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Pedestrian Protection Overview

Scenario: vehicle frontend hits crossing pedestrian For regulatory and NCAP testing:

Factors determine injuries impactors representing different human body parts hit vehicle frontend
e \ehicle speed Model capacities required

e Pedestrian height e Windshield

e Frontend shape e Hood

e Hood length

¢ Frontend
e Pedestrian

Small car

@ Injured body
regions

Source: 49 Oliver z‘ﬂd.f, BASt
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How to...

accurately model the key components like windshield?

design a better hood for less severe injury?

better represent a pedestrian?
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How to...

accurately model the key components like windshield?
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A Model for Laminated Glass

Discretization

Laminated glass consists of at least 3 layers

= 2 glass panes: shell elements with MAT_GLASS (MAT _280)

Glass (*MAT_GLASS)

PVB (*MAT_SIMPLIFIED_RUBBER,
*MAT_OGDEN_RUBBER, ...)

" PVB interlayer: transverse shear deformation important
~2.10 mm

- solid elements ~0.76 mm
~2.10 mm

" Contact between layers: shared nodes

Offset the glass layers with NLOC parameter (SECTION_SHELL)

Glass Shells

™ e’ v ey - Fa' (" £ -
Cr (r {0 r < (_r

N Offset with NLOC
PVB Solids

Glass Shells o SRR, YR, N, W— W—, SU— _— ., Ao compression

stretching

Glass fragments are bonded

= Difficult mechanical behavior
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Introduction to MAT _GLASS (280)

Theoretical Background 1
fe - fto;l
" Linear elastic until failure
= Stress based failure criteria: Rankine, Mohr-Coulomb, Drucker-Prager £
= Compressive failure A Vloc
" Material is ‘crumbled’ — :
) AT failure

Tensile failure -
Xloc

® Single Cracks

" Crack direction perpendicular to the 1% principal stress

= 2nd crack can occur orthogonal to the 15t crack

® Cracks can open and close independently

Elements will not be automatically deleted when failed

EPSCR (MAT_GLASS) or MAT_ADD_EROSION can help deleting distorted elements

\nsys



Strength Reduction

" Stress concentration in tip of crack

" Cannot be resolved by coarse FE-mesh

Stress
concentration

" To consider this effect in MAT_280 the tensile strength can be reduced after the first crack

® Combination of variables determines the way the strength reduction works t,
*MAT_GLAS S_{ STOCHASTIC} '
S MID RO E PR IMOD ILAW “
1 2.5E-6 70 0.23
S FMOD FT FC AT BT AC BC FTSCL
0.2
S SEFSTI SFSTR CRIN FCRCL NCYCR NIPF
S EPSCR ENGCRT RADCRT RATENL RFILTFEF FRACEN FT
A Tensile strength
FTSCL x FT— /
&
FIL Strain rate, ¢
RATENL o L
7 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement \nsys



New option for *MAT 280

*MAT_GLASS_{STOCHASTIC}

S MID RO E PR IMOD ILAW
1 2.5E-6 70 0.23
S FMOD FT FC AT BT AC BC FTSCL
0.2 1.5
S SEFSTI SESTR CRIN ECRCL NCYCR NIPF
S EPSCR ENGCRT RADCRT RATENL RFILTFE FRACEN

center of
impact

* ENGCRT/RADCRT: failure model described by Pytell/Liebertz (2011)

Initially deactivates failure/cracks

1st element with g,,,>"FT"x"FTSCL" defines center of impact

Internal energy of part within radius RADCRT is monitored

When internal energy reaches ENGCRT, failure is activated

*DEFINE FUNCTION

100
.. . float func(float distx) {
* NEW: critical energy depends on edge distance float engx;
engx=min (0.03*distx,7.3);
- ENGCRT<O refers to *DEFINE_FUNCTION, e.g., $ printf ("DISTANCE=%.7e, ENERGY=%.7e\n",distx,engx);

return engx;
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Weibull probabilty density

