𝐶𝑛

2𝑀𝑛𝜔𝑛
(46.1.12)

 Applying Fourier transform to both sides of Equation (46.1.11), one obtains 

(−𝜔2 + 2𝑖𝜁𝑛𝜔𝑛𝜔 + 𝜔𝑛
2)𝑞𝑛(𝜔) =

𝑃𝑛(𝜔)
𝑀𝑛

(46.1.13)

 The structural displacement response in frequency domain can be represented as  

𝐮(𝜔) = ∑
𝜙𝑛

(−𝜔2 + 2𝑖𝜁𝑛𝜔𝑛𝜔 + 𝜔𝑛
2)

𝑁

𝑛=1

𝑃𝑛(𝜔)
𝑀𝑛

(46.1.14)
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 Thus the displacement frequency response function (Compliance) can be 
expressed as (suppose that the excitation is applied at node j and the response is 
evaluated for node k) 

𝐅𝐑𝐅𝒖(𝑥𝑗, 𝑥𝑘, 𝜔) = ∑
𝜙𝑛(𝑥𝑘)

(−𝜔2 + 2𝑖𝜁𝑛𝜔𝑛𝜔 + 𝜔𝑛
2)

𝑁

𝑛=1

𝑃̃𝑛(𝑥𝑗)
𝑀𝑛

(46.1.15)

 The velocity frequency response function (Mobility) can be expressed as 

𝐅𝐑𝐅𝒗(𝑥𝑗, 𝑥𝑘, 𝜔) = 𝜔𝑖 ∑
𝜙𝑛(𝑥𝑘)

(−𝜔2 + 2𝑖𝜁𝑛𝜔𝑛𝜔 +𝜔𝑛
2)

𝑁

𝑛=1

𝑃̃𝑛(𝑥𝑗)
𝑀𝑛

(46.1.16)

 The acceleration frequency response function (Accelerance) can be expressed as 

𝐅𝐑𝐅𝒂(𝑥𝑗, 𝑥𝑘, 𝜔) = −𝜔2 ∑
𝜙𝑛(𝑥𝑘)

(−𝜔2 + 2𝑖𝜁𝑛𝜔𝑛𝜔 +𝜔𝑛
2)

𝑁

𝑛=1

𝑃̃𝑛(𝑥𝑗)
𝑀𝑛

 (46.1.17)

where )(~ jn xP is obtained as 

𝑃̃𝑛(𝑥𝑗) = 𝜙𝑛
𝑇𝑝(̃𝑥𝑗) (46.1.18)

and )(~ jxp is the space distribution of the harmonic force excitation (in the case of point 
force excitation, 1)(~ jxp  at node j in specified direction of excitation and 0 elsewhere). 

 

46.1.2  About the damping 

 Damping can be given in several forms (see Keyword user manual in Appendix).  
A very common type of damping used in the nonlinear analysis of structure is to 
assume that the damping matrix is proportional to the mass and stiffness matrices, or 

𝐜 = 𝛼𝐦 + 𝛽𝐤 (46.1.19)
 This type of damping is normally referred to as Rayleigh damping.  For 
classically damped system,  

2𝝎𝒏𝜁𝑛 = 𝜙𝑛
𝑇𝐜𝜙𝑛 (46.1.20)

Due to the orthogonality of the mass and stiffness matrices, it can be rewritten as 

2𝝎𝒏𝜁𝑛 = 𝛼 + 𝛽𝜔𝑛
2 (46.1.21)

or, 

𝜁𝑛 =
𝛼

2𝜔𝑛
+
𝜔𝑛
2 𝛽 (46.1.22)
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46.2   ACOUSTIC FEM 

 A frequency domain acoustic finite element method has been implemented in 
LS-DYNA, to model the acoustic behavior of a confined acoustic fluid volume.  This 
method is based on nodal velocity/pressure formulation.  Three types of elements are 
available.  They are hexahedron, pentahedron, and tetrahedron elements. 