Stochastic Variation

LS-DYNA simulation
—— Weibull probabilty density

10 ~

" Stochastically distributed tensile strength due to microcracks &

= *MAT_ 280 STOCHASTIC + Y
*DEFINE_STOCHASTIC_VARIATION =
—> stochastically distributed factor 4]

for tensile strength

" Kind of distribution is given by VAR _S

[ | 1: Uniform random distribution 0.00 0.05 0.10 0.15 0.20 0.25 0.30

tensile strength factor

= 2: Normal distribution

| History Variable#13
6.000e-01
5.000e-01 ]
4.000e-01
3.000e-01
2.000e-01
1.000e-01
0.000e+00 _|

" 3: User defined probability distribution

" 4: User defined cumulative distribution

" History variable #13 shows factor

9 ©2025 ANSYS, Inc.
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Glass strength prediction model s g _

* Available as *MAT_GLASS SPM

- Monte-Carlo based fracture initiation predictor

Surface flaws

- % <+ Glass specimen

- combines the theories of linear elastic fracture
mechanics (LEFM) and sub-critical crack growth (SCG)

Stress distribution XM ;

- generates a representative sample of virtual glass
plates which are monitored during the simulation

- GSPM predicts tensile strength, initiation location,

and initiation time for the 15t crack, ’ =
then *MAT_280 takes over for crack propagation ! |
T R N

. . . Ky <K, No growth
- Model details and calibration procedure for new KL < Ko [—{No growt |

parameters described in Rudshaug et al. (2023) K e X
o K> Kic | ,
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Glass strength prediction model

3000 1

1 — csPm Rudshaug et al. (2023)

Experiments
2500 4 y

2000 1

* Capabilities of the new method z | i

- Can describe the probabilistic ) 1000-5 failure percentile 0.95

fracture behavior of glass and SCG 500 4 . .

] — ailure percentile 0.05

- Predicts the strength of glass plates A e A

of various geometries exposed to Jupemen

many different load cases . .

failure percentile 0.05 failure percentile 0.95

- User can select a representative case (weak windshield) (strong windshield)

of a glass plate fracture strength
simply by altering the
failure percentile parameter

Number of cracks

- Example: windshield impact

0
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Position-Based Tensile Strength

" Laminated glass

" tensile strength varies over thickness

" Options to consider effect in LS-DYNA
“ INTEGRATION_SHELL
“ PART_COMPOSITE

" INTEGRATION_SHELL is more flexible

" Integration rule can be defined

" For each ply, an individual stochastic variation
can be defined
1 exterior
f%—ﬂ\\ PVB
2 Part 1
t . . transparent
f3/ \f‘} interior -
t t
12 ©2025 ANSYS, Inc.

*PART

Glass outer pane

$ PID SECID MID EOSID HGID GRAV
100 100 0 0 0

*SECTION_ SHELL

S SECID ELFORM SHRF NIP PROPT OR/IRID
100 2 0.833 3 1.0

*INTEGRATION SHELL
S Gauss-Lobatto integration 3

S IRID ESOP FATLOPT

100 3
$ S WF PID
-1.00000 0.3333333 101
0.00000 1.3333333 101
1.00000 .3333333

*PART

DUMMY PART Glass oudter pane - air side - position 1

$ PID > EOSID HGID GRAV
102 100 (102) 0 0 0

*MAT GLASS

$ MID RO E PR
102 2.5E-6 70 0.23

$ FMOD FT FC AT BT AC

&ftl

Powering Innovation That Drives Human Advancement

ADPOPT

ADPOPT
0

IMOD

BC
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Position-Based Tensile Strength

" Laminated glass

" tensile strength varies over thickness

" Options to consider effect in LS-DYNA

“ INTEGRATION_SHELL
“ PART_COMPOSITE

" INTEGRATION_SHELL is more flexible

® Integration rule can be defined

® For each ply, an individual stochastic variation

can be defined

1 exterior
f%—ﬂ\\ PVB
Ez ) ) : Part 1 ]
_d// \ interior i paren
_f3 _f4 glass
t t
rt 2 silkscreen
13 ©2025 ANSYS, Inc.

*PART COMPOSITE
Glass outer pane

$ PID ELFORM
100 2
$ MID1 THICK1
100 0.05
100 0.5
100 0.5
100 0.5
100 0.5
200 0.05

*MAT_GLASS_TITLE
PVB side

$ MID RO

100 2.5E-6

$ FMOD FT
&ft2

*MAT_GLASS_TITLE
alr side

$ MID RO

200 2.5E-6

$ FMOD EFT
&ftl

SHRF
0.833
Bl

NLOC

TMID1

PR
0.23
AT

PR
0.23
AT

MAREA

MID2

BT

BT

HGID

THICK?Z2

Powering Innovation That Drives Human Advancement

ADPOPT

B2

IMOD
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Crack visualization
Option |

® Head impact on windshield -~ &N
Hist. var. cosine v an_gg 3‘{;
|51 | 52 | 53
H.Var X H.Var Y H.\Var £ X
5o v e @
Int. Pt.|1 | Ez ﬂ
" Cracks can be visualized as a Vector Range pc %
Min: ]
vector plot using history variables pax: 0
#15, #16, and #17 O e D
] C k d . . h SF:|2.(} v|| 2| E
rack direction is shown e ]
[JKeep vector display #‘ LS |
" So far only shows 15t crack Aop et n e uice M§
isplay highlighted node vel. MS
. . [ Force resultant {Sﬁd %
" Available since R15 AL | s ™
one ~ Output
e Gemade | | Jv
[Capoy ] | dlear | ;@f
[sae | [ oone | X
Lo

14 I ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement I\nsys



Crack visualization
Option |l
" Head impact on windshield

" Cracks can be visualized by
history variable #1 of MAT_GLASS

" -1: compressive failure
“ 0: nofailure

" 1: onecrack

= 2: two cracks

15 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement \nsys



How to...

design a better hood for less severe injury?

17 ©2025 ANSYS, Inc.

Powering Innovation That Drives Human Advancement
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Topology Optimization using LS-TaSC

Topology and shape optimization of non-linear problems

Multiple load cases and disciplines

VAN
* Global constraint handling
- Energy absorption, maximum reaction forces, ... LS-TaSC Algorithm
-  Multi-point optimization and metamodels
P P Starting design pO, EC® gY0, EMO _
* Redistribution of material within a given domain s ey FE-analysis: [EDJ —57
¥
° Design va riables Update of density distribution
= Average IED/ within neighbor cells: IED/
- Relative density of each element - Inner loop: Material update
Determine target value IEDr9¢ti ET* = (pyo/*")P Ey
* Result considering mass constraint and additional VI = (po it g¥ O
constraints ERI*T = (p, 1)1 ERO
- New material distribution " New density distribution p/*! “
!
- New shape of structure ot no
yes l

Optimal design




T

Hood Design Optimization using LS-TaSC

* Objective: Stiffest structure, satisfy constraints and minimize mass

* Constraints: rear beam, bending and torsion displacements

Outer skin (shell)
~ Design part (solid)

A
P
e .
o ,
"’./ . - ~ Vs
~ T .
g
~ P
A
. —
. —
. e
.
.

:,/HR%ear beam = _ éj‘“ﬁ“ ) Initial Design has very low mass fraction of 0.01.

PN T~ T s
A iy
4 y. Py
AN ’, 7
g =~ 4 ’,
, . ——
g . , ——
D ’
P ’,

, T T T ’,

7 B —;* 1 : .--::;ﬁ':"-'-'f-::-.-;_--:lyé IO_D g 7

\:/:hl Be_rl gmg Model by courtesy of Jaguar Land Rover

Design Contribution Plot
(Rear beam, torsion, bending)
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Integration

20

LS-TaSC with LS-DYNA

* no special treatment for
nonlinearties

LS-TaSC with LS-PrePost

* results visualization
* model editing

%@0@

Hstories | Tsosurface Sgie Model | Matrx of Models | Exgen Mode |

LS Dyna
Job Status

Job ID PID Iter Case Status "