46.2.1  Theory basis 

 The governing equation for the acoustic problem is the Helmholtz equation. 

∇𝟐𝑝 + 𝑘𝟐𝑝 = 0 (46.2.1)

where 𝑝 is the acoustic pressure; 𝑘 = 𝜔/𝑐 is called the wave number; 𝜔 = 2𝜋𝑓  is the 
circular frequency of the acoustic wave; and 𝑐 is the wave speed. 

 For vibro-acoustic problems, the boundary condition is given as follows, 
𝜕𝑝
𝜕𝑛 = −𝑖𝜌𝜔𝑣𝑛 (46.2.2)

where 𝑛 is the normal vector pointing outside from the acoustic volume; 𝑖 = √−1 is the 
imaginary unit; 𝜌 is the acoustic fluid density and 𝑣𝑛 is the normal velocity. 

 Using the weighted residue technique and taking the shape function 𝑁𝑖 as the 
weighting function, the governing equation can be written as 

∫ ∇2𝑝𝑁𝑖𝑑𝑉
𝑉

+ ∫ 𝑘2𝑝𝑁𝑖𝑑𝑉
𝑉

= 0 (46.2.3)

 Using the Green’s theorem, Equation (2.3) can be written as 

− ∫ ∇𝑝∇𝑁𝑖𝑑𝑉
𝑉

+ 𝑘2 ∫ 𝑝𝑁𝑖𝑑𝑉
𝑉

= − ∫
𝜕𝑝
𝜕𝑛 𝑁𝑖𝑑Γ

Γ
 (46.2.4)

 With the substitution of the boundary condition (46.2.2) into Equation (46.2.4), 
and taking the nodal pressure as the unknown variables, a linear equation system can 
be established and solved in frequency domain.  Since there is only one variable on each 
node, this method is very fast.
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47    
 Rotor Dynamics 

47.1  Introduction 

Rotor dynamics is a specialized branch of engineering science concerned with the 
behavior and diagnosis of rotating structures.  It is a study of vibration of rotating parts 
found in a wide range of equipment including engine, turbine, aircraft, hard disk drive 
and more.  The analysis of the rotator dynamics involves two coordinate systems: 
rotating and fixed coordinate systems.  The equations of motion in the two coordinate 
systems are both introduced. 

47.2  Two Coordinate systems 

The interpretation of rotational phenomena requires the introduction of a rotating 
coordinate system in relation to the fixed coordinate system.  Figure 1.1 depicts the 
relationship between the two coordinate systems.  OXYZ is the fixed coordinate system 
and oxyz is the rotating coordinate system. R is the location vector of the disk center; r 
is the location vector of a point P with respect to the rotating coordinate system.  Let the 
velocity of rotation be defined as �.     
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Figure 1.1 A rotating disk in two coordinate systems. 

 
The position of the point P with respect to OXYZ is 𝒓,̅ so 

𝒓 ̅ = 𝑹 + 𝒓. (47.1)
The velocity of point P is: 

𝒗̅̅̅̅ =
𝑑𝒓 ̅
𝑑𝑡 =

𝑑𝑹
𝑑𝑡 +

𝑑𝒓
𝑑𝑡 = 𝑽 + 𝒗 +𝜴 × 𝒓, (47.2)

where 𝑽  (=𝑑𝑹𝑑𝑡 ) is the velocity of the origin o; 𝒗 is the velocity of point P in the rotating 
coordinate system. 
 
The acceleration of point P can be calculated as:  

𝒂 ̅ =
𝑑𝒗̅̅̅̅
𝑑𝑡 =

𝑑𝑽
𝑑𝑡 +

𝑑𝒗
𝑑𝑡 +

𝑑(𝜴 × 𝒓 )
𝑑𝑡 = 𝑨 + 𝒂 + 𝟐𝜴 × 𝒗 +𝜴 × (𝜴 × 𝒓) +

𝒅𝜴
𝑑𝑡 × 𝒓, (47.31)

where, 𝑨 is the acceleration of the origin o,  𝒂 is the acceleration of point P in rotating 
coordinate system. 
 
We assume that the origin of the rotating coordinate system is fixed, so that: 

𝑽 = 𝑨 = 𝟎 . (47.32)
By substituting (1.4) to (1.3): 

𝒂 ̅ = 𝒂 + 𝟐𝜴 × 𝒗 +𝜴 × (𝜴 × 𝒓) +
𝑑𝜴
𝑑𝑡 × 𝒓 . (47.33)

47.3  Forces in the Rotating Coordinate System 

We now place a particle with mass m into the position of the point P we were following.  
From (1.5), we can express the force of the particle in the rotating system as:  
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𝑭 = 𝑚𝒂 = 𝑚𝒂̅ − 2𝑚𝜴 × 𝒗 − 𝑚𝜴 × (𝜴 × 𝒓) − 𝑚
𝐝𝛀
𝐝t × 𝐫. (47.34)

The first term 𝑚𝒂 ̅ is the force in the fixed coordinate system.  All other terms on the 
right hand side are inertia forces arising in the rotating system.  The Coriolis force is the 
following quantity: 

𝑭𝑪 = −2𝑚𝜴 × 𝒗. (47.35)
The third term produces the familiar centrifugal force: 

𝑭𝑪𝒇 = −𝑚𝜴 × (𝜴 × 𝒓). (47.36)

The last term introduces the Euler fore when there is a nonzero rate of change in the 
magnitude of the rotation vector: 

𝑭𝑬 = −𝑚
𝒅𝜴
𝒅𝑡 × 𝒓. (47.37)

47.4  Transformation between Coordinate Systems 

Let’s assume that the rotation axis coincides with one of the axis of the rotating 
coordinate system, specifically to the z axis.  An arbitrary rotation axis will be discussed 
later.  In this case, the rotational velocity becomes:  

𝜴 = 0 ∙ 𝒊 + 0 ∙ 𝒋 + Ω ∙ 𝒌. (47.38)
We further restrict our computations to constant rotational velocity; hence the Euler 
force will not appear in the formulations (Euler force is easy to add to our equations if 
the rotational velocity is not constant though).  
 
We write the location of a particle in the rotating coordinate system as: 

𝒓 = {
𝑥
𝑦
𝑧
}. (47.39)

It is transformed to the location in the fixed system as follows: 

𝐫 ̅ =
⎩{⎨
{⎧𝑥̅

𝑦 ̅
𝑧⎭̅}⎬
}⎫ =

⎣
⎢⎡

𝑐𝑜𝑠Ωt −𝑠𝑖𝑛Ωt 0
𝑠𝑖𝑛Ωt 𝑐𝑜𝑠Ωt 0

0 0 1⎦
⎥⎤ {

𝑥
𝑦
𝑧
} = 𝑯 {

𝑥
𝑦
𝑧
}. (47.40)

𝑯  is the transformation matrix.  It is easy to get that  𝑯𝑇𝑯 = 𝑰, where 𝑰 is he identity 
matrix.  Other matrices that may be used later are also given here: 

𝑯̇ = Ω
⎣
⎢⎡

−𝑠𝑖𝑛Ωt −𝑐𝑜𝑠Ωt 0
𝑐𝑜𝑠Ωt −𝑠𝑖𝑛Ωt 0

0 0 0⎦
⎥⎤ = Ω𝐇̅̅̅̅̅̅, (47.41)

𝑯̈ = Ω2

⎣
⎢⎡

−𝑐𝑜𝑠Ωt sinΩt 0
−𝑠𝑖𝑛Ωt −𝑐𝑜𝑠Ωt 0

0 0 0⎦
⎥⎤ = Ω2𝐇̿̿̿̿̿̿, (47.42)
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𝑯̅̅̅̅̅𝑇𝑯 =
⎣
⎢⎡

0 1 0
−1 0 0
0 0 0⎦

⎥⎤ = 𝑷, (47.43)