60 __4932 56 FREQUENCY sl Trmrasonm

61 __ 25584 60 FREQUENCY [ ol Temmination

62 __22052 61 FREQUENCY |IESEEEE ommal Temmination

63 21444 | 62 FREQUENCY SRS Honmal Tammination

64 __13612 63 FREQUENCY |IESEEEE ormal Temination s

65__ 15868 | 64 FREQUENCY |SESSEEEEonmal Tammination s

66 2400 | 65 FREQUENCY [ onmal Temmination

67 12624 | 66 FREQUENCY [N NammalTermnaton
68 17484 67 FREQUENCY (0%%) >

< >

Engine OQutput

I Stop ‘ | Done |

N~

©2025 ANSYS, Inc.

Tteration
o ) o

Case
FREQUENCY

Fringe Component
 Topology Varable Fracton " Topology Materal Utization g
 Sold Density " Sold ED ~ First eration As Transparent Overlay I
© shel D  Shel Thickness ( r Show Design Past(s) Only

W Open LS-Prepost Window Vi
© Von Messs Stress  Desgn Step A Y e
 Contrbuting Case ~ -

o

Show Done

o /

LS-TaSC with LS-Opt

multilevel and complex design

schemes

|6

b+ /L

Setup Sampling Sampling 1
| 4 parameters i T 4vars, 8 d-opl designs
I S— - -—— -
Finish Domain reduction 'g:; 5 ' A
(SRSM) Stage1 \
} [} A pars, Tresps 'l
A Y ’I
Verification Teminatoncrteria | “aq | e
1 design 30 erabons

[

Optimization .
G 1 obisctive
5 constraints I

[}
L]

Composites Build Metamodels
3 defiitions 7 near surfaces

Powering Innovation That Drives Human Advancement
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Active hood system

* Active hoods to provide more deformation space between the hood and the engine compartment package

_‘ Courtesy: Continental Courtesy: ZF
* Sensing system to identify a pedestrian impact (fiberoptics, pressure tube)
 Active system (actuator at hinge) to deploy the hood

 Special requirements to prove that hood is fully deployed prior to the head impact

21 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement
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Pressure tube sensor

* Pressure tubes along the bumper foam

* Sensing locations at the ends of the tube

Fascia

* Impact will compress tube and create pressure wave traveling along the tube

* Tube modeling including physical properties defined by *DEFINE_PRESSURE_TUBE

1.2

Bumper foam ' [ ' Test case

1 — _A Shell tube
B Experiment
Bumper shell \l/ 08t | : ]

Frame 0.8

v

Pressure

Silicone tube o

-0.2

o I i . 10 . 1:! I 20
22 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement \nsys

Reference: “Recent Developments in *DEFINE_PRESSURE_TUBE for Simulating Pressure Tube Sensors in Pedestrian Crash” by Jesper Karlsson



How to...

better represent a pedestrian?

23 ©2025 ANSYS, Inc.
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Introducing HANS

* Hans is a high-fidelity LS-DYNA human body model
* Commercial model licensed separately

* Hans represents an average male person — AM50

Body Specs: ~77kg, 176cm, BMI 24.9, Age 30-40

Model size

* Number of nodes: ~1.6Mio

* Number of elements: ~2Mio

* Number of parts: 1,978

* Macro Fiber Parts (keep adding): 138

Contacts
* 1 single surface contact
* 5 tied contacts to attach soft tissue

- Recommended time step: 0.5usec

24 ©2025 ANSYS, Inc.
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Modeling Fundamentals

* Passive model targeted for any kind of explicit impact simulation

* Focus on the musculoskeletal system at first
* Modeling the physics:
- Model the human body with a high level of detail

- Avoiding abstraction and substitute approaches
* Geometry and materials are modeled as is
— Less tweaking needed to correlate to test data

—> Better confidence in load cases that are not
covered by test

* Following the modeling approaches of
the successful DYNAmore Dummy models

@ Validation Point
Simplified model
Detailed model

n

»
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Motivation

* So far, many industries rely on physical and * There are initiatives in serveral industries to
virtual dummies for product development establish virtual product certification using
HBMs