𝑯𝑇𝑯̅̅̅̅̅  =
⎣
⎢⎡

0 −1 0
1 0 0
0 0 0⎦

⎥⎤ = 𝐏T = −𝑷, (47.44)

𝑯̅̅̅̅̅𝑇 𝑯̅̅̅̅̅𝑇 =
⎣
⎢⎡

1 0 0
0 1 0
0 0 0⎦

⎥⎤ = 𝐉. (47.45)

47.5  Equation of Motion in Rotating Coordinate System 

When the particle undergoes a nodal translation in the rotating coordinate system as 
shown in Figure 1.2, it can be defined as: 

𝒖 = {
𝑢
𝑣
𝑤
}. (47.46)

The location vector in the fixed coordinate is: 
𝒓 ̅ = 𝑯(𝒓 + 𝒖) (47.47)

After calculate the velocity in the fixed coordinate system, we can get the kinetic energy 
due to translation displacement as: 

𝑇 =
𝑚Ω2

2 (𝒓𝑇𝑱𝒓 + 2𝒓𝑇𝑱𝒖 + 𝒖𝑇𝑱𝒖) +
𝑚
2 (2Ω𝒖𝑇̇𝑷𝑇𝒓 + 2Ω𝒖𝑇𝑷𝒖̇ + 𝒖𝑇̇𝒖)̇. (47.48)

 

 
Figure 1.2 Translation nodal displacement. 
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Figure 1.3 Rotational nodal displacement. 

The nodal displacement of the point can also be rotational as shown in Figure 1.3. We 
assume small rotation of the rotating point: 

𝛉 =
⎩{⎨
{⎧𝜑𝜙
𝜃⎭}⎬

}⎫. (47.49)

The nodal rotation requires the consideration of mass and inertia.  The center of the 
mass point is coincident with the node.  The inertia moment can be given with the 
concentrated mass input of commercial finite element codes, or they can be defined in 
connection with the surrounding mass point, or even with a simplified model by 
attaching six submasses to the node, as shown in figure 1.4. 

 
Figure 1.4 Node with six masses located at offset x’, y’ and z’ from the node center. 

 
With this, the location vector in the fixed coordinate is of the form if only considers 
rotational displacement:  

𝒓 ̅ = 𝑯(𝒓 + 𝒖) = 𝑯(𝒓 + 𝑨𝛉), (47.50)
where 

𝑨 =
⎣
⎢⎡

0 𝑧 −𝑦
−𝑧 0 𝑥
𝑦 −𝑥 0 ⎦

⎥⎤. (47.51)

Then we can get the kinetic energy due to rotational displacement as: 

𝑇 =
𝑚Ω2

2 (𝒓𝑇𝑱𝒓 + 𝟐𝒓𝑇𝑱𝑨𝛉 + 𝛉𝑻𝑨𝑇𝑱𝑨𝛉) +
𝑚
2 (2Ω𝒓𝑇𝑷𝑨𝛉̇ + 2Ω𝛉𝑇𝑨𝑇𝑷𝑨𝛉̇ + 𝛉̇𝑇𝑨𝑇𝑨𝛉̇). (47.52)
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Applying Lagrange’s equation, then we can obtain the final equation of motion as 
follows: 

[𝑴𝒖 𝟎
𝟎 𝑴𝛉

] {𝒖̈
𝛉̈} + 2Ω[𝑪𝒖 𝟎

𝟎 𝑪𝛉
] {𝒖̇
𝛉̇} − Ω2 [𝒁𝒖 𝟎

𝟎 𝒁𝛉
] {𝒖𝛉} = {𝑭𝒄𝒖𝑭𝒄𝛉

}, (47.53)

where 𝑴𝒖 and 𝑴𝛉 are the mass and inertia matrices; 𝑪𝒖 and 𝑪𝛉 are the gyroscopic 
matrices; 𝒁𝒖 and 𝒁𝛉 are the centrifugal softening matrices; 𝑭𝒄𝒖 and 𝑭𝒄𝛉 are centrifugal 
force.  Note that we don’t consider the other system damping and external force terms 
here, but they can be added to (1.25) accordingly. 

47.6  Equation of Motion in Fixed Coordinate System 

The location vector in the fixed coordinate is:  
𝒓 ̅ = 𝑯(𝒓 + 𝒖) = 𝑯𝒓 + 𝒖.̅ (47.54)

Here the 𝒖 ̅ represents the displacement of the point in the fixed coordinate system due 
to the nodal translation displacement.  Similar analysis as in section 1.5 can be done for 
the equation of motion in fixed coordinate system.  We only give the final equation 
here: 

[𝑴𝒖̅ 𝟎
𝟎 𝑴𝛉̅̅̅̅̅

] {𝒖̅̈
𝛉̈̅̅̅̅

} + Ω[0 0
0 𝑪𝛉̅̅̅̅̅

] {𝒖̇
𝛉̇} = {𝑭𝒄𝒖̅

𝟎 }, (47.55)

where 𝑴𝒖̅ and 𝑴𝛉̅̅̅̅̅ are the mass and inertia matrices; 𝑪𝛉̅̅̅̅̅ is the gyroscopic matrix; 𝑭𝒄𝒖̅ is 
the centrifugal force.  All of them are written in the fixed coordinate system.  Note that 
only nodal rotations contributed to the gyroscopic matrix.  Same as before, we don’t 
consider the other system damping and external force terms here, but they can be 
added to (1.27) accordingly. 

47.7  Arbitrary Rotation Axis 

All the above analysis is based on the assumption that the rotation axis is coincide with 
the z-axis.  Here we will give a way to transform all variables back to global if the 
rotation axis is not coincide with the z-axis (Figure 1.5).  The transformation matrix 
from z axis to rotation axis is denoted as T and it is easy to get  𝑻𝑇𝑻 = 𝑰 . 
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Figure 1.5 Rotation axis not coincide with z axis. 

 
The location vector in the fixed coordinate becomes:  

𝒓 ̅ = 𝑻𝑇𝑯(𝒓 + 𝒖 ). (47.56)

where 𝒓  and 𝒖   are the location vector and displacement in the coordinate system 
Ox’y’z’, in which the z axis is transformed to the rotation axis z’ by rotation matrix 𝑻 .At 
the same time: 

𝒓′ = 𝑻𝒓 , (47.57)

𝒖 = 𝑻𝒖. (47.58)
where, 𝒓 and 𝒖  are the location vector and displacement  in the rotating coordinate 
system Oxyz. 
 
The equation of motion in (1.25) and (1.27) can be simplified written as:  

𝑴𝟎𝒂 + 𝑪𝟎𝒗 + 𝑲𝟎𝒖 = 𝑭𝟎, (47.59)
And the force term can be written as  

𝑭𝟎 = 𝒇𝟎𝒓, (47.60)
By substituting (1.28), (1.29) and (1.30) to the equation of motion, we can get new mass, 
damping, stiffness matrices and force vector as follows: 

𝑴 = 𝑻𝑻𝑴𝟎𝑻 , (47.61)

𝑪 = 𝑻𝑻𝑪𝟎𝑻, (47.62)

𝑲 = 𝑻𝑻𝑲𝟎𝑻, (47.63)

𝑭 = 𝑻𝑻𝒇𝟎𝑻𝒓. (47.64)

So the equation of motion becomes: 
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𝑴𝒂+ 𝑪𝒗 + 𝑲𝒖 = 𝑭 . (47.65)
After the equation of motion is obtained, it can then be solved using the implicit solver.  
Especially, the damping and stiffness matrices are related to the rotational velocity, so 
the eigen-frequencies might change with the change of rotational velocity.  A diagram 
to represent this relationship is called Campbell diagram.  An example is given in 
Figure 1.6. 
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Figure 1.6 A disk is spinning with the center axis, the mode frequencies change with the 

increase of rotating speed.
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