* Human Body models can overcome some
down5|des Of dummles' as they are - EurONCAP, IIHS, C'NCAP, ... dre aCt|VEIy Work|ng on
such protocols

- DYNAmore/ANSYS is involved in the EuroNCAP
- are non-directional activities

- a more accurate approximation of a human

- - Virtual Tests require qualified human body models

* Increasingly sophisticated safety systems and 255, N oD
gy . P . y y . . EURO@NCAP c NCAP IIHS
new application areas require higher fidelity P FERERERE o
models

- “Made for humans - not for dummies”

\nsys



Vulnerable Road Users (VRUs) — EuroNCAP TB024

pFER
R,

& g0}
EURO@NCAP
* Qualification model included in the delivery package

www.euroncap.com

* In total 9 (3 generic vehicles x 3 impact speeds) are carried out for qualification

Roadster 50kph Family Car 50kph SUV 50kph

-

P

e

—

W
'
\

..

&

27 ©2025 ANSYS, Inc.
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How to... in summary

accurately model the key components like windshield?

Laminated glass model with MAT _GLASS + added features

design a better hood for less severe injury?

Use optimization tools such as LS-TaSC and active hood

better represent a pedestrian?

HANS! For virtual certification

28 ©2025 ANSYS, Inc.
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SimAl Objective

30

&—D Learn from existing datasets

Build accurate predictive models

~

Generalize for early design
prediction

/

©2025 ANSYS, Inc.

Several Designs

Full-width Test
unbelted SO belted

fE5
4 km'h
— II
Fytrdil W
L] 1]
e
r
54 km'h
]

=
:

5 % Female Dummy

I B

=

oy
0%

5
Fiybred s
50%

50 % Male Dummy

(

Powering Innovation That Drives Humﬁlﬂeﬁ‘dmamYewaentcar-segmen\'ncsys



SimAIl — General Idea

SimAl possesses several unique
features:

(i)

it is robust to varying mesh
sampling, allowing for
adaptability to different
geometries,

it effectively captures multi-scale
phenomena, resulting in state-
of-the-art scores for both
volume and surface evaluations,
as a continuous surrogate
model, it can be used to
accelerate the evaluation of
different geometries during the
design process, leading to
significant speed-up.

Ground truth field, v, at ¢ = 400s

Node type Mesh topology Nede attributes
® Fiuid nodes (0) Cells (i), k) Velocity, » (2D vector)
® Wall nodes (3)

Node position (x,. ) Pressure, P (scalar)

LrORFROO
oraoRrRO -

roOoroO
rRrOORO
oroooo

& inflow nodes (4)
® outflow nodes (5)

(d]
ENCODER CN? PROCESSOR aNM DECODER
X — —GD_L'é—‘Gl aaa GIVI_I r é Gju — YV
(©) Construct graph W0 (d) Pass messages (e)  Extract dynamics info
J
[~ C < ¢
i el ¢ ieif} ¢ ie?f]“ ! ¢ o
¢ © X; (% V? (o] S Vi ¢-C V;n+1 V;‘[ ¢ ¢ Yi
¢ ¢ ¢ (% S ¢ P C—¢ ¢ ¢ ¢
¢ C L ¢

* Encode the distance function and the normal components into latent codes
* Use the latent codes to infer predicted output codes

* Decode the output codes with modulated INRs to get the physical fields

e SimAl uses a proprietary Architecture slightly different from the one shown

above

\nsys


https://www.exxactcorp.com/blog/Deep-Learning/open-source-libraries-for-deep-learning-graphs
https://medium.com/stanford-cs224w/learning-mesh-based-flow-simulations-on-graph-networks-44983679cf2d

® 10ldl Gdia Ol LU0 SImuidtions
* Training set : 86 simulation Data points

Ped estrian Head |mpa ct  Testing Data set : 20 Simulation Data points

e Challenge
* For Pedestrian Head Impact, a grid of around 200 points on the hood are evaluated for predicted HIC value.
* Needs to be repeated for every design change

* SimAl + LS-DYNA
* |nstead of running all 200 points, Run the simulation on 100 points. Predict HIC value for remaining points using
SimAl
e Total data of 106 simulations- 86 training set & 20 testing set

[ \ Resultant Displacement
;ﬁ\\ 25 Ah@BGESCE roonea0n
2! e ) Ansyseraw
“' 1\\ 471 472 a7 17 .175 165 178 177178 179 180 181 9.645e+01 ||

‘./ 0 p \\“5 146 8.439e+01 _ ML platform for simulation across the physics
7.234e+01 _
6.028e+01 _|
4.822e+01 _
3.617e+01 _
2.411e+01

1.206e+01 :I
0.000e+00 _|

o 157 1SS

Extremely fast and reliable physics

predictions which learns from existing data

10x to 1000x Faster

Fig 7 test impact points are shown red points
Picture courtesy: Safetywissen

\nsys



Pedestrian Head Impact : SimAl Model

json file

e Total data of 106 simulations vie fle

* Training set : 86 simulation Data points
* Testing Data set : 20 Simulation Data points

e Typical Data Point :
* json file with input parameters
e E.g. this case, We have considered Time
vtp file : which contained displacement field and HIC value
.vtu file : For cast component, it has displacement field

.vtu file
M_WI boundary_condition.json 17-06-2024 16:47 JS0M File 1KB
B surfacevtp 17-06-2024 16:47 VTP File 47,856 KB
8 volumentu 17-06-2024 16:47 VTU File 5272 KB

33 ©2025 ANSYS, Inc.
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|-["T:'Lme": 29.999368667608254

ko]
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5]
T
=)

U-normed
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Model Configuration and Evaluation Report

Model configuration

Reference sample

ML_Pdstv4_C.5.728 £

« Boundary Condition: boundary_condition.json

« Surface file: surface.vtp
« Volume file: volume.vtu

Input/Output = Select variables

Model Inputs
Geometry

¢ Extracted from the surface

Surface

No input

Boundary Conditions

« Time

Domain of Analysis

D _Define domain of analysis

X position relative to design edge
y position relative to design edge

z position relative to design edge

Build duration

Model Outputs
Volume

« HIC

« UIX]

« ULY]

« UlZ]

Surface

« HIC
« UlX]
« UlY]
« U[Z]

Volxmin = xmin - 247.627

Volymin = ymin - 220.333  Width = 2643.992

Volzmin = zmin - 142.907

Length = 2971.527

Height = 1714.888

Your reference sample is valid

Your variables are set

Global Coefficients

« HIC_global, in this case 6.454e+2
« U-Normed, in this case 1.962e+2
« Ux_max, in this case 1.679e+2
« Uy_mayx, in this case 3.65%e+1
« Uz_mayx, in this case 4.577e+1

@ Create coefficient

Your volume is set

O Debug ® 4 Data, 30min build

© Production > _O > Build on top of previous model (speed x5)
Precise

< Go back

\ Build Mode

3.5.1 Test geometry 118

\

" B B
-38.5 -28.8 %Zd 9.30 0432 -38.5 -28.8 %% -0.30 0432 -1.57 -0.784 E%m 0.784 167
N L e
(a) SimAl prediction (Solver scale) (b) Solver target (Solver scale) (c) Difference (Zoomed scale)

Figure 20: Geometry mesh of U[Z]

2.21 HIC_global

Simal

1000 4

00 4

800

700

500 4

HIC_global

test [R27=0.960)
train (R2*=0.977)
validation (R2*=0.926)

0% error ‘ -4
10% relative error ' St

400 500 600 700 800 00
Solver

(a)
Figure 1: HIC_global trend comparison plot

Powering Innovation That Drives Human Advancement
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Pedestrian Head Impact :

35

SIMAI Prediction

©2025 ANSYS, Inc.

[ 3
179.0 0.4
518.3 2.8

Powering Innovation That Drives Human Advancement
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Al ML | Pedestrian Head Impact

* Solver Time : 1hr on 96 CPUs

* SimAl Prediction Time : < 1min 20 locations previously unseen by the model

HIC value Prediction

1000

800
600
400 HIC_simAl

200 ——HIC_Solver

HIC Value

0 20 40 60 80 100 120

Sample Number

\nsys



Improved Delivery Positions

* Occupant delivery position * Given the same H-Point location, * The Pedestrian Position
modified based on the posture of Hans is close to completely fulfils the
Rieger et al (2023) the postures of WorldSID50M EuroNCAP TB024 requirements
, and THOR-50M
* Spine angle measurements from I
volunteer scans in car seats * Hans delivery position is aligned H m
with Dummy model positions 3 o
Target Hans % | oK 3
Angle Angle 71 oK 1
TK -16.8° 16.9° s I~
01 oK 1°
TLK -15.6° 17.1° 129 0K 3°
08 | OK 3
18 | ox -2°
35 | oK -3°
'92 oK -1mm
131 | 0K -0,2%
-100,0%
| 0K 2,4%

37 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement \nsys



Summary

* Hans V1.2 comes with a lot of improvements for
automotive customers in terms of usability and performance.

* The new release prepares the model for the upcoming/existing EuroNCAP
requirements

* R12.2 is the model development version and required to use Hans

* Included to the delivery package:
- model in standing and sitting postures — One Model
- Human Body Model in three unit-systems, including parameterized renumbering
- Accessoires like shoes, ...
- Treefile for positioning of the model in the commonly used pre-processing tools
- Documentation/Correlation report

- 1st class global expert support

38 ©2025 ANSYS, Inc. Powering Innovation That Drives Human Advancement
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Required simulation capabilities

* Material properties

- Plastic materials (headlamps, front fascia, ...)
* Including fracture

* Package parts
- Powertrains
- Electronic components
- Hinges
- Cables and cable bundles

- Instrument panels including all parts in potential impact area \nsys



Modeling of package components
Simplified electric cable modeling with *DEFINE_CABLE

* Simple creation and analysis of electric cables
for modeling wire failure in vehicle crash

- Automatic creation of cables from beam elements
- Final cables can be a mix of solids/shells/beams

- Links cross-section data to each original beam element

* Data available in binout (*DATABASE_CABLE: cableout)

- Compression (contact) force

- Cross-section area

* Data summary available in ASClI-file

- Time and location for maximum compression
force and minimum cross-section area
for each cable and for whole model

40 ©2025 ANSYS, Inc.

Cable generation from beam elements
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Data summary

PART-WISE DATA:

Beam part= 83990001, sampling freguency=

maxstress= 0.4953E-01, time= 0.5000E+01,
minarea = 0.5891E+02, time= 0.5000E+01,
maxforce = 0.5590E+01, time= 0.4998E+01,

Beam part= 83990002, sampling freguency=

maxstress= 0.7170E-01, time= 0.4991E+01,
minarea = 0.8419E+02, time= 9.4997E+01,
maxforce = 0.9542E+01, time= 0.4997E+01,

Beam part= 83990005, sampling freguency=
maxstress= 0.3333E-03, time=
minarea = 0.3247E+83, time=
maxforce = 0.0000E+00, time=

Beam part= 83990006, sampling freguency=
maxstress= 0.5296E-03, time=

minarea = 0.8662E+02, time=

maxforce = 0.0000E+00, time= 0.0000E+00O,
DATA FOR ALL PARTS:

maxstress= 0.7170E-01, time= 0.4991E+01,
minarea = 0.5891E+02, time= 0.5000E+01,
maxforce = 0.9542E+01, time= 0.4997E+01,

0.4854E+01,
0.2972E+01,
0.0000E+00,

0.2155E+01,
0.2664E+01,

1 cycles
element=
element=
element=

10 cycles
element=
element=
element=

1 cycles
element=
element=
element=

1 cycles
element=
element=
element=

element=
element=
element=

46
48
46

6020579
6020579
6020579

6020613
6020613
0

6020623
6020623
0

6020579, part=
48, part=
6020579, part=
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83990002
83990001
83990002
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